1
|
Benedetti M, Vecchi V, Guardini Z, Dall’Osto L, Bassi R. Expression of a Hyperthermophilic Cellobiohydrolase in Transgenic Nicotiana tabacum by Protein Storage Vacuole Targeting. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1799. [PMID: 33353085 PMCID: PMC7767180 DOI: 10.3390/plants9121799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023]
Abstract
Plant expression of microbial Cell Wall Degrading Enzymes (CWDEs) is a valuable strategy to produce industrial enzymes at affordable cost. Unfortunately, the constitutive expression of CWDEs may affect plant fitness to variable extents, including developmental alterations, sterility and even lethality. In order to explore novel strategies for expressing CWDEs in crops, the cellobiohydrolase CBM3GH5, from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus, was constitutively expressed in N. tabacum by targeting the enzyme both to the apoplast and to the protein storage vacuole. The apoplast targeting failed to isolate plants expressing the recombinant enzyme despite a large number of transformants being screened. On the opposite side, the targeting of the cellobiohydrolase to the protein storage vacuole led to several transgenic lines expressing CBM3GH5, with an enzyme yield of up to 0.08 mg g DW-1 (1.67 Units g DW-1) in the mature leaf tissue. The analysis of CBM3GH5 activity revealed that the enzyme accumulated in different plant organs in a developmental-dependent manner, with the highest abundance in mature leaves and roots, followed by seeds, stems and leaf ribs. Notably, both leaves and stems from transgenic plants were characterized by an improved temperature-dependent saccharification profile.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell’Ambiente, Università dell’Aquila, Piazzale Salvatore Tommasi 1, 67100 L’Aquila, Italy;
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Zeno Guardini
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy; (V.V.); (Z.G.); (L.D.)
| |
Collapse
|
2
|
Yang EJ, Song KS. The ameliorative effects of capsidiol isolated from elicited Capsicum annuum on mouse splenocyte immune responses and neuroinflammation. Phytother Res 2020; 35:1597-1608. [PMID: 33124100 DOI: 10.1002/ptr.6927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022]
Abstract
Capsidiol, is an anti-fungal phytoalexin produced by plants of Solanaceae. Capsidiol was examined in cultures of primary splenocytes (SPLCs) isolated from healthy C57BL/6 mice and from those with induced experimental autoimmune encephalomyelitis (EAE) as a mouse model for autoimmune neurodegenerative multiple sclerosis (MS). We also examined the impact of capsidiol in IFN-γ-stimulated mouse BV2 microglial cells. Capsidiol resulted in a significant reduction in the anti-CD3/CD28 (αCD3/CD28)-induced IFN-γ+ CD4+ (Th1) and IFN-γ+ CD8+ (Tc1) populations as well as in the production of cytokines (IFN-γ, IL-17A, IL-6, IL-2, TNF-α, and IP-10). Specifically, the CD4+ and CD8+ populations (T-bet+ IFN-γ- , T-bet+ IFN-γ+ , and T-bet- IFN-γ+ ) and cytokine production mediated by Th1/Tc1 polarization were diminished by 25 μM capsidiol. MOG35-55 restimulation of SPLCs from EAE mice resulted in an increase in antigen-specific T cells, including Th1, IL-17A+ CD4+ (Th17), and IL-17A+ CD8+ (Tc17) populations. By contrast, capsidiol resulted in a decrease in the proportions of Th17 and Tc17 cells; MOG35-55 -specific cytokine production was also diminished by capsidiol. Capsidiol treatment resulted in diminished levels of IFN-γ-induced nitric oxide and IL-6; expression of iNOS and COX-2 were suppressed by 50 μM capsidiol in IFN-γ-stimulated BV2 cells. This is the first report of capsidiol-mediated immunomodulatory and antineuroinflammatory activities that may serve to prevent neurodegeneration.
Collapse
Affiliation(s)
- Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Dragon’s Blood from Dracaena cambodiana in China: Applied History and Induction Techniques toward Formation Mechanism. FORESTS 2020. [DOI: 10.3390/f11040372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dragon’s blood that is extracted from Dracaena plants has been widely used as traditional medicine in various ancient cultures. The application of dragon’s blood has a cherished history in China, even though the original plants were not discovered for some period. Dracaena cochinchinensis and Dracaena cambodiana were successively discovered in southern China during the 1970s–1980s. In the last half of the century, Chinese scientists have extensively investigated the production of dragon’s blood from these two Dracaena species, whereas these results have not been previously systematically summarized, as in the present paper. Herein, we present the applied history in ancient China and artificially induced technologies for dragon’s blood development based on these two Dracaena species, in particular, using tissue cultures seedlings and tender plants of D. cambodiana. Big data research, including transcriptomic and genomic studies, has suggested that dragon’s blood might be a defense substance that is secreted by Dracaena plants in response to (a)biotic stimuli. This review represents an effort to highlight the progress and achievements from applied history as well as induction techniques that are used for the formation of dragon’s blood that have taken place in China. Such knowledge might aid in the global conservation of wild Dracaena species and contribute to understanding dragon blood formation mechanisms, eventually assisting in the efficient utilization of limited Dracaena plant resources for the sustainable production of dragon’s blood.
