1
|
Jiménez-Maldonado MI, Islas-Osuna MA, León-Félix J, Tovar-Pedraza JM, Muy-Rangel MD. Glucanases and Chitinases in Mangifera indica: Identification, Classification, Phylogeny, and Expression Analysis of Defense Genes against Colletotrichum spp. Molecules 2024; 29:3556. [PMID: 39124963 PMCID: PMC11313699 DOI: 10.3390/molecules29153556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Plant glucanases and chitinases are defense proteins that participate in pathogenesis; however, very little is known about the glucanase (GLUC) and chitinase (CHIT) gene families in mango. Some mango cultivars are of great economic importance and can be affected by anthracnose, a postharvest disease caused by fungi of the genus Colletotrichum spp. This study identified and characterized 23 putative glucanases and 16 chitinases in the mango genome cv. Tommy Atkins. We used phylogenetic analyses to classify the glucanases into three subclasses (A, B, and C) and the chitinases into four classes (I, II, IV, and V). Information on the salicylic, jasmonic acid, and ethylene pathways was obtained by analyzing the cis-elements of the GLUC and CHIT class I and IV gene promoters. The expression profile of GLUC, CHIT class I, and CHIT class IV genes in mango cv. Ataulfo inoculated with two Colletotrichum spp. revealed different profile expression related to these fungi's level of virulence. In general, this study provides the basis for the functional validation of these target genes with which the regulatory mechanisms used by glucanases and chitinases as defense proteins in mango can be elucidated.
Collapse
Affiliation(s)
- María Isabel Jiménez-Maldonado
- Centro de Investigación en Alimentación y Desarrollo, Coordinación Culiacán, Carretera a El Dorado km 5.5, Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (M.I.J.-M.); (J.L.-F.); (J.M.T.-P.)
| | - María Auxiliadora Islas-Osuna
- Centro de Investigación en Alimentación y Desarrollo, Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, La Victoria, Hermosillo CP 83304, Sonora, Mexico;
| | - Josefina León-Félix
- Centro de Investigación en Alimentación y Desarrollo, Coordinación Culiacán, Carretera a El Dorado km 5.5, Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (M.I.J.-M.); (J.L.-F.); (J.M.T.-P.)
| | - Juan Manuel Tovar-Pedraza
- Centro de Investigación en Alimentación y Desarrollo, Coordinación Culiacán, Carretera a El Dorado km 5.5, Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (M.I.J.-M.); (J.L.-F.); (J.M.T.-P.)
| | - María Dolores Muy-Rangel
- Centro de Investigación en Alimentación y Desarrollo, Coordinación Culiacán, Carretera a El Dorado km 5.5, Campo El Diez, Culiacán CP 80110, Sinaloa, Mexico; (M.I.J.-M.); (J.L.-F.); (J.M.T.-P.)
| |
Collapse
|
2
|
Azad R, Krępski T, Olechowski M, Biernacik B, Święcicka M, Matuszkiewicz M, Dmochowska-Boguta M, Rakoczy-Trojanowska M. Genotype-Specific Expression of Selected Candidate Genes Conferring Resistance to Leaf Rust of Rye ( Secale cereale L.). Genes (Basel) 2024; 15:275. [PMID: 38540334 PMCID: PMC10970619 DOI: 10.3390/genes15030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
Leaf rust (LR) caused by Puccinia recondita f. sp. secalis (Prs) is a highly destructive disease in rye. However, the genetic mechanisms underlying the rye immune response to this disease remain relatively uncharacterised. In this study, we analysed the expression of four genes in 12 rye inbred lines inoculated with Prs at 20 and 36 h post-treatment (hpt): DXS (1-deoxy-D-xylulose 5-phosphate synthase), Glu (β-1,3-glucanase), GT (UDP-glycosyltransferase) and PR-1 (pathogenesis-related protein 1). The RT-qPCR analysis revealed the upregulated expression of the four genes in response to Prs in all inbred lines and at both time-points. The gene expression data were supported by microscopic and macroscopic examinations, which revealed that eight lines were susceptible to LR and four lines were highly resistant to LR. A relationship between the infection profiles and the expression of the analysed genes was observed: in the resistant lines, the expression level fold changes were usually higher at 20 hpt than at 36 hpt, while the opposite trend was observed in the susceptible lines. The study results indicate that DXS, Glu, GT and PR-1 may encode proteins crucial for the rye defence response to the LR pathogen.
