1
|
Diao S, Duan Y, Wang M, Feng Y, Miao H, Zhao Y. Multi-Omics Study on Molecular Mechanisms of Single-Atom Fe-Doped Two-Dimensional Conjugated Phthalocyanine Framework for Photocatalytic Antibacterial Performance. Molecules 2024; 29:1601. [PMID: 38611880 PMCID: PMC11013413 DOI: 10.3390/molecules29071601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Currently, photocatalysis of the two-dimensional (2D) conjugated phthalocyanine framework with a single Fe atom (CPF-Fe) has shown efficient photocatalytic activities for the removal of harmful effluents and antibacterial activity. Their photocatalytic mechanisms are dependent on the redox reaction-which is led by the active species generated from the photocatalytic process. Nevertheless, the molecular mechanism of CPF-Fe antimicrobial activity has not been sufficiently explored. In this study, we successfully synthesized CPF-Fe with great broad-spectrum antibacterial properties under visible light and used it as an antibacterial agent. The molecular mechanism of CPF-Fe against Escherichia coli and Salmonella enteritidis was explored through multi-omics analyses (transcriptomics and metabolomics correlation analyses). The results showed that CPF-Fe not only led to the oxidative stress of bacteria by generating large amounts of h+ and ROS but also caused failure in the synthesis of bacterial cell wall components as well as an osmotic pressure imbalance by disrupting glycolysis, oxidative phosphorylation, and TCA cycle pathways. More surprisingly, CPF-Fe could disrupt the metabolism of amino acids and nucleic acids, as well as inhibit their energy metabolism, resulting in the death of bacterial cells. The research further revealed the antibacterial mechanism of CPF-Fe from a molecular perspective, providing a theoretical basis for the application of CPF-Fe photocatalytic antibacterial nanomaterials.
Collapse
Affiliation(s)
- Shihong Diao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (S.D.); (Y.D.); (M.W.)
| | - Yixin Duan
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (S.D.); (Y.D.); (M.W.)
| | - Mengying Wang
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (S.D.); (Y.D.); (M.W.)
| | - Yuanjiao Feng
- The Faculty of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Hong Miao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (S.D.); (Y.D.); (M.W.)
| | - Yongju Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (S.D.); (Y.D.); (M.W.)
| |
Collapse
|
2
|
Li F, Yue TQ, Wang JM, Zhang HB. Externally Supplied Mannitol and Trehalose Boost Phloroglucinol Biosynthesis in Escherichia coli. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Duarte DR, Barroca-Ferreira J, Gonçalves AM, Santos FM, Rocha SM, Pedro AQ, Maia CJ, Passarinha LA. Impact of glycerol feeding profiles on STEAP1 biosynthesis by Komagataella pastoris using a methanol-inducible promoter. Appl Microbiol Biotechnol 2021; 105:4635-4648. [PMID: 34059939 DOI: 10.1007/s00253-021-11367-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
Currently, the lack of reliable strategies for the diagnosis and treatment of cancer makes the identification and characterization of new therapeutic targets a pressing matter. Several studies have proposed the Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) as a promising therapeutic target for prostate cancer. Although structural and functional studies may provide deeper insights on the role of STEAP1 in cancer, such techniques require high amounts of purified protein through biotechnological processes. Based on the results presented, this work proposes the application, for the first time, of a fed-batch profile to improve STEAP1 biosynthesis in mini-bioreactor Komagataella pastoris X-33 Mut+ methanol-induced cultures, by evaluating three glycerol feeding profiles-constant, exponential, and gradient-during the pre-induction phase. Interestingly, different glycerol feeding profiles produced differently processed STEAP1. This platform was optimized using a combination of chemical chaperones for ensuring the structural stabilization and appropriate processing of the target protein. The supplementation of culture medium with 6 % (v/v) DMSO and 1 M proline onto a gradient glycerol/constant methanol feeding promoted increased biosynthesis levels of STEAP1 and minimized aggregation events. Deglycosylation assays with peptide N-glycosidase F showed that glycerol constant feed is associated with an N-glycosylated pattern of STEAP1. The biological activity of recombinant STEAP1 was also validated, once the protein enhanced the proliferation of LNCaP and PC3 cancer cells, in comparison with non-tumoral cell cultures. This methodology could be a crucial starting point for large-scale production of active and stable conformation of recombinant human STEAP1. Thus, it could open up new strategies to unveil the structural rearrangement of STEAP1 and to better understand the biological role of the protein in cancer onset and progression.
