1
|
Bhushan R, Haque S, Gupta RK, Rani A, Diwakar A, Agarwal S, Tripathi A, Dubey PK. Genetic variants related to insulin metabolism are associated with gestational diabetes mellitus. Gene 2024; 927:148704. [PMID: 38885821 DOI: 10.1016/j.gene.2024.148704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The current study sought to investigate the associations of common genetic risk variants with gestational diabetes mellitus (GDM) risk in the north Indian population and to evaluate their utility in identifying GDM cases. A case-control study, including 300 pregnant women, was included, and clinical and pathological information was collected. The amplification-refractory mutation system (ARMS) was used for genotyping four single nucleotide polymorphisms (SNPs), namely FTO (rs9939609), PPARG2 (rs1801282), SLC30A8 (rs13266634), and TCF7L2 (rs12255372). The odds ratio and confidence interval were determined for each SNP in different genetic models. Further, attributable risk, population penetrance, and relative risk were also calculated. The risk allele A of FTO (rs9939609) poses a two times higher risk of GDM (p = 0.02, OR = 2.5). The CG and GG genotypes of PPARG2 (rs1801282) have half a lower risk of GDM. In SLC30A8 (rs13266634), the recessive model analysis showed a two times higher risk of having GDM, while the recessive model (TT vs. GG + GT) analysis in TCF7L2 (rs12255372) indicates a lower risk of GDM. Finally, the relative risk, population penetrance, and attributable risk for risk allele in all four variants was higher in GDM mothers. All four polymorphisms were found to be significantly associated with BMI, HbA1c, and insulin. Our study first time confirmed a significant association with GDM for four variants, FTO, PPARG2, SLC30A8, and TCF7L2, in the North Indian population.
Collapse
Affiliation(s)
- Ravi Bhushan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Rakesh Kumar Gupta
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anjali Rani
- Department of Obstetrics and Gynaecology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Amita Diwakar
- Department of Obstetrics and Gynaecology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sakshi Agarwal
- Department of Obstetrics and Gynaecology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anima Tripathi
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Zhang Y, Chen L, Zhu J, Liu H, Xu L, Wu Y, He C, Song Y. Minor alleles of FTO rs9939609 and rs17817449 polymorphisms confer a higher risk of type 2 diabetes mellitus and dyslipidemia, but not coronary artery disease in a Chinese Han population. Front Endocrinol (Lausanne) 2023; 14:1249070. [PMID: 38161971 PMCID: PMC10754952 DOI: 10.3389/fendo.2023.1249070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Background Relationships of the polymorphisms in fat mass and obesity-associated gene (FTO) and peroxisome proliferator-activated receptor delta gene (PPARD) with metabolic-related diseases remain to be clarified. Methods One thousand three hundred and eighty-one subjects were enrolled. Metabolic-related diseases including obesity, dyslipidemia, hyperhomocysteinemia, hyperuricemia, hypertension, type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) were defined based on diagnostic criteria. FTO rs9939609 and rs17817449, and PPARD rs2016520 and rs2267668 polymorphisms were genotyped by using polymerase chain reaction-restricted fragment length polymorphism method. Results Patients with T2DM or dyslipidemia had a higher frequency of AA, AT or AA + AT genotypes as well as A allele of FTO rs9939609 polymorphism than those free of T2DM or dyslipidemia (P ≤ 0.04 for all). Patients with T2DM or dyslipidemia had a higher frequency of GG, GT or GG + GT genotypes as well as G allele of FTO rs17817449 polymorphism than those free of T2DM or dyslipidemia (P ≤ 0.03 for all). Multivariate logistic regression analyses showed that FTO rs9939609 and rs17817449 polymorphisms were independently associated with T2DM as well as dyslipidemia after adjustment for age, sex, smoking and other metabolic diseases. FTO rs9939609 and rs17817449 polymorphisms were not associated with obesity, hyperhomocysteinemia, hyperuricemia, hypertension and CAD. Obese or T2DM carriers of the AA or AT genotype of the FTO rs9939609 polymorphism had a higher prevalence of dyslipidemia compared to non-obese or non-T2DM carriers of the AA or AT genotype (P = 0.03 for both). Among the carriers of GG or GT genotype of the FTO rs17817449 polymorphism, the prevalence of dyslipidemia in obese patients was higher than that in non-obese subjects (P < 0.01). PPARD rs2016520 and rs2267668 polymorphisms were not correlated with any of the metabolic-related diseases in the study population. Conclusion Minor alleles of FTO rs9939609 and rs17817449 polymorphisms confer a higher risk of T2DM and dyslipidemia, and the risk is further increased among obese individuals. PPARD rs2016520 and rs2267668 polymorphisms are not associated with metabolic-related diseases.