Collapse
Affiliation(s)
- Rumana Azad
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Tomasz Krępski
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Mateusz Olechowski
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Bartosz Biernacik
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| | - Marta Dmochowska-Boguta
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland;
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (R.A.); (T.K.); (M.O.); (B.B.); (M.Ś.); (M.M.)
| |
Collapse
|
3
|
Takashima T, Komori N, Uechi K, Taira T. Characterization of an antifungal β-1,3-glucanase from Ficus microcarpa latex and comparison of plant and bacterial β-1,3-glucanases for fungal cell wall β-glucan degradation. PLANTA 2023; 258:116. [PMID: 37946063 DOI: 10.1007/s00425-023-04271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
MAIN CONCLUSION Each β-1,3-glucanase with antifungal activity or yeast lytic activity hydrolyzes different structures of β-1,3-glucans in the fungal cell wall, respectively. Plants express several glycoside hydrolases that target chitin and β-glucan in fungal cell walls and inhibit pathogenic fungal infection. An antifungal β-1,3-glucanase was purified from gazyumaru (Ficus microcarpa) latex, designated as GlxGluA, and the corresponding gene was cloned and expressed in Escherichia coli. The sequence shows that GlxGluA belongs to glycoside hydrolase family 17 (GH17). To investigate how GlxGluA acts to degrade fungal cell wall β-glucan, it was compared with β-1,3-glucanase with different substrate specificities. We obtained recombinant β-1,3-glucanase (designated as CcGluA), which belongs to GH64, from the bacterium Cellulosimicrobium cellulans. GlxGluA inhibited the growth of the filamentous fungus Trichoderma viride but was unable to lyse the yeast Saccharomyces cerevisiae. In contrast, CcGluA lysed yeast cells but had a negligible inhibitory effect on the growth of filamentous fungi. GlxGluA degraded the cell wall of T. viride better than CcGluA, whereas CcGluA degraded the cell wall of S. cerevisiae more efficiently than GlxGluA. These results suggest that the target substrates in fungal cell walls differ between GlxGluA (GH17 class I β-1,3-glucanase) and CcGluA (GH64 β-1,3-glucanase).
Collapse
Affiliation(s)
- Tomoya Takashima
- Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Nao Komori
- Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Keiko Uechi
- Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Toki Taira
- Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa, 903-0213, Japan.
- Graduate School of Agricultural Science, Kagoshima University, Kagoshima, 890-8580, Japan.
| |
Collapse
|
4
|
Chavanke SN, Penna S, Dalvi SG. β-Glucan and its nanocomposites in sustainable agriculture and environment: an overview of mechanisms and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80062-80087. [PMID: 35641741 DOI: 10.1007/s11356-022-20938-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 05/23/2023]
Abstract
β-Glucan is an eco-friendly, biodegradable, and economical biopolymer with important roles for acquiring adaptations to mitigate climate change in crop plants. β-Glucan plays a crucial role in the activation of functional plant innate immune system by triggering the downward signaling cascade/s, resulting in the accumulation of different pathogenesis-related proteins (PR-proteins), reactive oxygen species (ROS), antioxidant defense enzymes, Ca2+-influx as well as activation of mitogen-activated protein kinase (MAPK) pathway. Recent experimental studies have shown that β-glucan recognition is mediated by co-receptor LysMPRR (lysin motif pattern recognition receptor)-CERK1 (chitin elicitor receptor kinase 1), LYK4, and LYK5 (LysM-containing receptor-like kinase), as well as different receptor systems in plants that could be plant species-specific and/or age and/or tissue-dependent. Transgenic overexpression of β-glucanase, chitinase, and/or in combination with other PR-proteins like cationic peroxidase, AP24,thaumatin-likeprotein 1 (TLP-1) has also been achieved for improving plant disease resistance in crop plants, but the transgenic methods have some ethical and environmental concerns. In this regard, elicitation of plant immunity using biopolymer like β-glucan and chitosan offers an economical, safe, and publicly acceptable method. The β-glucan and chitosan nanocomposites have proven to be useful for the activation of plant defense pathways and to enhance plant response/systemic acquired resistance (SAR) against broad types of plant pathogens and mitigating multiple stresses under the changing climate conditions.
Collapse
Affiliation(s)
- Somnath N Chavanke
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India
| | | | - Sunil Govind Dalvi
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India.
| |
Collapse
|
5
|
Perrot T, Pauly M, Ramírez V. Emerging Roles of β-Glucanases in Plant Development and Adaptative Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091119. [PMID: 35567119 PMCID: PMC9099982 DOI: 10.3390/plants11091119] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 05/04/2023]
Abstract
Plant β-glucanases are enzymes involved in the synthesis, remodelling and turnover of cell wall components during multiple physiological processes. Based on the type of the glycoside bond they cleave, plant β-glucanases have been grouped into three categories: (i) β-1,4-glucanases degrade cellulose and other polysaccharides containing 1,4-glycosidic bonds to remodel and disassemble the wall during cell growth. (ii) β-1,3-glucanases are responsible for the mobilization of callose, governing the symplastic trafficking through plasmodesmata. (iii) β-1,3-1,4-glucanases degrade mixed linkage glucan, a transient wall polysaccharide found in cereals, which is broken down to obtain energy during rapid seedling growth. In addition to their roles in the turnover of self-glucan structures, plant β-glucanases are crucial in regulating the outcome in symbiotic and hostile plant-microbe interactions by degrading non-self glucan structures. Plants use these enzymes to hydrolyse β-glucans found in the walls of microbes, not only by contributing to a local antimicrobial defence barrier, but also by generating signalling glucans triggering the activation of global responses. As a counterpart, microbes developed strategies to hijack plant β-glucanases to their advantage to successfully colonize plant tissues. This review outlines our current understanding on plant β-glucanases, with a particular focus on the latest advances on their roles in adaptative responses.