Collapse
Affiliation(s)
- D R Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - J Barroca-Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - A M Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - F M Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Covilhã, Portugal.,Unidad de Proteomica, Centro Nacional de Biotecnologia, CSIC, Campus de Cantoblanco, Calle Darwin 3, 28049, Madrid, Spain
| | - S M Rocha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal
| | - A Q Pedro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal.,CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - C J Maia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal
| | - L A Passarinha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506, Covilhã, Portugal. .,UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal. .,Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
4
|
Shanmugam KT, Ingram LO. Principles and practice of designing microbial biocatalysts for fuel and chemical production. J Ind Microbiol Biotechnol 2021; 49:6158391. [PMID: 33686428 PMCID: PMC9118985 DOI: 10.1093/jimb/kuab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/03/2021] [Indexed: 11/14/2022]
Abstract
The finite nature of fossil fuels and the environmental impact of its use have raised interest in alternate renewable energy sources. Specifically, non-food carbohydrates, such as lignocellulosic biomass, can be used to produce next generation biofuels, including cellulosic ethanol and other non-ethanol fuels like butanol. However, currently there is no native microorganism that can ferment all lignocellulosic sugars to fuel molecules. Thus, research is focused on engineering improved microbial biocatalysts for production of liquid fuels at high productivity, titer and yield. A clear understanding and application of the basic principles of microbial physiology and biochemistry are crucial to achieve this goal. In this review, we present and discuss the construction of microbial biocatalysts that integrate these principles with ethanol-producing Escherichia coli as an example of metabolic engineering. These principles also apply to fermentation of lignocellulosic sugars to other chemicals that are currently produced from petroleum.
Collapse
Affiliation(s)
- K T Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Lonnie O Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Osmotolerance in Escherichia coli Is Improved by Activation of Copper Efflux Genes or Supplementation with Sulfur-Containing Amino Acids. Appl Environ Microbiol 2017; 83:AEM.03050-16. [PMID: 28115377 DOI: 10.1128/aem.03050-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022] Open
Abstract
Improvement in the osmotolerance of Escherichia coli is essential for the production of high titers of various bioproducts. In this work, a cusS mutation that was identified in the previously constructed high-succinate-producing E. coli strain HX024 was investigated for its effect on osmotolerance. CusS is part of the two-component system CusSR that protects cells from Ag(I) and Cu(I) toxicity. Changing cusS from strain HX024 back to its original sequence led to a 24% decrease in cell mass and succinate titer under osmotic stress (12% glucose). When cultivated with a high initial glucose concentration (12%), introduction of the cusS mutation into parental strain Suc-T110 led to a 21% increase in cell mass and a 40% increase in succinate titer. When the medium was supplemented with 30 g/liter disodium succinate, the cusS mutation led to a 120% increase in cell mass and a 492% increase in succinate titer. Introducing the cusS mutation into the wild-type strain ATCC 8739 led to increases in cell mass of 87% with 20% glucose and 36% using 30 g/liter disodium succinate. The cusS mutation increased the expression of cusCFBA, and gene expression levels were found to be positively related to osmotolerance abilities. Because high osmotic stress has been associated with deleterious accumulation of Cu(I) in the periplasm, activation of CusCFBA may alleviate this effect by transporting Cu(I) out of the cells. This hypothesis was confirmed by supplementing sulfur-containing amino acids that can chelate Cu(I). Adding methionine or cysteine to the medium increased the osmotolerance of E. coli under anaerobic conditions.IMPORTANCE In this work, an activating Cus copper efflux system was found to increase the osmotolerance of E. coli In addition, new osmoprotectants were identified. Supplementation with methionine or cysteine led to an increase in osmotolerance of E. coli under anaerobic conditions. These new strategies for improving osmotolerance will be useful for improving the production of chemicals in industrial bioprocesses.