Collapse
|
4
|
Taha HS, Abou El-Ghit HM. Implement of Biotic and Abiotic Stress for Enhancement and Production of Capsaicin in Suspension Cultures of <I>Capsicum annum</I> spp. Pak J Biol Sci 2018; 21:292-299. [PMID: 30311480 DOI: 10.3923/pjbs.2018.292.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Pepper (Capsicum annuum L.) is one of the major vegetable and spice crops grown worldwide. This study highlighted the economic and importance process for in vitro capsaicin production from pepper plant. As well as to study the effect of MS medium supplemented with 2,4-D in combinations with 0.2 mg L-1 Kin. for callus and suspension production was implemented. As well as, the influence of A. niger as biotic and methyl jasmonate as abiotic elicitors on capsaicin accumulation was investigated. MATERIALS AND METHODS For this purpose, callus cultures were prepared from seeds of pepper and subcultured. After 28 days, calli formation (%), fresh weight (g/Jar) and dry weight (g/Jar) was calculated. Cell number and packed cell volume were calculated from their cell suspension. In the end, capsaicin was extracted and colorimetrically quantified. RESULTS The highest percentage of calli formation was recorded with hypocotyl, leaf and root explants, respectively. The MS medium fortified with 3.0 mg L-1 2,4-D+0.2 mg L-1 Kin. In addition, the maximum P.C.V was recorded after 16 days of cultivation on the same medium. Furthermore, it was found that fortified MS medium with 1.5% of A. niger in combination with 100 μM of methyl jasmonate achieved of cell growth parameters and capsaicin accumulation in significant rate during 16 days of cultivation. CONCLUSION Fortified of MS medium with 3.0 mg L-1 2,4-D+0.2 mg L-1 Kin. showed the optimized medium for both callus and suspension production. Moreover, augmentation of MS medium with 1.5% of A. niger in combination with 100 μM of methyl jasmonate enhanced of capsaicin accumulation in significant rate during 16 days of cultivation.
Collapse
|
5
|
Srivastava M, Singh G, Sharma S, Shukla S, Misra P. Elicitation Enhanced the Yield of Glycyrrhizin and Antioxidant Activities in Hairy Root Cultures of Glycyrrhiza glabra L. JOURNAL OF PLANT GROWTH REGULATION 2018; 38:373-384. [PMID: 32214632 PMCID: PMC7088221 DOI: 10.1007/s00344-018-9847-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/13/2018] [Indexed: 05/25/2023]
Abstract
Glycyrrhiza glabra L. has become an endangered medicinal plant due to the unabated extraction of glycyrrhizin. Glycyrrhizin is a triterpenoid saponin that is a root centric secondary metabolite having numerous pharmacological properties, such as anti-inflammatory, immunomodulatory, antiallergic, antiulcer, and is found to be effective even against HIV. Harvesting of the roots for high value glycyrrhizin destroys the whole plant causing existential threat to the plant itself and consequent damage to biodiversity. The present study establishes that hairy root cultures of G. glabra, using an optimized elicitor, can dramatically enhance focused production of glycyrrhizin at a much faster pace year-round without causing destruction of the plant. Hairy root cultures of G. glabra were developed using the Agrobacterium rhizogenes A4 strain. The glycyrrhizin content was enhanced using different biotic and abiotic elicitors, for example, PEG (polyethylene glycol), CdCl2, cellulase, and mannan at different concentrations and durations. PEG at 1% concentration enhanced the yield of glycyrrhizin up to 5.4-fold after 24 h of exposure, whereas 200 µg mL-1 cellulase enhanced glycyrrhizin yield to 8.6-fold after 7 days of treatment. Mannan at 10 mg L-1 concentration enhanced the production of glycyrrhizin up to 7.8-fold after 10 days of stress. Among different antioxidant enzymes, SOD activity was significantly enhanced under drought, cellulase and mannan stress. This identification of elicitors can result in abundant supply of valuable glycyrrhizin to meet broad spectrum demand through commercial production without endangering G. glabra L.
