1
|
Tian Y, Lin X, Yang F, Zhao J, Yao K, Bian C. Contribution of xeroderma pigmentosum complementation group D gene polymorphisms in breast and ovarian cancer susceptibility: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e20299. [PMID: 32481313 PMCID: PMC7249878 DOI: 10.1097/md.0000000000020299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/29/2020] [Accepted: 04/16/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The role of xeroderma pigmentosum complementation group D (XPD) gene polymorphisms in breast and ovarian cancer development has long been controversial and existing data were inconsistent. Here, we conducted a comprehensive systemic review and meta-analysis to better clarify the association. METHODS Relevant case-control studies published in electronic data base from October 1999 to September 2019 were assessed. The statistical analyses of the pooled odds ratios (ORs) and the corresponding 95% confidence intervals (95%CIs) were calculated by using Revman 5.2 software (Cochrane Collaboration, Copenhagen). RESULTS 31 articles including 38 case-control studies and 2 XPD polymorphisms (rs1799793 and rs238406) were analyzed. The results showed statistical significance in heterozygous mutants among Asian population for rs1799793 (GA vs GG + AA: OR = 1.38, 95%CI = 1.21-1.56), and Caucasian population for rs238406 (CA vs AA + CC: OR = 0.63, 95%CI = 0.49-0.80), while the rest comparisons including overall groups and subgroups stratified by cancer types and ethnicity failed to indicate any association with breast and ovarian cancer risk. CONCLUSIONS The current meta-analysis suggested no concrete correlation of XPD rs1799793(G/A) and rs238406(C/A) polymorphisms with breast cancer or ovarian cancer susceptibility. However, it indicated that heterozygous genotypes might share different pathophysiologic mechanism from not only homozygous wildtypes but also homozygous mutants. More case-control studies with well-adjusted data and diverse populations are essential for validation of our conclusion.
Collapse
Affiliation(s)
| | | | | | | | - Kui Yao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | | |
Collapse
|
2
|
Wu H, Li S, Hu X, Qin W, Wang Y, Sun T, Wu Z, Wang X, Lu S, Xu D, Li Y, Guan S, Zhao H, Yao W, Liu M, Wei M. Associations of mRNA expression of DNA repair genes and genetic polymorphisms with cancer risk: a bioinformatics analysis and meta-analysis. J Cancer 2019; 10:3593-3607. [PMID: 31333776 PMCID: PMC6636297 DOI: 10.7150/jca.30975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
A systematical bioinformatics and meta-analysis were carried out to establish our understanding of possible relationships between DNA repair genes and the development of cancer. The bioinformatics analysis confirmed that lower XPA and XPC levels and higher XPD, XPF, and WRN levels were observed in 19 types of cancer, and subsequently results indicated that elevated XPA and XPC had a better impact on overall survival, however, higher XPD, XPF, and WRN showed worse influence on cancer prognosis. The meta-analysis included 58 eligible studies demonstrated that harboring XPA rs10817938, XPD rs238406 increased overall cancer risk, however, XPA rs2808668 SNP in overall cancer analysis and XPF rs3136038 in the digestive system remarkably reduced the cancer risk. Moreover, no correlation was investigated for XPC rs1870134, WRN rs1346044 and rs1801195. These suggest that the DNA repair gene was associated with carcinogenesis, and contribute to the prognosis, and the critical SNPs further involved in affecting cancer risk.