Collapse
|
6
|
Xiao M, Zhu X, Xu H, Tang J, Liu R, Bi C, Fan F, Zhang X. A novel point mutation in RpoB improves osmotolerance and succinic acid production in Escherichia coli. BMC Biotechnol 2017; 17:10. [PMID: 28193207 PMCID: PMC5307762 DOI: 10.1186/s12896-017-0337-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/10/2017] [Indexed: 11/29/2022] Open
Abstract
Background Escherichia coli suffer from osmotic stress during succinic acid (SA) production, which reduces the performance of this microbial factory. Results Here, we report that a point mutation leading to a single amino acid change (D654Y) within the β-subunit of DNA-dependent RNA polymerase (RpoB) significantly improved the osmotolerance of E. coli. Importation of the D654Y mutation of RpoB into the parental strain, Suc-T110, increased cell growth and SA production by more than 40% compared to that of the control under high glucose osmolality. The transcriptome profile, determined by RNA-sequencing, showed two distinct stress responses elicited by the mutated RpoB that counterbalanced the osmotic stress. Under non-stressed conditions, genes involved in the synthesis and transport of compatible solutes such as glycine-betaine, glutamate or proline were upregulated even without osmotic stimulation, suggesting a “pre-defense” mechanism maybe formed in the rpoB mutant. Under osmotic stressed conditions, genes encoding diverse sugar transporters, which should be down-regulated in the presence of high osmotic pressure, were derepressed in the rpoB mutant. Additional genetic experiments showed that enhancing the expression of the mal regulon, especially for genes that encode the glycoporin LamB and maltose transporter, contributed to the osmotolerance phenotype. Conclusions The D654Y single amino acid substitution in RpoB rendered E. coli cells resistant to osmotic stress, probably due to improved cell growth and viability via enhanced sugar uptake under stressed conditions, and activated a potential “pre-defense” mechanism under non-stressed conditions. The findings of this work will be useful for bacterial host improvement to enhance its resistance to osmotic stress and facilitate bio-based organic acids production. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0337-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengyong Xiao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Hongtao Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Jinlei Tang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Ru Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| |
Collapse
|
7
|
Keating DH, Zhang Y, Ong IM, McIlwain S, Morales EH, Grass JA, Tremaine M, Bothfeld W, Higbee A, Ulbrich A, Balloon AJ, Westphall MS, Aldrich J, Lipton MS, Kim J, Moskvin OV, Bukhman YV, Coon JJ, Kiley PJ, Bates DM, Landick R. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification. Front Microbiol 2014; 5:402. [PMID: 25177315 PMCID: PMC4132294 DOI: 10.3389/fmicb.2014.00402] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/17/2014] [Indexed: 11/13/2022] Open
Abstract
Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass), phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH). To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(P)H, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.
Collapse
Affiliation(s)
- David H Keating
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Yaoping Zhang
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Irene M Ong
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Sean McIlwain
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Eduardo H Morales
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Jeffrey A Grass
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Biochemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Mary Tremaine
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - William Bothfeld
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Alan Higbee
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Arne Ulbrich
- Department of Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Allison J Balloon
- Department of Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI, USA ; Department of Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Josh Aldrich
- Pacific Northwest National Laboratory Richland, WA, USA
| | - Mary S Lipton
- Pacific Northwest National Laboratory Richland, WA, USA
| | - Joonhoon Kim
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison, WI, USA
| | - Oleg V Moskvin
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Yury V Bukhman
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Joshua J Coon
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI, USA ; Department of Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Patricia J Kiley
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI, USA
| | - Donna M Bates
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA
| | - Robert Landick
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison Madison, WI, USA ; Department of Biochemistry, University of Wisconsin-Madison Madison, WI, USA ; Department of Bacteriology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