Collapse
Affiliation(s)
- Mrinalini Srivastava
- CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh India
- Integral University, Kursi Road, Lucknow, Uttar Pradesh India
| | - Gaurav Singh
- CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh India
| | - Swati Sharma
- Integral University, Kursi Road, Lucknow, Uttar Pradesh India
| | - Sudhir Shukla
- CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh India
| | - Pratibha Misra
- CSIR- National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh India
| |
Collapse
|
6
|
Kümmritz S, Louis M, Haas C, Oehmichen F, Gantz S, Delenk H, Steudler S, Bley T, Steingroewer J. "Fungal elicitors combined with a sucrose feed significantly enhance triterpene production of a Salvia fruticosa cell suspension". Appl Microbiol Biotechnol 2016; 100:7071-82. [PMID: 26971493 DOI: 10.1007/s00253-016-7432-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
Oleanolic (OA) and ursolic acid (UA) are plant secondary metabolites with diverse pharmacological properties. To reach reasonable productivities with plant cell suspension cultures, elicitation is a widely used strategy. Within the presented work, the effects of different elicitors on growth and production of OA and UA in a Salvia fruticosa cell suspension culture were examined. Beside commonly used elicitors like jasmonic acid (JA) and yeast extract, the influence of medium filtrates of the endophytic fungi Aspergillus niger and Trichoderma virens was investigated. The best eliciting effects were achieved with JA and fungal medium filtrates. Both increased the triterpene content by approximately 70 %. Since JA showed significant growth inhibition, the volumetric triterpene yield did not increase. But, adding fungal filtrates increased the volumetric triterpene yield by approximately 70 % to 32.6 mgOA l(-1) and 65.9 mgUA l(-1) for T. virens compared to the control with 19.4 mgOA l(-1) and 33.3 mgUA l(-1). An elicitation strategy combining fungal medium filtrate of T. virens with sucrose feeding significantly enhanced cell dry weight concentration to 22.2 g l(-1) as well as triterpene content by approximately 140 %. In total, this led to an approximately 500 % increase of volumetric triterpene yield referring to the control with final values of 112.9 mgOA l(-1) and 210.4 mgUA l(-1). Despite the doubled cultivation duration, productivities of 6.7 mgOA l(-1) day(-1) and 12.4 mgUA l(-1) day(-1) were reached. These results demonstrate methods by which increased productivities of triterpenes can be achieved to attain yields competing with intact plants.
Collapse
Affiliation(s)
- Sibylle Kümmritz
- Institute of Food Technology and Bioprocess Engineering, Technische Universität Dresden, Bergstraße 120, 01069, Dresden, Germany.
| | - Marilena Louis
- Institute of Food Technology and Bioprocess Engineering, Technische Universität Dresden, Bergstraße 120, 01069, Dresden, Germany
| | - Christiane Haas
- Institute of Food Technology and Bioprocess Engineering, Technische Universität Dresden, Bergstraße 120, 01069, Dresden, Germany
| | - Franz Oehmichen
- Institute of Food Technology and Bioprocess Engineering, Technische Universität Dresden, Bergstraße 120, 01069, Dresden, Germany
| | - Stephanie Gantz
- Institute of Wood and Paper Technology, Technische Universität Dresden, Marschner Straße 32, 01062, Dresden, Germany
| | - Hubertus Delenk
- Institute of Wood and Paper Technology, Technische Universität Dresden, Marschner Straße 32, 01062, Dresden, Germany
| | - Susanne Steudler
- Institute of Food Technology and Bioprocess Engineering, Technische Universität Dresden, Bergstraße 120, 01069, Dresden, Germany
| | - Thomas Bley
- Institute of Food Technology and Bioprocess Engineering, Technische Universität Dresden, Bergstraße 120, 01069, Dresden, Germany
| | - Juliane Steingroewer
- Institute of Food Technology and Bioprocess Engineering, Technische Universität Dresden, Bergstraße 120, 01069, Dresden, Germany
| |
Collapse
|
7
|
Srivastava M, Sharma S, Misra P. Elicitation Based Enhancement of Secondary Metabolites in Rauwolfia serpentina and Solanum khasianum Hairy Root Cultures. Pharmacogn Mag 2016; 12:S315-20. [PMID: 27563218 PMCID: PMC4971950 DOI: 10.4103/0973-1296.185726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/01/2016] [Accepted: 07/07/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Rauwolfia serpentina and Solanum khasianum are well-known medicinally important plants contained important alkaloids in their different parts. Elicitation of these alkaloids is important because of associated pharmaceutical properties. Targeted metabolites were ajmaline and ajmalicine in R. serpentina; solasodine and α-solanine in S. khasianum. OBJECTIVE Enhancement of secondary metabolites through biotic and abiotic elicitors in hairy root cultures of R. serpentina and S. khasianum. MATERIALS AND METHODS In this report, hairy root cultures of these two plants were established through Agrobacterium rhizogenes mediated transformation by optimizing various parameters as age of explants, duration of preculture, and co-cultivation period. NaCl was used as abiotic elicitors in these two plants. Cellulase from Aspergillus niger was used as biotic elicitor in S. khasianum and mannan from Saccharomyces cerevisiae was used in R. serpentina. RESULTS First time we have reported the effect of biotic and abiotic elicitors on the production of important metabolites in hairy root cultures of these two plants. Ajmalicine production was stimulated up to 14.8-fold at 100 mM concentration of NaCl after 1 week of treatment. Ajmaline concentration was also increased 2.9-fold at 100 mg/l dose of mannan after 1 week. Solasodine content was enhanced up to 4.0-fold and 3.6-fold at 100 mM and 200 mM NaCl, respectively, after 6 days of treatments. CONCLUSION This study explored the potential of the elicitation strategy in A. rhizogenes transformed cell cultures and this potential further used for commercial production of these pharmaceutically important secondary metabolites. SUMMARY Hairy roots of Rauwolfia serpentina were subjected to salt (abiotic stress) and mannan (biotic stress) treatment for 1 week. Ajmaline and ajmalicine secondary metabolites were quantified before and after stress treatmentAjmalicine yield was enhanced up to 14.8-fold at 100 mM concentration of NaCl. Ajmaline content was also stimulated 2.9-fold at 100 mg/l dose of mannan after 1 weekHairy roots of Solanum khasianum were treated with cellulase (biotic elicitor) and salt (abiotic stress)Solasodine content was improved up to 4.0-fold and 3.6-fold at 100 mM and 200 mM NaCl, respectively, after 6.days of treatmentsThe α-solanine content increased to 1.6-fold after 24 h of treatment at 100 μg/mL cellulase concentration. Abbreviations used: MS medium: Murashige and Skoog medium, B5 medium: Gamborg B5 medium, OD: Optical Density, NaCl: Sodium Chloride.