Collapse
|
6
|
Zhu X, Rong W, Wang K, Guo W, Zhou M, Wu J, Ye X, Wei X, Zhang Z. Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:777-793. [PMID: 34873799 PMCID: PMC8989504 DOI: 10.1111/pbi.13760] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/05/2021] [Accepted: 11/28/2021] [Indexed: 05/12/2023]
Abstract
STAUROSPORINE AND TEMPERATURE SENSITIVE3 (STT3) is a catalytic subunit of oligosaccharyltransferase, which is important for asparagine-linked glycosylation. Sharp eyespot, caused by the necrotrophic fungal pathogen Rhizoctonia cerealis, is a devastating disease of bread wheat. However, the molecular mechanisms underlying wheat defense against R. cerealis are still largely unclear. In this study, we identified TaSTT3a and TaSTT3b, two STT3 subunit genes from wheat and reported their functional roles in wheat defense against R. cerealis and increasing grain weight. The transcript abundance of TaSTT3b-2B was associated with the degree of wheat resistance to R. cerealis and induced by both R. cerealis and exogenous jasmonic acid (JA). Overexpression of TaSTT3b-2B significantly enhanced resistance to R. cerealis, grain weight, and JA content in transgenic wheat subjected to R. cerealis stress, while silencing of TaSTT3b-2B compromised resistance of wheat to R. cerealis. Transcriptomic analysis showed that TaSTT3b-2B affected the expression of a series of defense-related genes and JA biosynthesis-related genes, as well as genes coding starch synthase and sucrose synthase. Application of exogenous JA elevated expression levels of the abovementioned defense- and grain weight-related genes, and rescuing the resistance of TaSTT3b-2B-silenced wheat to R. cerealis, while pretreatment with sodium diethyldithiocarbamate, an inhibitor of JA synthesis, attenuated the TaSTT3b-2B-mediated resistance to R. cerealis, suggesting that TaSTT3b-2B played critical roles in regulating R. cerealis resistance and grain weight via JA biosynthesis. Altogether, this study reveals new functional roles of TaSTT3b-2B in regulating plant innate immunity and grain weight, and illustrates its potential application value for wheat molecular breeding.
Collapse
Affiliation(s)
- Xiuliang Zhu
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wei Rong
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Kai Wang
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wei Guo
- Jiangsu Academy of Agricultural SciencesNanjingChina
| | - Miaoping Zhou
- Jiangsu Academy of Agricultural SciencesNanjingChina
| | - Jizhong Wu
- Jiangsu Academy of Agricultural SciencesNanjingChina
| | - Xingguo Ye
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xuening Wei
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zengyan Zhang
- Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
7
|
Wieghaus A, Roelfs KU, Twyman RM, Prüfer D, Schulze Gronover C. Comparative Transcriptome Analysis in Taraxacum koksaghyz to Identify Genes that Determine Root Volume and Root Length. Front Genet 2022; 12:784883. [PMID: 35140739 PMCID: PMC8819189 DOI: 10.3389/fgene.2021.784883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
The Russian dandelion (Taraxacum koksaghyz, family Asteraceae) produces large amounts of natural rubber in the laticifers of its roots. This species has been proposed as an alternative source of natural rubber to augment or partly replace the rubber tree (Hevea brasiliensis) but domestication would require genetic improvement to increase rubber yields and agronomic optimization to facilitate harvesting and processing. Optimization has focused thus far on the size and shape of the roots, the primary storage organ for natural rubber and inulin. However, the corresponding genetic factors are poorly understood. Here we describe the comparative transcriptomic analysis of root tissues from T. koksaghyz plant sets featuring different root sizes and shapes, aiming to identify differentially expressed genes correlating with root length or root diameter in the upper root and root tip. The resulting datasets revealed multiple candidate genes for each trait and root part, including a glucan endo-1,3-β-d-glucosidase, an allene oxide synthase 3, and a TIFY10A/JAZ1 homolog. These three genes were tested by qRT-PCR in outdoor-grown plants with diverse root morphology, and the expression of two genes correlated with the appropriate root morphotype, confirming the effectiveness of our method. We evaluated the candidate genes to gain insight into their potential functions in root development. Such candidate genes could be suitable for marker-assisted breeding programs in the future.