8
|
Li S, Chen X, Liu L, Chen J. Pyruvate production inCandida glabrata: manipulation and optimization of physiological function. Crit Rev Biotechnol 2013; 36:1-10. [DOI: 10.3109/07388551.2013.811636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Woodruff LB, Boyle NR, Gill RT. Engineering improved ethanol production in Escherichia coli with a genome-wide approach. Metab Eng 2013; 17:1-11. [DOI: 10.1016/j.ymben.2013.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/28/2012] [Accepted: 01/17/2013] [Indexed: 11/29/2022]
|
10
|
Yobi A, Wone BWM, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC. Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. MOLECULAR PLANT 2013; 6:369-85. [PMID: 23239830 DOI: 10.1093/mp/sss155] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Selaginella lepidophylla is one of only a few species of spike mosses (Selaginellaceae) that have evolved desiccation tolerance (DT) or the ability to 'resurrect' from an air-dried state. In order to understand the metabolic basis of DT, S. lepidophylla was subjected to a five-stage, rehydration/dehydration cycle, then analyzed using non-biased, global metabolomics profiling technology based on GC/MS and UHLC/MS/MS(2) platforms. A total of 251 metabolites including 167 named (66.5%) and 84 (33.4%) unnamed compounds were characterized. Only 42 (16.7%) and 74 (29.5%) of compounds showed significantly increased or decreased abundance, respectively, indicating that most compounds were produced constitutively, including highly abundant trehalose, sucrose, and glucose. Several glycolysis/gluconeogenesis and tricarboxylic acid (TCA) cycle intermediates showed increased abundance at 100% relative water content (RWC) and 50% RWC. Vanillate, a potent antioxidant, was also more abundant in the hydrated state. Many different sugar alcohols and sugar acids were more abundant in the hydrated state. These polyols likely decelerate the rate of water loss during the drying process as well as slow water absorption during rehydration, stabilize proteins, and scavenge reactive oxygen species (ROS). In contrast, nitrogen-rich and γ-glutamyl amino acids, citrulline, and nucleotide catabolism products (e.g. allantoin) were more abundant in the dry states, suggesting that these compounds might play important roles in nitrogen remobilization during rehydration or in ROS scavenging. UV-protective compounds such as 3-(3-hydroxyphenyl)propionate, apigenin, and naringenin, were more abundant in the dry states. Most lipids were produced constitutively, with the exception of choline phosphate, which was more abundant in dry states and likely plays a role in membrane hydration and stabilization. In contrast, several polyunsaturated fatty acids were more abundant in the hydrated states, suggesting that these compounds likely help maintain membrane fluidity during dehydration. Lastly, S. lepidophylla contained seven unnamed compounds that displayed twofold or greater abundance in dry or rehydrating states, suggesting that these compounds might play adaptive roles in DT.
Collapse
Affiliation(s)
- Abou Yobi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557-0330, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yobi A, Wone BWM, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:983-99. [PMID: 23061970 DOI: 10.1111/tpj.12008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spike mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved desiccation tolerance (DT). A sister-group contrast to reveal the metabolic basis of DT was conducted between a desiccation-tolerant species, Selaginella lepidophylla, and a desiccation-sensitive species, Selaginella moellendorffii, at 100% relative water content (RWC) and 50% RWC using non-biased, global metabolomics profiling technology, based on GC/MS and UHLC/MS/MS(2) platforms. A total of 301 metabolites, including 170 named (56.5%) and 131 (43.5%) unnamed compounds, were characterized across both species. S. lepidophylla retained significantly higher abundances of sucrose, mono- and polysaccharides, and sugar alcohols than did S. moellendorffii. Aromatic amino acids, the well-known osmoprotectant betaine and flavonoids were also more abundant in S. lepidophylla. Notably, levels of γ-glutamyl amino acid, linked with glutathione metabolism in the detoxification of reactive oxygen species, and with possible nitrogen remobilization following rehydration, were markedly higher in S. lepidophylla. Markers for lipoxygenase activity were also greater in S. lepidophylla, especially at 50% RWC. S. moellendorffii contained more than twice the number of unnamed compounds, with only a slightly greater abundance than in S. lepidophylla. In contrast, S. lepidophylla contained 14 unnamed compounds of fivefold or greater abundance than in S. moellendorffii, suggesting that these compounds might play critical roles in DT. Overall, S. lepidophylla appears poised to tolerate desiccation in a constitutive manner using a wide range of metabolites with some inducible components, whereas S. moellendorffii mounts only limited metabolic responses to dehydration stress.