Collapse
Affiliation(s)
- Huizhe Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Shanqiong Li
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Wenyan Qin
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Yilin Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China.,Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Department of Breast Surgery, First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Zhikun Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Xiufang Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Senxu Lu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Dongping Xu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Yalun Li
- Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Shu Guan
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Mingyan Liu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| |
Collapse
|
3
|
Excision repair cross-complementing group 2/Xeroderma pigmentousm complementation group D (ERCC2/XPD) genetic variations and susceptibility to diffuse large B cell lymphoma in Egypt. Int J Hematol 2013; 98:681-6. [PMID: 24258710 DOI: 10.1007/s12185-013-1462-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 12/15/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous neoplasm. Although several genetic and environmental factors have been postulated, no obvious risk factors have been emerged for DLBCL in the general population. DNA repair systems are responsible for maintaining the integrity of the genome and protecting it against genetic alterations that can lead to malignant transformation. The current study aimed at investigating the possible role of ERCC2/XPD Arg156Arg, Asp312Asn and Lys751Gln genetic polymorphisms as risk factors for DLBCL in Egypt. The study included 81 DLBCL patients and 100 healthy controls. Genotyping of the studied genetic polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism technique. Our results revealed that there was no statistical difference encountered in the distribution of -Asp312Asn and -Lys751Gln polymorphic genotypes between DLBCL cases and controls, thus it could not considered as molecular risk factors for DLBCL in Egyptians. However, Arg156Arg polymorphism at exon-6 conferred twofold increased risk of DLBCL (OR 2.034, 95 %CI 1.015-4.35, p = 0.43), and the risk increased when co-inherited with Lys751Gln at exon-23 (OR 3.304, 95 %CI 1.113-9.812, p = 0.038). In conclusion, ERCC2/XPD Arg156Arg polymorphism might be considered as a genetic risk factor for DLBCL in Egyptians, whether alone or conjoined with Lys751Gln.
Collapse
|
4
|
Zhou C, Xie LP, Lin YW, Yang K, Mao QQ, Cheng Y. Susceptibility of XPD and hOGG1 genetic variants to prostate cancer. Biomed Rep 2013; 1:679-683. [PMID: 24649009 DOI: 10.3892/br.2013.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/24/2013] [Indexed: 01/22/2023] Open
Abstract
DNA repair genes are important in maintaining genomic stability and integrity. DNA repair gene polymorphisms, such as those of the human homolog of 8-oxoguanine DNA glycosylase 1 (hOGG1) and excision repair cross-complementing rodent repair deficiency, complementation group 2/Xeroderma pigmentosum complementation group D (ERCC2/XPD), contribute to carcinogenesis. The aim of this study was to investigate the association of prostate cancer (PCa) risk with hOGG1 and ERCC2/XPD genetic variants. A case-control study of 200 cases including 100 PCa patients and 100 healthy subjects was conducted. Two single-nucleotide polymorphisms (SNPs) (ERCC2/XPD Arg156Arg and hOGG1 Ser326Cys) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results demonstrated a significant association of the XPD156 homozygous (AA, OR=3.80; 95% CI: 1.19-12.18; P=0.017), heterozygous (AC, OR=2.48; 95% CI: 1.02-6.35; P=0.033) and combined (AA+AC, OR=2.76; 95% CI: 1.18-6.84; P=0.011) mutant genotypes with a predisposition to high-risk PCa. In the stratified analysis, predisposition to high-risk PCa was also associated with the mutant genotypes of hOGG1 326 homozygous mutant (GG, OR=2.93; 95% CI: 1-8.74; P=0.033). The results also showed that the A allele of XPD Arg156Arg and the G allele of hOGG1 Ser326Cys were associated with an increased risk of PCa (OR=1.86 and 1.62; 95% CI: 1.13-3.06 and 1-2.67, respectively). In conclusion, the findings of this study demonstrated that the ERCC2/XPD Arg156Arg and hOGG1 Ser326Cys polymorphisms increased the susceptibility to high-risk PCa.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Urology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Li-Ping Xie