Collapse
Affiliation(s)
- Annika Wieghaus
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | | | - Dirk Prüfer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Münster, Germany
- *Correspondence: Christian Schulze Gronover,
| |
Collapse
|
8
|
Guo F, Wu T, Shen F, Xu G, Qi H, Zhang Z. The cysteine-rich receptor-like kinase TaCRK3 contributes to defense against Rhizoctonia cerealis in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6904-6919. [PMID: 34254642 DOI: 10.1093/jxb/erab328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/10/2021] [Indexed: 05/19/2023]
Abstract
Sharp eyespot, caused by the necrotrophic fungal pathogen Rhizoctonia cerealis, is a devastating disease of bread wheat (Triticum aestivum). However, the molecular mechanisms underlying wheat defense against R. cerealis are still largely unknown. In this study, by comparative transcriptomic analysis we identified a novel cysteine-rich receptor-like kinase (CRK)-encoding gene, designated as TaCRK3, and investigated its role in defense against R. cerealis. TaCRK3 transcript abundance was significantly elevated by R. cerealis and exogenous ethylene treatments. Silencing of TaCRK3 significantly compromised resistance to R. cerealis and repressed expression of an ethylene biosynthesis enzyme-encoding gene, ACO2, and a subset of defense-associated genes in wheat, whose transcript levels are up-regulated by ethylene stimulus. TaCRK3 protein was localized at the plasma membrane in wheat. Noticeably, both the heterologously expressed TaCRK3 protein and its partial peptide harboring two DUF26 (DOMAIN OF UNKNOWN FUNCTION 26) domains could inhibit growth of R. cerealis mycelia. These results suggest that TaCRK3 mediates wheat resistance to R. cerealis through direct antifungal activity and heightening the expression of defense-associated genes in the ethylene signaling pathway. Moreover, its DUF26 domains are required for the antifungal activity of TaCRK3. Our results reveal that TaCRK3 is a promising gene for breeding wheat varieties with resistance to R. cerealis.
Collapse
Affiliation(s)
- Feilong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Tianci Wu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Fangdi Shen
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Ningbo Polytechnic, Ningbo, China
| | - Gangbiao Xu
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, China
| | - Haijun Qi
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Basic β-1,3-Glucanase from Drosera binata Exhibits Antifungal Potential in Transgenic Tobacco Plants. PLANTS 2021; 10:plants10081747. [PMID: 34451792 PMCID: PMC8401921 DOI: 10.3390/plants10081747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022]
Abstract
The basic β-1,3-glucanase of the carnivorous plant Drosera binata was tested as a purified protein, as well as under the control of a double CaMV35S promoter in transgenic tobacco for its capability to inhibit the growth of Trichoderma viride, Rhizoctonia solani, Alternaria solani, and Fusarium poae in an in-vitro assay. The purified protein inhibited tested phytopathogens but not the saprophytic fungus T. viride. Out of the analysed transgenic plants, lines 13, 16, 19, and 22 exhibited high DbGluc1 transcript abundance normalised to the actin transcript. Because of DbGluc1 transgene expression, lines 13 and 16 showed a 1.7-fold increase and lines 19 and 22 showed more than a 2-fold increase in total β-1,3-glucanase activity compared to the non-transgenic control. In accordance with the purified β-1,3-glucanase in-vitro antifungal assay, crude protein extracts of lines 19 and 22 significantly inhibited the growth of phytopathogens (14–34%). Further analyses revealed that the complementary action of transgenic β-1,3-glucanase and 20% higher activity of endogenous chitinase(s) in these lines were crucial for maximising the antifungal efficiency of crude protein extracts.
Collapse
|
10
|
Qi H, Zhu X, Guo F, Lv L, Zhang Z. The Wall-Associated Receptor-Like Kinase TaWAK7D Is Required for Defense Responses to Rhizoctonia cerealis in Wheat. Int J Mol Sci 2021; 22:ijms22115629. [PMID: 34073183 PMCID: PMC8199179 DOI: 10.3390/ijms22115629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Sharp eyespot, caused by necrotrophic fungus Rhizoctonia cerealis, is a serious fungal disease in wheat (Triticum aestivum). Certain wall-associated receptor kinases (WAK) mediate resistance to diseases caused by biotrophic/hemibiotrophic pathogens in several plant species. Yet, none of wheat WAK genes with positive effect on the innate immune responses to R. cerealis has been reported. In this study, we identified a WAK gene TaWAK7D, located on chromosome 7D, and showed its positive regulatory role in the defense response to R. cerealis infection in wheat. RNA-seq and qRT-PCR analyses showed that TaWAK7D transcript abundance was elevated in wheat after R. cerealis inoculation and the induction in the stem was the highest among the tested organs. Additionally, TaWAK7D transcript levels were significantly elevated by pectin and chitin treatments. The knock-down of TaWAK7D transcript impaired resistance to R. cerealis and repressed the expression of five pathogenesis-related genes in wheat. The green fluorescent protein signal distribution assays indicated that TaWAK7D localized on the plasma membrane in wheat protoplasts. Thus, TaWAK7D, which is induced by R. cerealis, pectin and chitin stimuli, positively participates in defense responses to R. cerealis through modulating the expression of several pathogenesis-related genes in wheat.