Collapse
Affiliation(s)
- Abou Yobi
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557-0330, USADepartment of Biological Sciences, University of Nevada, Reno, NV 89557-0314, USAMetabolon Inc., 800 Capitola Drive, Suite 1, Durham, NC 27713, USAU.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yobi A, Wone BWM, Xu W, Alexander DC, Guo L, Ryals JA, Oliver MJ, Cushman JC. Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012. [PMID: 23061970 DOI: 10.1111/tpj.12008 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Spike mosses (Selaginellaceae) represent an ancient lineage of vascular plants in which some species have evolved desiccation tolerance (DT). A sister-group contrast to reveal the metabolic basis of DT was conducted between a desiccation-tolerant species, Selaginella lepidophylla, and a desiccation-sensitive species, Selaginella moellendorffii, at 100% relative water content (RWC) and 50% RWC using non-biased, global metabolomics profiling technology, based on GC/MS and UHLC/MS/MS(2) platforms. A total of 301 metabolites, including 170 named (56.5%) and 131 (43.5%) unnamed compounds, were characterized across both species. S. lepidophylla retained significantly higher abundances of sucrose, mono- and polysaccharides, and sugar alcohols than did S. moellendorffii. Aromatic amino acids, the well-known osmoprotectant betaine and flavonoids were also more abundant in S. lepidophylla. Notably, levels of γ-glutamyl amino acid, linked with glutathione metabolism in the detoxification of reactive oxygen species, and with possible nitrogen remobilization following rehydration, were markedly higher in S. lepidophylla. Markers for lipoxygenase activity were also greater in S. lepidophylla, especially at 50% RWC. S. moellendorffii contained more than twice the number of unnamed compounds, with only a slightly greater abundance than in S. lepidophylla. In contrast, S. lepidophylla contained 14 unnamed compounds of fivefold or greater abundance than in S. moellendorffii, suggesting that these compounds might play critical roles in DT. Overall, S. lepidophylla appears poised to tolerate desiccation in a constitutive manner using a wide range of metabolites with some inducible components, whereas S. moellendorffii mounts only limited metabolic responses to dehydration stress.
Collapse
Affiliation(s)
- Abou Yobi
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557-0330, USADepartment of Biological Sciences, University of Nevada, Reno, NV 89557-0314, USAMetabolon Inc., 800 Capitola Drive, Suite 1, Durham, NC 27713, USAU.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen. Appl Environ Microbiol 2012; 78:3442-57. [PMID: 22389370 DOI: 10.1128/aem.07329-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.
Collapse
|
14
|
Abstract
Recombinant production has become an invaluable tool for supplying research and therapy with proteins of interest. The target proteins are not in every case soluble and/or correctly folded. That is why different production parameters such as host, cultivation conditions and co-expression of chaperones and foldases are applied in order to yield functional recombinant protein. There has been a constant increase and success in the use of folding promoting agents in recombinant protein production. Recent cases are reviewed and discussed in this chapter. Any impact of such strategies cannot be predicted and has to be analyzed and optimized for the corresponding target protein. The in vivo effects of the agents are at least partially comparable to their in vitro mode of action and have been studied by means of modern systems approaches and even in combination with folding/activity screening assays. Resulting data can be used directly for experimental planning or can be fed into knowledge-based modelling. An overview of such technologies is included in the chapter in order to facilitate a decision about the potential in vivo use of folding promoting agents.
Collapse
Affiliation(s)
- Beatrix Fahnert
- Cardiff School of Biosciences, Cardiff University, Wales, UK.
| |
Collapse
|
15
|
Ameur H, Ghoul M, Selvin J. The osmoprotective effect of some organic solutes on Streptomyces sp. mado2 and nocardiopsis sp. mado3 growth. Braz J Microbiol 2011; 42:543-53. [PMID: 24031666 PMCID: PMC3769824 DOI: 10.1590/s1517-838220110002000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/19/2010] [Accepted: 11/04/2010] [Indexed: 11/21/2022] Open
Abstract
The response of two marine actinomycetes such as Streptomyces sp. MADO2 and Nocardiopsis sp. MADO3 to osmotic stress in minimal medium M63 and in glycerol-asparagine medium (ISP5) was studied. The two strains were moderately halophilic and the behavior of the strain Streptomyces sp. MADO2 and Nocardiopsis sp. MADO3 towards the salt stress was varied depends on the media composition and the salinity concentration. The strain Streptomyces sp. was more sensitive to salt stress than Nocardiopsis sp. The growth of both Streptomyces sp. and Nocardiopsis sp. were inhibited at 1 M NaCl irrespective of the medium used. The Nocardiopsis sp. acquired osmoadaptation on ISP5 medium whereas the Streptomyces sp. showed poor growth on M63 medium. Glycine betaine (GB), proline and trehalose played a critical role in osmotic adaptation at high osmolarity whereas at low osmolarity they showed an inhibitory effect on the bacterial growth. The present findings confirmed that GB was the powerful osmoprotectant for Streptomyces sp. and Nocardiopsis sp. grown at 1 M NaCl both in M63 and ISP5 media.