Collapse
Affiliation(s)
- Youjin Zhang
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Lvlin Chen
- Department of Critical Care Medicine, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Junchen Zhu
- Department of Critical Care Medicine, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Hao Liu
- Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Luying Xu
- Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Yang Wu
- Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Amine Ikhanjal M, Ali Elouarid M, Zouine C, El Alami H, Errafii K, Ghazal H, Alidrissi N, Bakkali F, Benmoussa A, Hamdi S. FTO gene variants (rs9939609, rs8050136 and rs17817449) and type 2 diabetes mellitus risk: A Meta-Analysis. Gene 2023; 887:147791. [PMID: 37696421 DOI: 10.1016/j.gene.2023.147791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND AIMS There is tremendous increase in type 2 diabetes mellitus (T2DM) worldwide. The impact of FTO gene polymorphisms on the risk of T2DM is not yet clear because of the controversial results of studies. This meta-analysis aimed to better clarify the association between three FTO gene polymorphisms SNPs (rs9939609, rs8050136 and rs17817449) and T2DM in a larger combined population worldwide. MATERIAL AND METHODS A comprehensive search on the PubMed, Science Direct, and Web of Science databases was conducted to identify investigations in relationship between different FTO gene polymorphisms (rs9939609, rs8050136 and rs17817449) and T2DM globally. Published papers from January 2007 to May 2023 were collected. Inclusion criteria are limited to human case-control studies published in English and peer-reviewed, which provided data on the genotype distributions of FTO gene polymorphisms and T2DM risk. Odds ratios (OR) and 95% confidence intervals (CI) were calculated to express the results of the meta-analysis. Potential sources of bias and heterogeneity using Egger's regression analysis were also assessed. RESULTS Of 234695 identified articles, forty-eight studies were selected including 36,051 patients with T2DM and 51,266 control subjects. Overall, we found a significant increased risk of T2DM susceptibility and rs9939609 FTO gene polymorphism in the Allele contrast (A vs. T: OR = 1,30, 95% CI = 1.14; 1.48, P < 0,05, I2 = 0,94), Recessive model (AA vs. AT + TT: OR = 1,54, 95% CI = 1.19; 2.00, P < 0,05, I2 = 0,94), Dominant model (AA + AT vs. TT: OR = 1,26, 95% CI = 1.10; 1.45, P < 0,05, I2 = 0,89), homozygote model (AA vs. TT: OR = 1,60, 95% CI = 1.26; 2.03, P < 0,05, I2 = 0,90), and heterozygote model (AA vs. AT: OR = 1,43, 95% CI = 1.09; 1.88, P = 0,008, I2 = 0,93). we also found a significantly increased risk of T2DM susceptibility and rs8050136 FTO gene polymorphism under all models. For rs17817449 we did not find any association between with T2DM. CONCLUSION The present meta-analysis confirms that rs9939609 and rs8050136 in the FTO gene are significantly associated with T2DM, while rs17817449 does not show any association.
Collapse
Affiliation(s)
- Mohammed Amine Ikhanjal
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco; University of Mohamed VI of Sciences and Health, Morocco.
| | - Mohammed Ali Elouarid
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco; University of Mohamed VI of Sciences and Health, Morocco.
| | - Chaimae Zouine
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco; University of Mohamed VI of Sciences and Health, Morocco.
| | - Houda El Alami
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco.
| | - Khaoula Errafii
- African Genomic Center (AGC), University Mohamed VI Polytechnic, Bengurir, Morocco.
| | - Hassan Ghazal
- Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Science and Health, Casablanca, Morocco;s Royal Institute for Management Training, Rabat, Morocco.
| | - Najib Alidrissi
- Department of Surgery and Laboratory of Genomics, Bioinformatics and Digital Health, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco; Hospital Cheikh Khalifa, Casablanca, Morocco.