Collapse
Affiliation(s)
- Mrinalini Srivastava
- Tissue Culture and Transformation Lab, Council of Scientific and Industrial Research - National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Swati Sharma
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Pratibha Misra
- Tissue Culture and Transformation Lab, Council of Scientific and Industrial Research - National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Bozsó Z, Ott PG, Kámán-Tóth E, Bognár GF, Pogány M, Szatmári Á. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco-Pseudomonas syringae Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:251. [PMID: 27014286 PMCID: PMC4779890 DOI: 10.3389/fpls.2016.00251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/15/2016] [Indexed: 05/18/2023]
Abstract
In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco-Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca(2+) influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were also observable. Genes specifically affected by virulent P. tabaci belonged to various previously identified signaling routes, suggesting that compatible pathogens may modulate diverse signaling pathways of PTI to overcome plant defense.
Collapse
|
9
|
Ding X, Yang M, Huang H, Chuan Y, He X, Li C, Zhu Y, Zhu S. Priming maize resistance by its neighbors: activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease. FRONTIERS IN PLANT SCIENCE 2015; 6:830. [PMID: 26528303 PMCID: PMC4600908 DOI: 10.3389/fpls.2015.00830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/22/2015] [Indexed: 05/23/2023]
Abstract
Plant disease can be effectively suppressed in intercropping systems. Our previous study demonstrated that neighboring maize plants can restrict the spread of soil-borne pathogens of pepper plants by secreting defense compounds into the soil. However, whether maize plant can receive benefits from its neighboring pepper plants in an intercropping system is little attention. We examined the effects of maize roots treated with elicitors from the pepper pathogen Phytophthora capsici and pepper root exudates on the synthesis of 1,4-benzoxazine-3-ones (BXs), the expression of defense-related genes in maize, and their ability to alleviate the severity of southern corn leaf blight (SCLB) caused by Bipolaris maydis. We found that SCLB was significantly reduced after the above treatments. The contents of 1,4-benzoxazine-3-ones (BXs: DIBOA, DIMBOA, and MBOA) and the expression levels of BX synthesis and defense genes in maize roots and shoots were up-regulated. DIMBOA and MBOA effectively inhibited the mycelium growth of Bipolaris maydis at physiological concentrations in maize shoots. Further studies suggested that the defense related pathways or genes in maize roots and shoots were activated by elicitors from the P. capsici or pepper root exudates. In conclusion, maize increased the levels of BXs and defense gene expression both in roots and shoots after being triggered by root exudates and pathogen from neighboring pepper plants, eventually enhancing its resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shusheng Zhu
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural UniversityKunming, China
| |
Collapse
|
10
|
Pontin M, Bottini R, Burba JL, Piccoli P. Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum. PHYTOCHEMISTRY 2015; 115:152-60. [PMID: 25819001 DOI: 10.1016/j.phytochem.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/11/2014] [Accepted: 02/04/2015] [Indexed: 05/28/2023]
Abstract
This study investigated terpene biosynthesis in different tissues (root, protobulb, leaf sheath and blade) of in vitro-grown garlic plants either infected or not (control) with Sclerotium cepivorum, the causative agent of Allium White Rot disease. The terpenes identified by gas chromatography-electron impact mass spectrometry (GC-EIMS) in infected plants were nerolidol, phytol, squalene, α-pinene, terpinolene, limonene, 1,8-cineole and γ-terpinene, whose levels significantly increased when exposed to the fungus. Consistent with this, an increase in terpene synthase (TPS) activity was measured in infected plants. Among the terpenes identified, nerolidol, α-pinene and terpinolene were the most abundant with antifungal activity against S. cepivorum being assessed in vitro by mycelium growth inhibition. Nerolidol and terpinolene significantly reduced sclerotia production, while α-pinene stimulated it in a concentration-dependent manner. Parallel to fungal growth inhibition, electron microscopy observations established morphological alterations in the hyphae exposed to terpinolene and nerolidol. Differences in hyphal EtBr uptake suggested that one of the antifungal mechanisms of nerolidol and terpinolene might be disruption of fungal membrane integrity.