Collapse
Affiliation(s)
- Hanane Ameur
- Laboratoire d'écologie microbienne, Département de Biologie, Faculté des sciences , Université Ferhat Abbas, Sétif 19000 , Algeria
| | | | | |
Collapse
|
16
|
Baez A, Cho KM, Liao JC. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 2011; 90:1681-90. [PMID: 21547458 PMCID: PMC3094657 DOI: 10.1007/s00253-011-3173-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 11/27/2022]
Abstract
Promising approaches to produce higher alcohols, e.g., isobutanol, using Escherichia coli have been developed with successful results. Here, we translated the isobutanol process from shake flasks to a 1-L bioreactor in order to characterize three E. coli strains. With in situ isobutanol removal from the bioreactor using gas stripping, the engineered E. coli strain (JCL260) produced more than 50 g/L in 72 h. In addition, the isobutanol production by the parental strain (JCL16) and the high isobutanol-tolerant mutant (SA481) were compared with JCL260. Interestingly, we found that the isobutanol-tolerant strain in fact produced worse than either JCL16 or JCL260. This result suggests that in situ product removal can properly overcome isobutanol toxicity in E. coli cultures. The isobutanol productivity was approximately twofold and the titer was 9% higher than n-butanol produced by Clostridium in a similar integrated system.
Collapse
Affiliation(s)
- Antonino Baez
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Kwang-Myung Cho
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095 USA
| | - James C. Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095 USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095 USA
| |
Collapse
|
17
|
Ma R, Zhang Y, Hong H, Lu W, Lin M, Chen M, Zhang W. Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans. Curr Microbiol 2010; 62:659-64. [PMID: 20959988 DOI: 10.1007/s00284-010-9759-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 09/03/2010] [Indexed: 12/01/2022]
Abstract
Successful fermentations to produce ethanol using ethanologenic Escherichia coli require tolerance to high concentrations of sugars. Here we demonstrate that irrE, encoding a regulatory protein for radiation-resistance in Deinococcus radiodurans, conferred improved osmotic stress tolerance to E. coli. Expression of the gene protected E. coli cells against 25% glucose or xylose, acid shock. It also markedly improved cellular viability, the transcriptional levels of trehalose biosynthetic genes (otsBA) and trehalose content in the IrrE-expressing strain compared with the control strain. IrrE expression also enhanced the expression levels and enzymatic activities of PDC and ADHB as well as ethanol production. Our results suggest that IrrE could potentially be used to improve osmotic stress tolerance and ethanol production in ethanologenic strains.
Collapse
Affiliation(s)
- Ruiqiang Ma
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Xu S, Zhou J, Qin Y, Liu L, Chen J. Water-forming NADH oxidase protects Torulopsis glabrata against hyperosmotic stress. Yeast 2010; 27:207-16. [PMID: 20037925 DOI: 10.1002/yea.1745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A heterologous water-forming NADH oxidase was introduced into Torulopsis glabrata and the effect on cell growth under hyperosmotic conditions was investigated. Expression of the noxE gene from Lactococcus lactis NZ9000 in T. glabrata resulted in a marked decrease in the NADH : NAD+ ratio and higher activities of key enzymes in water-regenerating pathways, leading to an increase in intracellular water content. NaCl-induced reactive oxygen species production was also decreased by the introduction of NADH oxidase, resulting in a significant increase in the growth of T. glabrata under hyperosmotic stress conditions (3824 mOsmol/kg). The results indicated that the osmotolerance of cells can be enhanced by manipulating water-production pathways.