Collapse
Affiliation(s)
- Haijun Qi
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Q.); (X.Z.); (F.G.)
| | - Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Q.); (X.Z.); (F.G.)
| | - Feilong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Q.); (X.Z.); (F.G.)
| | - Liangjie Lv
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China;
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Q.); (X.Z.); (F.G.)
- Correspondence: ; Tel.: +86-10-82108781
| |
Collapse
|
11
|
Guo F, Shan Z, Yu J, Xu G, Zhang Z. The Cysteine-Rich Repeat Protein TaCRR1 Participates in Defense against Both Rhizoctonia cerealis and Bipolaris sorokiniana in Wheat. Int J Mol Sci 2020; 21:ijms21165698. [PMID: 32784820 PMCID: PMC7461100 DOI: 10.3390/ijms21165698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
The domain of unknown function 26 (DUF26), harboring a conserved cysteine-rich motif (C-X8-C-X2-C), is unique to land plants. Several cysteine-rich repeat proteins (CRRs), belonging to DUF26-containing proteins, have been implicated in the defense against fungal pathogens in ginkgo, cotton, and maize. However, little is known about the functional roles of CRRs in the important staple crop wheat (Triticum aestivum). In this study, we identified a wheat CRR-encoding gene TaCRR1 through transcriptomic analysis, and dissected the defense role of TaCRR1 against the soil-borne fungi Rhizoctonia cerealis and Bipolaris sorokiniana, causal pathogens of destructive wheat diseases. TaCRR1 transcription was up-regulated in wheat towards B. Sorokiniana or R. cerealis infection. The deduced TaCRR1 protein contained a signal peptide and two DUF26 domains. Heterologously-expressed TaCRR1 protein markedly inhibited the mycelia growth of B. sorokiniana and R. cerealis. Furthermore, the silencing of TaCRR1 both impaired host resistance to B. sorokiniana and R. cerealis and repressed the expression of several pathogenesis-related genes in wheat. These results suggest that the TaCRR1 positively participated in wheat defense against both B. sorokiniana and R. cerealis through its antifungal activity and modulating expression of pathogenesis-related genes. Thus, TaCRR1 is a candidate gene for improving wheat resistance to B. sorokiniana and R. cerealis.
Collapse
Affiliation(s)
- Feilong Guo
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha 410004, China;
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zilong Shan
- ShiJiaZhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China;
| | - Jinfeng Yu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Gangbiao Xu
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha 410004, China;
- Correspondence: (G.X.); (Z.Z.); Tel.: +86-0731-85623096 (G.X.); +86-10-82108781 (Z.Z.)
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (G.X.); (Z.Z.); Tel.: +86-0731-85623096 (G.X.); +86-10-82108781 (Z.Z.)
| |
Collapse
|
12
|
Functional expression and characterization of an endo-1,4-β-mannosidase from Triticum aestivum in Pichia pastoris. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00525-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Ecotopic Expression of the Antimicrobial Peptide DmAMP1W Improves Resistance of Transgenic Wheat to Two Diseases: Sharp Eyespot and Common Root Rot. Int J Mol Sci 2020; 21:ijms21020647. [PMID: 31963767 PMCID: PMC7014311 DOI: 10.3390/ijms21020647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Wheat (Triticum aestivum L.) is an important staple crop. Sharp eyespot and common root rot are destructive diseases of wheat. Antimicrobial peptides (AMPs) are small peptides with broad-spectrum antimicrobial activity. In this study, we synthesized the DmAMP1W gene, encoding Dahlia merckii DmAMP1, and investigated the antifungal role of DmAMP1W in vitro and in transgenic wheat. Protein electrophoresis analysis and in vitro inhibition results demonstrated that the synthesized DmAMP1W correctly translated to the expected peptide DmAMP1W, and the purified peptide inhibited growths of the fungi Rhizoctonia cerealis and Bipolaris sorokiniana, the pathogenic causes of wheat sharp eyespot and common root rot. DmAMP1W was introduced into a wheat variety Zhoumai18 via Agrobacterium-mediated transformation. The molecular characteristics indicated that DmAMP1W could be heritable and expressed in five transgenic wheat lines in T1–T2 generations. Average sharp eyespot infection types of these five DmAMP1W transgenic wheat lines in T1–T2 generations decreased 0.69–1.54 and 0.40–0.82 compared with non-transformed Zhoumai18, respectively. Average common root rot infection types of these transgenic lines and non-transformed Zhoumai18 were 1.23–1.48 and 2.27, respectively. These results indicated that DmAMP1W-expressing transgenic wheat lines displayed enhanced-resistance to both sharp eyespot and common root rot. This study provides new broad-spectrum antifungal resources for wheat breeding.