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yi-Wei Lin
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Kai Yang
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Qi-Qi Mao
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yue Cheng
- Department of Urology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
5
|
Lu X, Liu Y, Yu T, Xiao S, Bao X, Pan L, Zhu G, Cai Y, Liu Q, Jin C, Yang J, Wu S, An L, van der Straaten T. ERCC1 and ERCC2 haplotype modulates induced BPDE-DNA adducts in primary cultured lymphocytes. PLoS One 2013; 8:e60006. [PMID: 23593158 PMCID: PMC3617188 DOI: 10.1371/journal.pone.0060006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/22/2013] [Indexed: 11/18/2022] Open
Abstract
Background Benzo[a]pyrene(B[a]P), and its ultimate metabolite Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), are classic DNA damaging carcinogens. DNA damage caused by BPDE is normally repaired by Nucleotide Excision Repair (NER), of which ERCC1 and ERCC2/XPD exert an indispensable role. Genetic variations in ERCC1 and ERCC2 have been related to DNA repair efficiency. In this study we used lymphocytes from healthy individuals to show that polymorphisms in ERCC1 and ERCC2 are directly associated with decreased DNA repair efficiency. Methods ERCC1 (rs3212986 and rs11615) and ERCC2 (rs13181, rs1799793 and rs238406) were genotyped in 818 healthy Han individuals from the northeast of China. BPDE induced DNA adducts in lymphocytes were assessed by high performance liquid chromatography (HPLC) in 282 randomly selected participants. The effect of ERCC1 rs3212986 and ERCC2 rs238406 on DNA damage caused by B[a]P was assessed with a modified comet assay. Results We found that the variant genotypes of ERCC1 rs3212986 and ERCC2 rs238406 were associated with the high levels of BPDE-DNA adducts. Especially ERCC1 rs3212986 A-allele variant was significantly associated with the high BPDE-DNA adducts. Haplotype analysis showed that the ERCC1 haplotype AC (OR = 2.36, 95% CI = 1.84–2.97), ERCC2 haplotype AGA (OR = 1.51, 95% CI = 1.06–2.15) and haplotype block AGAAC (OR = 5.28, 95% CI = 2.95–9.43), AGCAC (OR = 1.35 95% CI = 1.13–1.60) were linked with high BPDE-DNA adducts. In addition, we found that the combined minor alleles of ERCC1 rs3212986 and ERCC2 rs238406 were associated with a reduced DNA repair capacity. Conclusions Our results suggest that the variant genotypes of ERCC1 rs3212986 and ERCC2 rs238406 are associated with decreased repair efficiency of BPDE induced DNA damage, and may be predictive for an individual’s DNA repair capacity in response to environmental carcinogens.
Collapse
Affiliation(s)
- Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The Arg194Trp polymorphism in the XRCC1 gene and cancer risk in Chinese Mainland population: a meta-analysis. Mol Biol Rep 2011; 38:4565-73. [PMID: 21499756 DOI: 10.1007/s11033-010-0588-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/20/2010] [Indexed: 02/05/2023]
Abstract
The Arg194Trp polymorphism in the X-ray repair cross-complementing group 1 (XRCC1) gene has been proved to be in association with cancer risk in Chinese Mainland population, but a large number of studies have reported inconclusive results. A more comprehensive and precise estimation of the relationship is needed to clear the way towards future studies. Thus, we performed a meta-analysis to analysis these associations. A total of 34 case-control studies in 34 articles were included in this meta-analysis. The results showed that the 194Trp/Trp homozygote had a 31% increased risk of cancer than 194Trp/Arg and 194Arg/Arg genotypes, OR was 1.31 and 95%CI was 1.13 to 1.53. In the subgroup analysis by cancer sites, the Arg194Trp polymorphism was associated with increased risks of lung cancer (OR = 1.27 and 95%CI: 1.07-1.50 for Trp/Trp versus Arg/Arg + Arg/Trp) and esophageal cancer (OR = 1.68 and 95%CI: 1.33-2.13 for Trp/Trp versus Arg/Arg + Arg/Trp). This meta-analysis suggested that the Arg194Trp polymorphism of the XRCC1 gene is a cancer susceptible factor among Chinese Mainland population. More intensive and deeper studies are needed to further reveal the mechanism between Arg194Trp polymorphisms of XRCC1 gene and cancer risks in Chinese Mainland population.
Collapse
|