Collapse
Affiliation(s)
- Sha Xu
- State Key Laboratory of Food Science and School of Biotechnology and Key Technology and Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010; 87:1303-15. [DOI: 10.1007/s00253-010-2707-z] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 12/30/2022]
|
20
|
Xu S, Zhou J, Liu L, Chen J. Proline enhances Torulopsis glabrata growth during hyperosmotic stress. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0131-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Peterson JD, Ingram LO. Anaerobic respiration in engineered Escherichia coli with an internal electron acceptor to produce fuel ethanol. Ann N Y Acad Sci 2008; 1125:363-72. [PMID: 18378606 DOI: 10.1196/annals.1419.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Environmental concerns and unease with U.S. dependence on foreign oil have renewed interest in converting biomass into fuel ethanol. The volume of plant matter available makes lignocellulose conversion to ethanol desirable, although no one isolated organism has been shown to break bonds in lignocellulose and efficiently metabolize resulting sugars into one product. This work reviews directed engineering coupled with metabolic evolution resulting in microbial biocatalysts that produce up to 45 g L(-1) ethanol in 48 hours in a simple mineral salts medium and that convert various compounds of lignocellulosic materials to ethanol. Mutations contributing to ethanologenesis are discussed along with adding enzymatic capabilities to existing biocatalysts in order to decrease the commercial enzymes required to reduce plant matter into fermentable sugars.
Collapse
|
22
|
Fischer CR, Klein-Marcuschamer D, Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng 2008; 10:295-304. [PMID: 18655844 DOI: 10.1016/j.ymben.2008.06.009] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 06/20/2008] [Indexed: 11/25/2022]
Abstract
Currently, the predominant microbially produced biofuel is starch- or sugar-derived ethanol. However, ethanol is not an ideal fuel molecule, and lignocellulosic feedstocks are considerably more abundant than both starch and sugar. Thus, many improvements in both the feedstock and the fuel have been proposed. In this paper, we examine the prospects for bioproduction of four second-generation biofuels (n-butanol, 2-butanol, terpenoids, or higher lipids) from four feedstocks (sugars and starches, lignocellulosics, syngas, and atmospheric carbon dioxide). The principal obstacle to commercial production of these fuels is that microbial catalysts of robust yields, productivities, and titers have yet to be developed. Suitable microbial hosts for biofuel production must tolerate process stresses such as end-product toxicity and tolerance to fermentation inhibitors in order to achieve high yields and titers. We tested seven fast-growing host organisms for tolerance to production stresses, and discuss several metabolic engineering strategies for the improvement of biofuels production.
Collapse
Affiliation(s)
- Curt R Fischer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
23
|
McKinlay JB, Vieille C, Zeikus JG. Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 2007; 76:727-40. [PMID: 17609945 DOI: 10.1007/s00253-007-1057-y] [Citation(s) in RCA: 379] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 11/25/2022]
Abstract
Bio-based succinate is receiving increasing attention as a potential intermediary feedstock for replacing a large petrochemical-based bulk chemical market. The prospective economical and environmental benefits of a bio-based succinate industry have motivated research and development of succinate-producing organisms. Bio-based succinate is still faced with the challenge of becoming cost competitive against petrochemical-based alternatives. High succinate concentrations must be produced at high rates, with little or no by-products to most efficiently use substrates and to simplify purification procedures. Herein are described the current prospects for a bio-based succinate industry, with emphasis on specific bacteria that show the greatest promise for industrial succinate production. The succinate-producing characteristics and the metabolic pathway used by each bacterial species are described, and the advantages and disadvantages of each bacterial system are discussed.
Collapse
Affiliation(s)
- James B McKinlay
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
24
|
Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO. Development of ethanologenic bacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 108:237-61. [PMID: 17665158 DOI: 10.1007/10_2007_068] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The utilization of lignocellulosic biomass as a petroleum alternative faces many challenges. This work reviews recent progress in the engineering of Escherichia coli and Klebsiella oxytoca to produce ethanol from biomass with minimal nutritional supplementation. A combination of directed engineering and metabolic evolution has resulted in microbial biocatalysts that produce up to 45 g L(-1) ethanol in 48 h in a simple mineral salts medium, and convert various lignocellulosic materials to ethanol. Mutations contributing to ethanologenesis are discussed. The ethanologenic biocatalyst design approach was applied to other commodity chemicals, including optically pure D: (-)- and L: (+)-lactic acid, succinate and L: -alanine with similar success. This review also describes recent progress in growth medium development, the reduction of hemicellulose hydrolysate toxicity and reduction of the demand for fungal cellulases.
Collapse
Affiliation(s)
- L R Jarboe
- Department of Microbiology and Cell Science, University of Florida, 32611, Gainesville, FL 32611, USA.
| | | | | | | | | |
Collapse
|