Collapse
|
14
|
Zhang SB, Zhang WJ, Zhai HC, Lv YY, Cai JP, Jia F, Wang JS, Hu YS. Expression of a wheat β-1,3-glucanase in Pichia pastoris and its inhibitory effect on fungi commonly associated with wheat kernel. Protein Expr Purif 2019; 154:134-139. [DOI: 10.1016/j.pep.2018.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
|
15
|
Expression and Characterization of a Novel Antifungal Exo-β-1,3-glucanase from Chaetomium cupreum. Appl Biochem Biotechnol 2016; 182:261-275. [DOI: 10.1007/s12010-016-2325-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
16
|
Wei X, Shen F, Hong Y, Rong W, Du L, Liu X, Xu H, Ma L, Zhang Z. The wheat calcium-dependent protein kinase TaCPK7-D positively regulates host resistance to sharp eyespot disease. MOLECULAR PLANT PATHOLOGY 2016; 17:1252-64. [PMID: 26720854 PMCID: PMC6638438 DOI: 10.1111/mpp.12360] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 05/07/2023]
Abstract
Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, limits wheat production worldwide. Here, TaCPK7-D, encoding a subgroup III member of the calcium-dependent protein kinase (CPK) family, was identified from the sharp eyespot-resistant wheat line CI12633 through comparative transcriptomic analysis. Subsequently, the defence role of TaCPK7-D against R. cerealis infection was studied by the generation and characterization of TaCPK7-D-silenced and TaCPK7-D-overexpressing wheat plants. Rhizoctonia cerealis inoculation induced a higher transcriptional level of TaCPK7-D in the resistant wheat line CI12633 than in the susceptible cultivar Wenmai 6. The expression of TaCPK7-D was significantly induced after exogenous application of 1-aminocyclopropane-1-carboxylic acid (an ethylene biosynthesis precursor). The green fluorescent protein signal distribution assays indicated that TaCPK7-D localizes to the plasma membrane in both onion epidermal cells and wheat protoplasts. Following R. cerealis inoculation, TaCPK7-D-silenced wheat CI12633 plants displayed more severe sharp eyespot symptoms than control CI12633 plants. Four defence-associated genes (β-1,3-glucanase, chitinase 1, defensin and TaPIE1) and an ethylene biosynthesis key gene, ACO2, were significantly suppressed in the TaCPK7-D-silenced wheat plants compared with control plants. Conversely, TaCPK7-D-overexpressing wheat lines showed increased resistance to sharp eyespot compared with untransformed recipient wheat Yangmai 16. Furthermore, the transcriptional levels of these four defence-related genes and ACO2 gene were significantly elevated in TaCPK7-D-overexpressing plants compared with untransformed recipient wheat plants. These results suggest that TaCPK7-D positively regulates the wheat resistance response to R. cerealis infection through the modulation of the expression of these defence-associated genes, and that TaCPK7-D is a candidate to improve sharp eyespot resistance in wheat.
Collapse
Affiliation(s)
- Xuening Wei
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fangdi Shen
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yantao Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Rong
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lipu Du
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huijun Xu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lingjian Ma
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
17
|
Xu YB, Chen M, Zhang Y, Wang M, Wang Y, Huang QB, Wang X, Wang G. The phosphotransferase system gene ptsI in the endophytic bacterium Bacillus cereus is required for biofilm formation, colonization, and biocontrol against wheat sharp eyespot. FEMS Microbiol Lett 2014; 354:142-52. [PMID: 24750250 DOI: 10.1111/1574-6968.12438] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 01/01/2023] Open
Abstract
Natural resistance of wheat plants to wheat sharp eyespot is inadequate, and new strategies for controlling the disease are required. Biological control is an alternative and attractive way of reducing the use of chemicals in agriculture. In this study, we investigated the biocontrol properties of endophytic bacterium Bacillus cereus strain 0-9, which was isolated from the root systems of healthy wheat varieties. The phosphotransferase system is a major regulator of carbohydrate metabolism in bacteria. Enzyme I is one of the protein components of this system. Specific disruption and complementation of the enzyme I-coding gene ptsI from B. cereus was achieved through homologous recombination. Disruption of ptsI in B. cereus caused a 70% reduction in biofilm formation, a 30.4% decrease in biocontrol efficacy, and a 1000-fold reduction in colonization. The growth of ΔptsI mutant strain on G-tris synthetic medium containing glucose as the exclusive carbon source was also reduced. Wild-type properties could be restored to the ΔptsI mutant strain by ptsI complementation. These results suggested that ptsI may be one of the key genes involved in biofilm formation, colonization, and biocontrol of B. cereus and that B. cereus wild-type strain 0-9 may be an ideal biocontrol agent for controlling wheat sharp eyespot.