Collapse
Affiliation(s)
- Mariela Pontin
- Estación Experimental Agropecuaria La Consulta-Instituto Nacional de Tecnología Agropecuaria, CC8, 5567 La Consulta, Mendoza, Argentina; Laboratorio de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Tecnológicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Mendoza, Argentina.
| | - Rubén Bottini
- Laboratorio de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Tecnológicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Mendoza, Argentina.
| | - José Luis Burba
- Estación Experimental Agropecuaria La Consulta-Instituto Nacional de Tecnología Agropecuaria, CC8, 5567 La Consulta, Mendoza, Argentina.
| | - Patricia Piccoli
- Laboratorio de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Tecnológicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
11
|
Ma Y, Han C, Chen J, Li H, He K, Liu A, Li D. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity. MOLECULAR PLANT PATHOLOGY 2015; 16:14-26. [PMID: 24844544 PMCID: PMC6638370 DOI: 10.1111/mpp.12156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant-pathogenic fungi produce cellulases. However, little information is available on cellulase as an elicitor in plant-pathogen interactions. Here, an endocellulase (EG1) was isolated from Rhizoctonia solani. It contains a putative protein of 227 amino acids with a signal peptide and a family-45 glycosyl hydrolase domain. Its aspartic acid (Asp) residue at position 32 was changed to alanine (Ala), resulting in full loss of its catalytic activity. Wild-type and mutated forms of the endoglucanase were expressed in yeast and purified to homogeneity. The purified wild-type and mutant forms induced cell death in maize, tobacco and Arabidopsis leaves, and the transcription of three defence marker genes in maize and tobacco and 10 genes related to defence responses in maize. Moreover, they also induced the accumulation of reactive oxygen species (ROS), medium alkalinization, Ca(2+) accumulation and ethylene biosynthesis of suspension-cultured tobacco cells. Similarly, production of the EG1 wild-type and mutated forms in tobacco induced cell death using the Potato virus X (PVX) expression system. In vivo, expression of EG1 was also related to cell death during infection of maize by R. solani. These results provide direct evidence that the endoglucanase is an elicitor, but its enzymatic activity is not required for its elicitor activity.
Collapse
Affiliation(s)
- Yanan Ma
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Park S, Park AR, Im S, Han YJ, Lee S, Back K, Kim JI, Kim YS. Developmentally regulated sesquiterpene production confers resistance to Colletotrichum gloeosporioides in ripe pepper fruits. PLoS One 2014; 9:e109453. [PMID: 25286411 PMCID: PMC4186859 DOI: 10.1371/journal.pone.0109453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/31/2014] [Indexed: 11/18/2022] Open
Abstract
Sesquiterpenoid capsidiol, exhibiting antifungal activity against pathogenic fungus, is accumulated in infected ripe pepper fruits. In this study, we found a negative relation between the capsidiol level and lesion size in fruits infected with Colletotrichum gloeosporioides, depending on the stage of ripening. To understand the developmental regulation of capsidiol biosynthesis, fungal-induced gene expressions in the isoprenoid biosynthetic pathways were examined in unripe and ripe pepper fruits. The sterol biosynthetic pathway was almost shut down in healthy ripe fruits, showing very low expression of hydroxymethyl glutaryl CoA reductase (HMGR) and squalene synthase (SS) genes. In contrast, genes in the carotenoid pathway were highly expressed in ripe fruits. In the sesquiterpene pathway, 5-epi-aristolochene synthase (EAS), belonging to a sesquiterpene cyclase (STC) family, was significantly induced in the ripe fruits upon fungal infection. Immunoblot and enzyme activity analyses showed that the STCs were induced both in the infected unripe and ripe fruits, while capsidiol was synthesized discriminatively in the ripe fruits, implying diverse enzymatic specificity of multiple STCs. Thereby, to divert sterol biosynthesis into sesquiterpene production, infected fruits were pretreated with an SS inhibitor, zaragozic acid (ZA), resulting in increased levels of capsidiol by more than 2-fold in the ripe fruits, with concurrent reduction of phytosterols. Taken together, the present results suggest that the enhanced expression and activity of EAS in the ripe fruits play an important role in capsidiol production, contributing to the incompatibility between the anthracnose fungus and the ripe pepper fruits.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biotechnology, Chonnam National University, Gwangju, Korea
| | - Ae Ran Park
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| | - Soonduk Im
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| | - Yun-Jeong Han
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| | - Sungbeom Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Jeongeup, Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Chonnam National University, Gwangju, Korea
| | - Jeong-Il Kim
- Department of Biotechnology, Chonnam National University, Gwangju, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| | - Young Soon Kim
