1
|
Frías M, Corona-Mata D, Moyano JM, Camacho-Espejo A, López-López P, Caballero-Gómez J, Ruiz-Cáceres I, Casares-Jiménez M, Pérez-Valero I, Rivero-Juárez A, Rivero A. Lack of associations of microRNAs with severe NAFLD in people living with HIV: discovery case-control study. Front Endocrinol (Lausanne) 2023; 14:1230046. [PMID: 37810880 PMCID: PMC10556652 DOI: 10.3389/fendo.2023.1230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Background & objective Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in people living with HIV (PLWH) and the expression of some microRNAs could be useful as biomarkers for the diagnosis of NAFLD. The aim of this study was to identify patterns of differential expression of microRNAs in PLWH and assess their diagnostic value for NALFD. Methods A discovery case-control study with PLWH was carried out. The expression of miRNAs was determined using HTG EdgeSeq technology. Cases were defined as patients with severe NAFLD and controls as patients without NAFLD, characterized using the controlled attenuation parameter (CAP). Cases and controls were matched 1:1 for age, sex, BMI, CD4+ lymphocyte count, active HCV infection, and ART regimen. Results Serum 2,083 simultaneous microRNA transcripts were analyzed using HTG technology and compared between cases and controls. Forty-five patients, 23 cases, and 22 controls were included in the study. In the analysis of the expression pattern of the 2,083 microRNAs, no differential expression patterns were found between both groups of patients included in the study. Conclusion Analysis of the microRNA transcriptome profile of nonobese PLWH with severe NAFLD did not appear to differ from that of patients without NAFLD. Thus, microRNA might not serve as a proper biomarker for predicting severe NALFD in this population.
Collapse
Affiliation(s)
- Mario Frías
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), University of Córdoba, Córdoba, Spain
| | - Diana Corona-Mata
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
| | - Jose M. Moyano
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Angela Camacho-Espejo
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Pedro López-López
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Javier Caballero-Gómez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Animal Health Department, Animal Health and Zoonoses Research Group (GISAZ), University of Córdoba, Córdoba, Spain
| | - Inmaculada Ruiz-Cáceres
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
| | - María Casares-Jiménez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
| | - Ignacio Pérez-Valero
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Antonio Rivero-Juárez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Antonio Rivero
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Clinical Virology and Zoonoses, Maimonides Biomedical Research Institute of Cordoba, University of Córdoba, Córdoba, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Sousa-Filho CPB, Silva V, Bolin AP, Rocha ALS, Otton R. Green tea actions on miRNAs expression – An update. Chem Biol Interact 2023; 378:110465. [PMID: 37004950 DOI: 10.1016/j.cbi.2023.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
Compounds derived from plants have been widely studied in the context of metabolic diseases and associated clinical conditions. In this regard, although the effects of Camellia sinensis plant, from which various types of teas, such as green tea, originate, have been vastly reported in the literature, the mechanisms underlying these effects remain elusive. A deep search of the literature showed that green tea's action in different cells, tissues, and diseases is an open field in the research of microRNAs (miRNAs). miRNAs are important communicator molecules between cells in different tissues implicated in diverse cellular pathways. They have emerged as an important linkage between physiology and pathophysiology, raising the issue of polyphenols can act also by changing miRNA expression. miRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. Therefore, the aim of this review is to present the studies that show the main compounds of green tea modulating the expression of miRNAs in inflammation, adipose tissue, skeletal muscle, and liver. We provide an overview of a few studies that have tried to demonstrate the role of miRNAs associated with the beneficial effects of compounds from green tea. We have emphasized that there is still a considerable gap in the literature investigating the role and likely involvement of miRNAs in the extensive beneficial health effects of green tea compounds already described, indicating miRNAs as potential polyphenols' mediators with a promising field to be investigated.
Collapse
Affiliation(s)
| | - Victoria Silva
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Rosemari Otton
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.