Collapse
Affiliation(s)
- Yu-Bin Xu
- College of Life Science, Henan University, Kaifeng, China; Institute of Bioengineering, Henan University, Kaifeng, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yang K, Rong W, Qi L, Li J, Wei X, Zhang Z. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis. Sci Rep 2013; 3:3021. [PMID: 24149340 PMCID: PMC3805973 DOI: 10.1038/srep03021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/01/2013] [Indexed: 12/02/2022] Open
Abstract
Cysteine-rich receptor kinases (CRKs) belong to the receptor-like kinase family. Little is known about CRK genes in wheat. We isolated a wheat CRK gene TaCRK1 from Rhizoctonia cerealis-resistant wheat CI12633 based on a differentially expressed sequence identified by RNA-Sequencing (RNA-Seq) analysis. TaCRK1 was more highly expressed in CI12633 than in susceptible Wenmai 6. Transcription of TaCRK1 in wheat was induced in CI12633 after R. cerealis infection and exogenous abscisic acid (ABA) treatment. The deduced TaCRK1 protein contained a signal peptide, two DUF26 domains, a transmembrane domain, and a serine/threonine protein kinase domain. Transient expression of a green fluorescence protein fused with TaCRK1 in wheat and onion indicated that TaCRK1 may localize to plasma membranes. Characterization of TaCRK1 silencing induced by virus-mediated method in CI12633 showed that the downregulation of TaCRK1 transcript did not obviously impair resistance to R. cerealis. This study paves the way to further CRK research in wheat.
Collapse
Affiliation(s)
- Kun Yang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
19
|
Rong W, Qi L, Wang J, Du L, Xu H, Wang A, Zhang Z. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat. Funct Integr Genomics 2013; 13:403-9. [PMID: 23839728 DOI: 10.1007/s10142-013-0332-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Take-all, caused by soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt), is a devastating root disease of wheat (Triticum aestivum) worldwide. Breeding resistant wheat cultivars is the most promising and reliable approach to protect wheat from take-all. Currently, no resistant wheat germplasm is available to breed cultivars using traditional methods. In this study, gene transformation was carried out using Snakin-1 (SN1) gene isolated from potato (Solanum tuberosum) because the peptide shows broad-spectrum antimicrobial activity in vitro. Purified SN1 peptide also inhibits in vitro the growth of Ggt mycelia. By bombardment-mediated method, the gene SN1 was transformed into Chinese wheat cultivar Yangmai 18 to generate SN1 transgenic wheat lines, which were used to assess the effectiveness of the SN1 peptide in protecting wheat from Ggt. Genomic PCR and Southern blot analyses indicated that the alien gene SN1 was integrated into the genomes of five transgenic wheat lines and heritable from T₀ to T₄ progeny. Reverse transcription-PCR and Western blot analyses showed that the introduced SN1 gene was transcribed and highly expressed in the five transgenic wheat lines. Following challenging with Ggt, disease test results showed that compared to segregants lacking the transgene and untransformed wheat plants, these five transgenic wheat lines expressing SN1 displayed significantly enhanced resistance to take-all. These results suggest that SN1 may be a potentially transgenic tool for improving the take-all resistance of wheat.
Collapse
Affiliation(s)
- Wei Rong
- National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of the Agriculture Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Yin L, Wang P, Li M, Ke X, Li C, Liang D, Wu S, Ma X, Li C, Zou Y, Ma F. Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 2013; 54:426-34. [PMID: 23356947 DOI: 10.1111/jpi.12038] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022]
Abstract
We examined whether exogenously applied melatonin could improve resistance to Marssonina apple blotch (Diplocarpon mali) by apple [Malus prunifolia (Willd.) Borkh. cv. Donghongguo]. This serious disease leads to premature defoliation in the main regions of apple production. When plants were pretreated with melatonin, resistance was increased in the leaves. We investigated the potential roles for melatonin in modulating levels of hydrogen peroxide (H2O2), as well the activities of antioxidant enzymes and pathogenesis-related proteins during these plant-pathogen interactions. Pretreatment enabled plants to maintain intracellular H2O2 concentrations at steady-state levels and enhance the activities of plant defence-related enzymes, possibly improving disease resistance. Because melatonin is safe and beneficial to animals and humans, exogenous pretreatment might represent a promising cultivation strategy to protect plants against this pathogen infection.
Collapse
Affiliation(s)
- Lihua Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas/College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Antifungal activity of extracellular hydrolases produced by autolysing Aspergillus nidulans cultures. J Microbiol 2012; 50:849-54. [DOI: 10.1007/s12275-012-2001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 05/14/2012] [Indexed: 02/02/2023]
|
22
|
Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett 2012; 34:1983-90. [PMID: 22850791 DOI: 10.1007/s10529-012-1012-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
β-1,3-Glucanases are abundant in plants and have been characterized from a wide range of species. They play key roles in cell division, trafficking of materials through plasmodesmata, in withstanding abiotic stresses and are involved in flower formation through to seed maturation. They also defend plants against fungal pathogens either alone or in association with chitinases and other antifungal proteins. They are grouped in the PR-2 family of pathogenesis-related (PR) proteins. Use of β-1,3-glucanase genes as transgenes in combination with other antifungal genes is a plausible strategy to develop durable resistance in crop plants against fungal pathogens. These genes, sourced from alfalfa, barley, soybean, tobacco, and wheat have been co-expressed along with other antifungal proteins, such as chitinases, peroxidases, thaumatin-like proteins and α-1-purothionin, in various crop plants with promising results that are discussed in this review.