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea
| |
Collapse
|
13
|
Giannakopoulou A, Schornack S, Bozkurt TO, Haart D, Ro DK, Faraldos JA, Kamoun S, O’Maille PE. Variation in capsidiol sensitivity between Phytophthora infestans and Phytophthora capsici is consistent with their host range. PLoS One 2014; 9:e107462. [PMID: 25203155 PMCID: PMC4159330 DOI: 10.1371/journal.pone.0107462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022] Open
Abstract
Plants protect themselves against a variety of invading pathogenic organisms via sophisticated defence mechanisms. These responses include deployment of specialized antimicrobial compounds, such as phytoalexins, that rapidly accumulate at pathogen infection sites. However, the extent to which these compounds contribute to species-level resistance and their spectrum of action remain poorly understood. Capsidiol, a defense related phytoalexin, is produced by several solanaceous plants including pepper and tobacco during microbial attack. Interestingly, capsidiol differentially affects growth and germination of the oomycete pathogens Phytophthora infestans and Phytophthora capsici, although the underlying molecular mechanisms remain unknown. In this study we revisited the differential effect of capsidiol on P. infestans and P. capsici, using highly pure capsidiol preparations obtained from yeast engineered to express the capsidiol biosynthetic pathway. Taking advantage of transgenic Phytophthora strains expressing fluorescent markers, we developed a fluorescence-based method to determine the differential effect of capsidiol on Phytophtora growth. Using these assays, we confirm major differences in capsidiol sensitivity between P. infestans and P. capsici and demonstrate that capsidiol alters the growth behaviour of both Phytophthora species. Finally, we report intraspecific variation within P. infestans isolates towards capsidiol tolerance pointing to an arms race between the plant and the pathogens in deployment of defence related phytoalexins.
Collapse
Affiliation(s)
| | - Sebastian Schornack
- The Sainsbury Laboratory, Norwich, United Kingdom
- Sainsbury Laboratory, Cambridge University, Cambridge, United Kingdom
| | - Tolga O. Bozkurt
- The Sainsbury Laboratory, Norwich, United Kingdom
- Imperial College, Faculty of Natural Sciences, Department of Life Sciences, London, United Kingdom
| | - Dave Haart
- Institute of Food Research, Food & Health Programme, Norwich, United Kingdom
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Juan A. Faraldos
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | | | - Paul E. O’Maille
- Institute of Food Research, Food & Health Programme, Norwich, United Kingdom
- John Innes Centre, Department of Metabolic Biology, Norwich, United Kingdom
| |
Collapse
|
14
|
Baenas N, García-Viguera C, Moreno DA. Elicitation: a tool for enriching the bioactive composition of foods. Molecules 2014; 19:13541-63. [PMID: 25255755 PMCID: PMC6270998 DOI: 10.3390/molecules190913541] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022] Open
Abstract
Elicitation is a good strategy to induce physiological changes and stimulate defense or stress-induced responses in plants. The elicitor treatments trigger the synthesis of phytochemical compounds in fruits, vegetables and herbs. These metabolites have been widely investigated as bioactive compounds responsible of plant cell adaptation to the environment, specific organoleptic properties of foods, and protective effects in human cells against oxidative processes in the development of neurodegenerative and cardiovascular diseases and certain types of cancer. Biotic (biological origin), abiotic (chemical or physical origin) elicitors and phytohormones have been applied alone or in combinations, in hydroponic solutions or sprays, and in different selected time points of the plant growth or during post-harvest. Understanding how plant tissues and their specific secondary metabolic pathways respond to specific treatments with elicitors would be the basis for designing protocols to enhance the production of secondary metabolites, in order to produce quality and healthy fresh foods.
Collapse
Affiliation(s)
- Nieves Baenas
- Phytochemistry Laboratory, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, Edificio 25, 30100 Murcia, Spain.
| | - Cristina García-Viguera
- Phytochemistry Laboratory, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, Edificio 25, 30100 Murcia, Spain
| | - Diego A Moreno
- Phytochemistry Laboratory, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, Edificio 25, 30100 Murcia, Spain.
| |
Collapse
|
15
|
Huchelmann A, Gastaldo C, Veinante M, Zeng Y, Heintz D, Tritsch D, Schaller H, Rohmer M, Bach TJ, Hemmerlin A. S-carvone suppresses cellulase-induced capsidiol production in Nicotiana tabacum by interfering with protein isoprenylation. PLANT PHYSIOLOGY 2014; 164:935-50. [PMID: 24367019 PMCID: PMC3912117 DOI: 10.1104/pp.113.232546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/20/2013] [Indexed: 05/27/2023]
Abstract
S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway-dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism.