| |
Collapse
|
3
|
Fang L, Wang HF, Chen YM, Bai RX, Du SY. Baicalin confers hepatoprotective effect against alcohol-associated liver disease by upregulating microRNA-205. Int Immunopharmacol 2022; 107:108553. [DOI: 10.1016/j.intimp.2022.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/05/2022]
|
4
|
Dumolt JH, Patel MS, Rideout TC. Gestational hypercholesterolemia programs hepatic steatosis in a sex-specific manner in ApoE-deficient mice. J Nutr Biochem 2022; 101:108945. [PMID: 35016999 DOI: 10.1016/j.jnutbio.2022.108945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/23/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Maternal hypercholesterolemia (MHC), a pathological condition characterized by an exaggerated rise in maternal serum cholesterol during pregnancy, may influence offspring hepatic lipid metabolism and increase the risk of nonalcoholic fatty liver disease (NAFLD). As NAFLD is characterized by a sexual dimorphic response, we assessed whether early-life exposure to excessive cholesterol influences the development of NAFLD in offspring and whether this occurs in a sex-specific manner. Female apoE-/- mice were randomly assigned to a control (CON) or a high cholesterol (CH; 0.15%) diet prior to breeding. At parturition, a cross-fostering approach was used to establish three groups: (1) normal cholesterol exposure throughout gestation and lactation (CON-CON); (2) excessive cholesterol exposure throughout gestation and lactation (CH-CH); and (3) excessive cholesterol exposure in the gestation period only (CH-CON). Adult male offspring (PND 84) exposed to excessive cholesterol during gestation only (CH-CON) demonstrated hepatic triglyceride (TG) accumulation and reduced lipogenic gene expression. However, male mice with a prolonged cholesterol exposure throughout gestation and lactation (CH-CH) had a similar, but not exacerbated hepatic response. Further, with the exception of higher serum TG in adult CH-CH females, evidence for a programming effect in female offspring was largely absent in comparison with males. These results indicate a sexual dimorphic response with respect to the effect of MHC on later life hepatic steatosis and highlight the gestation period as the most influential malprogramming window for hepatic lipid dysfunction in males.
Collapse
Affiliation(s)
- Jerad H Dumolt
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University of Buffalo, Buffalo, NY, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mulchand S Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University of Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
Kuraji R, Sekino S, Kapila Y, Numabe Y. Periodontal disease-related nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: An emerging concept of oral-liver axis. Periodontol 2000 2021; 87:204-240. [PMID: 34463983 PMCID: PMC8456799 DOI: 10.1111/prd.12387] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontal disease, a chronic inflammatory disease of the periodontal tissues, is not only a major cause of tooth loss, but it is also known to exacerbate/be associated with various metabolic disorders, such as obesity, diabetes, dyslipidemia, and cardiovascular disease. Recently, growing evidence has suggested that periodontal disease has adverse effects on the pathophysiology of liver disease. In particular, nonalcoholic fatty liver disease, a hepatic manifestation of metabolic syndrome, has been associated with periodontal disease. Nonalcoholic fatty liver disease is characterized by hepatic fat deposition in the absence of a habitual drinking history, viral infections, or autoimmune diseases. A subset of nonalcoholic fatty liver diseases can develop into more severe and progressive forms, namely nonalcoholic steatohepatitis. The latter can lead to cirrhosis and hepatocellular carcinoma, which are end‐stage liver diseases. Extensive research has provided plausible mechanisms to explain how periodontal disease can negatively affect nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, namely via hematogenous or enteral routes. During periodontitis, the liver is under constant exposure to various pathogenic factors that diffuse systemically from the oral cavity, such as bacteria and their by‐products, inflammatory cytokines, and reactive oxygen species, and these can be involved in disease promotion of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Also, gut microbiome dysbiosis induced by enteral translocation of periodontopathic bacteria may impair gut wall barrier function and promote the transfer of hepatotoxins and enterobacteria to the liver through the enterohepatic circulation. Moreover, in a population with metabolic syndrome, the interaction between periodontitis and systemic conditions related to insulin resistance further strengthens the association with nonalcoholic fatty liver disease. However, most of the pathologic links between periodontitis and nonalcoholic fatty liver disease in humans are provided by epidemiologic observational studies, with the causal relationship not yet being established. Several systematic and meta‐analysis studies also show conflicting results. In addition, the effect of periodontal treatment on nonalcoholic fatty liver disease has hardly been studied. Despite these limitations, the global burden of periodontal disease combined with the recent nonalcoholic fatty liver disease epidemic has important clinical and public health implications. Emerging evidence suggests an association between periodontal disease and liver diseases, and thus we propose the term periodontal disease–related nonalcoholic fatty liver disease or periodontal disease–related nonalcoholic steatohepatitis. Continued efforts in this area will pave the way for new diagnostic and therapeutic approaches based on a periodontologic viewpoint to address this life‐threatening liver disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.,Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California, USA