| | - Fadil Bakkali
- University of Mohamed VI of Sciences and Health, Morocco; Laboratory of toxicology, toxicogenomics and ecotoxicology, University of Mohamed VI of Sciences and Health, Morocco.
| | - Adnane Benmoussa
- University of Mohamed VI of Sciences and Health, Morocco; Laboratory of toxicology, toxicogenomics and ecotoxicology, University of Mohamed VI of Sciences and Health, Morocco.
| | - Salsabil Hamdi
- Environmental Health Laboratory, Institut Pasteur du Maroc, Morocco.
| |
Collapse
|
4
|
Yin D, Li Y, Liao X, Tian D, Xu Y, Zhou C, Liu J, Li S, Zhou J, Nie Y, Liao H, Peng C. FTO: a critical role in obesity and obesity-related diseases. Br J Nutr 2023; 130:1657-1664. [PMID: 36944362 DOI: 10.1017/s0007114523000764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
In recent years, obesity is a growing pandemic in the world and has likely contributed to increasing the incidence of obesity-related diseases. Fat mass and obesity-associated gene (FTO) is the first gene discovered which has a close connection with fat. Recent studies suggested that FTO gene has played an important role in the molecular mechanisms of many diseases. Obesity is considered to be a hereditary disease and can evoke many kinds of diseases, including polycystic ovary syndrome (PCOS), type 2 diabetes mellitus (T2DM), cancer, etc., whose exact possible molecular mechanisms responsible for the effect of FTO on obesity and obesity-related diseases remain largely unknown. In this review, we comprehensively discuss the correlation between FTO gene and obesity, cancer, PCOS, T2DM, as well as the molecular mechanism involved in these diseases.
Collapse
Affiliation(s)
- Dan Yin
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Yiyang Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Xingyue Liao
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Dewei Tian
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Yunsi Xu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Cuilan Zhou
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Suyun Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, Hunan421001, People's Republic of China
| | - Yulin Nie
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, Hunan421001, People's Republic of China
| | - Hongqing Liao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, Hunan421001, People's Republic of China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| |
Collapse
|
5
|
Zhang TP, Li R, Wang LJ, Li HM. Impact of m6A demethylase (ALKBH5, FTO) genetic polymorphism and expression levels on the development of pulmonary tuberculosis. Front Cell Infect Microbiol 2022; 12:1074380. [PMID: 36619747 PMCID: PMC9817133 DOI: 10.3389/fcimb.2022.1074380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Objective The m6A methylation was involved in the pathogenesis of pulmonary tuberculosis (PTB), and our study aimed to reveal the potential association of m6A demethylase (ALKBH5, FTO) genes variation, expression levels and PTB. Methods Eight SNPs (ALKBH5 gene rs8400, rs9913266, rs12936694, rs4925144 and FTO gene rs6499640, rs8047395, rs1121980, rs9939609) were selected for genotyping by SNPscan technique in 449 PTB patients and 463 healthy controls. Results The mRNA expression levels of ALKBH5, FTO were detected by qRT-PCR. There were no significant differences in genotype, allele distributions of all SNPs between PTB patients and healthy controls. Haplotype analysis demonstrated that the frequency of FTO gene GAAA haplotype was significantly reduced in PTB patients when compared to controls. ALKBH5 rs8400 AA genotype, A allele frequencies were associated with the decreased risk of sputum smear-positive, while AA genotype frequency was related to the increased risk of hypoproteinemia in PTB patients. In addition, rs9913266 variant was linked to the occurrence of drug-induced liver injury, sputum smear-positive, and rs4925144 variant was associated with leukopenia among PTB patients. In FTO gene, rs8047395 GG genotype and G allele frequencies were significantly higher in the PTB patients with drug resistance than that in the PTB patients without drug resistance. The ALKBH5, FTO expression levels were significantly decreased in PTB patients in comparison to controls. Moreover, ALKBH5 level was increased in PTB patients with drug resistance, and FTO level was decreased in PTB patients with sputum smear-positive. Conclusion FTO gene polymorphisms might be associated with PTB susceptibility, and ALKBH5, FTO levels were decreased in PTB patients, suggesting that these m6A demethylase played important roles in PTB.
Collapse
Affiliation(s)
- Tian-Ping Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rui Li
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Jun Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,*Correspondence: Hong-Miao Li,
| |
Collapse
|