Collapse
Affiliation(s)
- Alexandre Huchelmann
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Clément Gastaldo
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Mickaël Veinante
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | | | - Dimitri Heintz
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Denis Tritsch
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Hubert Schaller
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Michel Rohmer
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Thomas J. Bach
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | | |
Collapse
|
16
|
Ahuja I, Kissen R, Bones AM. Phytoalexins in defense against pathogens. TRENDS IN PLANT SCIENCE 2012; 17:73-90. [PMID: 22209038 DOI: 10.1016/j.tplants.2011.11.002] [Citation(s) in RCA: 573] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/04/2011] [Accepted: 11/14/2011] [Indexed: 05/18/2023]
Abstract
Plants use an intricate defense system against pests and pathogens, including the production of low molecular mass secondary metabolites with antimicrobial activity, which are synthesized de novo after stress and are collectively known as phytoalexins. In this review, we focus on the biosynthesis and regulation of camalexin, and its role in plant defense. In addition, we detail some of the phytoalexins produced by a range of crop plants from Brassicaceae, Fabaceae, Solanaceae, Vitaceae and Poaceae. This includes the very recently identified kauralexins and zealexins produced by maize, and the biosynthesis and regulation of phytoalexins produced by rice. Molecular approaches are helping to unravel some of the mechanisms and reveal the complexity of these bioactive compounds, including phytoalexin action and metabolism.
Collapse
Affiliation(s)
- Ishita Ahuja
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway.
| | | | | |
Collapse
|
17
|
Zhang H, Wang M, Wang W, Li D, Huang Q, Wang Y, Zheng X, Zhang Z. Silencing of G proteins uncovers diversified plant responses when challenged by three elicitors in Nicotiana benthamiana. PLANT, CELL & ENVIRONMENT 2012; 35:72-85. [PMID: 21895695 DOI: 10.1111/j.1365-3040.2011.02417.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Signalling through heterotrimeric G protein composed of α-, β- and γ-subunits is essential in numerous physiological processes. Here we show that this prototypical G protein complex acts mechanistically by controlling elicitor sensitivity towards hypersensitive response (HR) and stomatal closure in Nicotiana benthamiana. Gα-, Gβ1-, and Gβ2-silenced plants were generated using virus-induced gene silencing. All silenced plants were treated with Xanthomonas oryzae harpin, Magnaporthe oryzae Nep1 and Phytophthora boehmeriae boehmerin, respectively. HR was dramatically impaired in Gα- and Gβ2-silenced plants treated with harpin, indicating that harpin-, rather than Nep1- or boehmerin-triggered HR, is Gα- and Gβ2-dependent. Moreover, all Gα-, Gβ1- and Gβ2-silenced plants significantly impaired elicitor-induced stomatal closure, elicitor-promoted nitric oxide (NO) production and active oxygen species accumulation in guard cells. To our knowledge, this is the first report of Gα and Gβ subunits involvement in stomatal closure in response to elicitors. Furthermore, silencing of Gα, Gβ1 and Gβ2 has an effect on the transcription of plant defence-related genes when challenged by three elicitors. In conclusion, silencing of G protein subunits results in many interesting plant cell responses, revealing that plant immunity systems employ both conserved and distinct G protein pathways to sense elicitors from distinct phytopathogens formed during plant-microbe evolution.
Collapse
Affiliation(s)
- Huajian Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Miyashita M, Oda M, Ono Y, Komoda E, Miyagawa H. Discovery of a small peptide from combinatorial libraries that can activate the plant immune system by a jasmonic acid signaling pathway. Chembiochem 2011; 12:1323-9. [PMID: 21567702 DOI: 10.1002/cbic.201000694] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Indexed: 11/11/2022]
Abstract
Plants defend themselves by using an innate immune system that is activated in response to a variety of molecules derived from pathogens. These molecules have provided profound insights into the mechanisms of pathogen recognition and subsequent signaling pathways in plants. In the present study, we screened a combinatorial random hexapeptide library for peptides that activate the plant immune system, by using a cell-based high-throughput screening system in which H(2)O(2) generation was monitored. We discovered a novel small peptide (YGIHTH-amide, PIP-1) that triggered H(2)O(2) production in tobacco and tomato cells, but not in Arabidopsis cells. PIP-1 induced significant levels of phytoalexin biosynthesis and defense-related gene expression in tobacco cells; this is likely to be activated by a jasmonic acid pathway.