| | - Satoshi Sekino
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yvonne Kapila
- Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California, USA
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Gu L, Zhang Y, Zhang S, Zhao H, Wang Y, Kan D, Zhang Y, Guo L, Lv J, Hao Q, Tian X, Liu C, Wang S, Han X. Coix lacryma-jobi Seed Oil Reduces Fat Accumulation in Nonalcoholic Fatty Liver Disease by Inhibiting the Activation of the p-AMPK/SePP1/apoER2 Pathway. J Oleo Sci 2021; 70:685-696. [PMID: 33840662 DOI: 10.5650/jos.ess20255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lipid metabolism disorder is the key role of Nonalcoholic fatty liver disease (NAFLD). Selenoprotein P plays an important role in the pathological process of lipid accumulation. Coix lacryma-jboi seed oil (CLSO) is an active component extracted from Coix lacryma-jobi seed (CLS) which has been found to be effective of reducing blood fat and antioxidative. But the effect and mechanism of CLSO on NAFLD are not clear. The aim of this study was to explore the therapeutic effect and mechanism of CLSO in the treatment of NAFLD. Our result showed that CLSO decreased the liver/body weight ratio, lowered the total cholesterol (TC) and triacylglycerol (TG), and elevated the high density lipoprotein (HDL) in serum. CLSO reduced the lipid deposition in the liver of NAFLD rats. In addition, CLSO could bring down the abnormal expression of superoxide dismutase (SOD) and malondialdehyde (MDA). Moreover, CLSO significantly declined the liver apolipoprotein E (apoE), apolipoprotein E receptor (apoER) and selenoprotein P 1 (SePP1) expression. In vivo, CLSO decreased the lipid droplets and TG level, reduced the protein expression of SePP1, apoER, phosphor-adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) in the cytoplasm of HepG2 cells induced by oleic acid and palmitic acid (OP). At the same time, lipid accumulation was observed in the Sepp1 high expression cells induced by endoplasmic reticulum (ER) activator tunicamycin (Tm). CLSO could identically reduce the protein expression of SePP1, apoER, p-AMPK in the cytoplasm of HepG2 cells induced by Tm. This result not only proved the CLSO had therapeutic effect on NAFLD, but also confirmed its mechanism associated with degrading the phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) which led to the decrease of the expression SePP1/apoER2 in order to reduce lipid accumulation. The study suggests CLSO has great medicinal value in treating NAFLD besides its edibility.
Collapse
Affiliation(s)
- Liangzhen Gu
- Shandong University of Traditional Chinese Medicine
| | - Yanan Zhang
- Shandong University of Traditional Chinese Medicine
- Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center
| | - Shuang Zhang
- Shandong University of Traditional Chinese Medicine
| | - Haijun Zhao
- Shandong University of Traditional Chinese Medicine
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine
| | - Yuan Wang
- Shandong University of Traditional Chinese Medicine
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine
| | - Dongfang Kan
- Shandong University of Traditional Chinese Medicine
| | - Yimin Zhang
- Shandong University of Traditional Chinese Medicine
- Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center
| | - Liangqing Guo
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine
| | - Jiajian Lv
- Shandong University of Traditional Chinese Medicine
| | - Qian Hao
- Shandong University of Traditional Chinese Medicine
| | - Xu Tian
- Shandong University of Traditional Chinese Medicine
| | - Changhong Liu
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University
| | - ShiJun Wang
- Shandong University of Traditional Chinese Medicine
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine
- Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center
| | - Xiaochun Han
- Shandong University of Traditional Chinese Medicine
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine
| |
Collapse
|
7
|
|
8
|
Sugiura Y, Yoneda T, Fujimori K, Maruyama T, Miyai H, Kobayashi T, Ekuni D, Tomofuji T, Morita M. Detection of Serum miRNAs Affecting Liver Apoptosis in a Periodontitis Rat Model. In Vivo 2020; 34:117-123. [PMID: 31882470 DOI: 10.21873/invivo.11752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM miRNA molecules have been attracting attention as genetic modifiers between organs. We examined the relationship between serum miRNA and targeted liver mRNA profiles in a periodontitis rat model, and the influence of periodontitis on the liver. MATERIALS AND METHODS Male Wistar rats (n=16, 8 weeks old) were randomly divided into two groups (8 rats each): control and periodontitis (ligature placement for 4 weeks). Serum miRNA and liver mRNA profiles were compared. RESULTS Periodontal destruction and hepatocyte apoptosis were induced in the periodontitis group. Microarray analysis indicated that 52 serum miRNAs and 33 liver mRNAs were expressed with a >1.5-fold change (FC) and a >2.0-FC (p<0.05), respectively, between the two groups. From the miRNA target genes, 12 genes equivalented to liver mRNAs with a >2.0-FC, among which, Hyou1, Chac1, and Bloc1s3 have apoptotic functions in our model. miRNAs upstream of these 3 mRNAs are miR-3591, miR-181a-2-3p and miR-6321. CONCLUSION miR-3591, miR-181a-2-3p and miR-6321 induced hepatocyte apoptosis in our periodontitis rat model.