Collapse
Affiliation(s)
- Masahiro Miyashita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
19
|
Aidemark M, Tjellström H, Sandelius AS, Stålbrand H, Andreasson E, Rasmusson AG, Widell S. Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. BMC PLANT BIOLOGY 2010; 10:274. [PMID: 21156059 PMCID: PMC3017840 DOI: 10.1186/1471-2229-10-274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/14/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND Alamethicin is a membrane-active peptide isolated from the beneficial root-colonising fungus Trichoderma viride. This peptide can insert into membranes to form voltage-dependent pores. We have previously shown that alamethicin efficiently permeabilises the plasma membrane, mitochondria and plastids of cultured plant cells. In the present investigation, tobacco cells (Nicotiana tabacum L. cv Bright Yellow-2) were pre-treated with elicitors of defence responses to study whether this would affect permeabilisation. RESULTS Oxygen consumption experiments showed that added cellulase, already upon a limited cell wall digestion, induced a cellular resistance to alamethicin permeabilisation. This effect could not be elicited by xylanase or bacterial elicitors such as flg22 or elf18. The induction of alamethicin resistance was independent of novel protein synthesis. Also, the permeabilisation was unaffected by the membrane-depolarising agent FCCP. As judged by lipid analyses, isolated plasma membranes from cellulase-pretreated tobacco cells contained less negatively charged phospholipids (PS and PI), yet higher ratios of membrane lipid fatty acid to sterol and to protein, as compared to control membranes. CONCLUSION We suggest that altered membrane lipid composition as induced by cellulase activity may render the cells resistant to alamethicin. This induced resistance could reflect a natural process where the plant cells alter their sensitivity to membrane pore-forming agents secreted by Trichoderma spp. to attack other microorganisms, and thus adding to the beneficial effect that Trichoderma has for plant root growth. Furthermore, our data extends previous reports on artificial membranes on the importance of lipid packing and charge for alamethicin permeabilisation to in vivo conditions.
Collapse
Affiliation(s)
- Mari Aidemark
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| | - Henrik Tjellström
- Plant Biology Department, Michigan State University, East Lansing, 48824, MI, USA
- Department of Plant and Environmental Sciences, Göteborg University, P.O. Box 461, SE-405 30 Göteborg, Sweden
| | - Anna Stina Sandelius
- Department of Plant and Environmental Sciences, Göteborg University, P.O. Box 461, SE-405 30 Göteborg, Sweden
| | - Henrik Stålbrand
- Department of Biochemistry, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish Agricultural University, P.O. Box 102, SE-230 53 Alnarp, Sweden
| | - Allan G Rasmusson
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| | - Susanne Widell
- Department of Biology, Lund University, Sölvegatan 35, SE-223 62 LUND, Sweden
| |
Collapse
|
20
|
Sabater-Jara AB, Almagro L, Belchí-Navarro S, Ferrer MA, Barceló AR, Pedreño MA. Induction of sesquiterpenes, phytoesterols and extracellular pathogenesis-related proteins in elicited cell cultures of Capsicum annuum. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1273-81. [PMID: 20594613 DOI: 10.1016/j.jplph.2010.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 05/04/2023]
Abstract
Capsicum annuum suspension cell cultures were used to evaluate the effect of cyclodextrins and methyl jasmonate as elicitors of defence responses. The induced defence responses included the accumulation of sesquiterpenes and phytosterols and the activation of pathogenesis-related proteins, leading to reinforcement and modification of the cell wall architecture during elicitation and protection cells against biotic stress. The results showed that the addition of both cyclodextrins and methyl jasmonate induced the biosynthesis of two sesquiterpenes, aromadendrene and solavetivone. This response was clearly synergistic since the increase in the levels of these compounds was much greater in the presence of both elicitors than when they were used separately. The biosynthesis of phytosterols was also induced in the combined treatment, as the result of an additive effect. Likewise, the exogenous application of methyl jasmonate induced the accumulation of pathogenesis-related proteins. The analysis of the extracellular proteome showed the presence of amino acid sequences homologous to PR1 and 4, NtPRp27-like proteins and class I chitinases, peroxidases and the hydrolytic enzymes LEXYL1 and 2, arabinosidases, pectinases, nectarin IV and leucin-rich repeat protein, which suggests that methyl jasmonate plays a role in mediating defence-related gene product expression in C. annuum. Apart from these methyl jamonate-induced proteins, other PR proteins were found in both the control and elicited cell cultures of C. annuum. These included class IV chitinases, beta-1,3-glucanases, thaumatin-like proteins and peroxidases, suggesting that their expression is mainly constitutive since they are involved in growth, development and defence processes.
Collapse
Affiliation(s)
- Ana Belén Sabater-Jara
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Zhu LW, Tang YJ. Significance of protein elicitor isolated from Tuber melanosporum on the production of ganoderic acid and Ganoderma polysaccharides during the fermentation of Ganoderma lucidum. Bioprocess Biosyst Eng 2010; 33:999-1005. [DOI: 10.1007/s00449-010-0424-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 03/21/2010] [Indexed: 11/29/2022]
|
22
|
Mialoundama AS, Heintz D, Debayle D, Rahier A, Camara B, Bouvier F. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. PLANT PHYSIOLOGY 2009; 150:1556-66. [PMID: 19420326 PMCID: PMC2705044 DOI: 10.1104/pp.109.138420] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/01/2009] [Indexed: 05/04/2023]
Abstract
In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8'-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8'-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants.
Collapse
Affiliation(s)
- Alexis Samba Mialoundama
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique and Université de Strasbourg, 67084 Strasbourg cedex, France
| | | | | | | | | | | |
Collapse
|