Collapse
Affiliation(s)
- Yoshio Sugiura
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiki Yoneda
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kohei Fujimori
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Maruyama
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Hisataka Miyai
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Terumasa Kobayashi
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takaaki Tomofuji
- Department of Community Oral Health, Asahi University School of Dentistry, Gifu, Japan
| | - Manabu Morita
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Circulating microRNA Associated to Different Stages of Liver Steatosis in Prader-Willi Syndrome and Non-Syndromic Obesity. J Clin Med 2020; 9:jcm9041123. [PMID: 32295264 PMCID: PMC7230920 DOI: 10.3390/jcm9041123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a rare and poorly characterized disease. Recent genomic and transcriptomic studies contributed to elucidate the molecular bases of the syndrome. In this study, we characterized the expression of circulating miRNAs in patients with PWS compared to those with non-syndromic obesity in association with liver steatosis. METHODS MiRNAs were studied by qRT-PCR in serum samples from 30 PWS and 30 non-syndromic obese subjects. RESULTS MiRNA expression was associated with the presence of the syndrome and to the grade of liver steatosis. MiR-122-5p, miR-151a, miR-92a-3p were up-regulated in obese (4.38-fold, p < 0.01; 2.72-fold, p < 0.05; 1.34-fold p < 0.05, respectively) and were able to differentiate obese from PWS (AUC = 0.81, sens/spec 78/71%). When stratifying groups according to the presence of steatosis, the expression of miR-151a-5p, miR-92a-3p, miR-106b-5p, and miR-93-5p were lower in PWS with steatosis grade 1. Within the group with steatosis grade 1, miR-151a-5p was significantly distinguished PWS from obese (AUC = 0.85, sens/spec 80/85%) and the combination of miR-106b-5p and miR-93-5p showed higher performances in discriminating different grades of steatosis in PWS (AUC = 0.84, sens/spec 93/74%). CONCLUSIONS MiRNAs represent a tool to better classify and characterize PWS, providing new information about the clinical picture and the extent of steatosis.
Collapse
|
10
|
Sun Y, Wang Y, Song P, Wang H, Xu N, Wang Y, Zhang Z, Yue P, Gao X. Anti-obesity effects of instant fermented teas in vitro and in mice with high-fat-diet-induced obesity. Food Funct 2019; 10:3502-3513. [PMID: 31143917 DOI: 10.1039/c9fo00162j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic metabolic disorder that is associated with higher risks of developing diabetes and cardiovascular disease. Chinese dark tea is a fermented beverage with many biological effects and could be considered for the management of obesity. This study is aimed to assess the possible anti-obesity properties of instant dark tea (IDT) and instant pu-erh tea (PET) in high fat diet (HFD)-fed mice. Male C57BL/6 mice were divided into 5 groups. They received low-fat diet (LFD), HFD, HFD supplemented with drinking IDT infusion (5 mg mL-1), PET infusion (5 mg mL-1) or water for 8 weeks. The results showed IDT exhibited better inhibitory effect than PET on body weight gain and visceral fat weights. IDT also improved the serum high-density lipoprotein cholesterol (HDL-C) level, but decreased the low-density lipoprotein cholesterol (LDL-C) and leptin levels more effectively than PET. Both IDT and PET lowered the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the plasma and significantly increased the ratio of albumin to globin (A/G) in the serum compared to the control group. IDT treatment reduced the malondialdehyde (MDA) level in the liver. Histomorphology evidenced that the liver tissue architecture was well preserved by IDT administration. Moreover, IDT regulated the expression of obesity-related genes more effectively than PET. Overall, the present findings have provided the proof of concept that dietary IDT could provide a safer and cost-effective option for people with HFD-induced obesity.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abenavoli L, Boccuto L. Nonalcoholic fatty liver disease in obese adolescents: the role of genetic polymorphisms. Hepatobiliary Surg Nutr 2019; 8:179-180. [PMID: 31098374 DOI: 10.21037/hbsn.2018.12.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC, USA.,Clemson University School of Health Research, Clemson, SC, USA
| |
Collapse
|