Collapse
|
23
|
Vatandoust A, Ragaee S, Wood PJ, Tosh SM, Seetharaman K. Detection, Localization, and Variability of Endogenous β-Glucanase in Wheat Kernels. Cereal Chem 2012. [DOI: 10.1094/cchem-07-11-0084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Azadeh Vatandoust
- Department of Food Science, Ontario College of Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1
| | - Sanaa Ragaee
- Department of Food Science, Ontario College of Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1
- Corresponding author. Phone: (519) 824-4120 ext. 52624. Fax: (519) 824-6631. E-mail:
| | - Peter J. Wood
- Agriculture and Agri-Food Canada, Guelph Food Research Centre, Guelph, ON N1G 5C9
| | - Susan M. Tosh
- Agriculture and Agri-Food Canada, Guelph Food Research Centre, Guelph, ON N1G 5C9
| | - Koushik Seetharaman
- Department of Food Science, Ontario College of Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1
| |
Collapse
|
24
|
Simpson BK, Rui X, XiuJie J. Enzyme-assisted food processing. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-1-4614-1587-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
25
|
Aggarwal R, Purwar S, Kharbikar L, Gupta S. Induction of a wheat β-1,3-glucanase gene during the defense response toBipolaris sorokiniana. ACTA ACUST UNITED AC 2011. [DOI: 10.1556/aphyt.46.2011.1.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Ribeiro SM, Almeida RG, Pereira CAA, Moreira JS, Pinto MFS, Oliveira AC, Vasconcelos IM, Oliveira JTA, Santos MO, Dias SC, Franco OL. Identification of a Passiflora alata Curtis dimeric peptide showing identity with 2S albumins. Peptides 2011; 32:868-74. [PMID: 20955745 DOI: 10.1016/j.peptides.2010.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/09/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
Abstract
Antifungal proteins and peptides, essential compounds for plant defense, have been isolated from several tissues of various plants. These proteins could be used as a natural alternative to control phytopathogenic fungi. In this report a heterodimeric antifungal protein named Pa-AFP1, showing higher identity with the 2S albumin family, was purified by using 70-100% ammonium sulfate saturation and further purification steps such as anionic exchange Q-Sepharose chromatography associated with HPLC reversed-phase C4 chromatography. Analysis by Tricine-SDS-PAGE revealed two peptidic molecular masses of approximately 4500 Da and 7000 Da, in the presence of β-mercaptoethanol, while by removing the reducing agent a single protein with molecular mass of about 11,500 Da was obtained. Moreover, dimer mass was confirmed by MALDI-TOF analyses (11,569.76 Da). The antifungal protein, named Pa-AFP1, efficiently inhibited the growth of filamentous fungi Colletotrichum gloeosporioides, and was added to a short list of 2S albumins with antimicrobial properties. Otherwise, this same peptide showed no activity toward bacteria and yeasts. In summary, this compound could be used in the future to develop biotechnological products for the control of phytopathogenic fungi.
Collapse
Affiliation(s)
- Suzana M Ribeiro
- Centro de Análise Proteômicas e Bioquímicas de Brasília, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dong N, Liu X, Lu Y, Du L, Xu H, Liu H, Xin Z, Zhang Z. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Funct Integr Genomics 2010; 10:215-26. [DOI: 10.1007/s10142-009-0157-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/14/2009] [Accepted: 12/24/2009] [Indexed: 10/19/2022]
|
28
|
González-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Álvarez RM, Heil M. Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens. PLANT PHYSIOLOGY 2010; 152:1705-15. [PMID: 20023149 PMCID: PMC2832240 DOI: 10.1104/pp.109.148478] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/11/2009] [Indexed: 05/18/2023]
Abstract
Nectars are rich in primary metabolites and attract mutualistic animals, which serve as pollinators or as an indirect defense against herbivores. Their chemical composition makes nectars prone to microbial infestation. As protective strategy, floral nectar of ornamental tobacco (Nicotiana langsdorffii x Nicotiana sanderae) contains "nectarins," proteins producing reactive oxygen species such as hydrogen peroxide. By contrast, pathogenesis-related (PR) proteins were detected in Acacia extrafloral nectar (EFN), which is secreted in the context of defensive ant-plant mutualisms. We investigated whether these PR proteins protect EFN from phytopathogens. Five sympatric species (Acacia cornigera, A. hindsii, A. collinsii, A. farnesiana, and Prosopis juliflora) were compared that differ in their ant-plant mutualism. EFN of myrmecophytes, which are obligate ant-plants that secrete EFN constitutively to nourish specialized ant inhabitants, significantly inhibited the growth of four out of six tested phytopathogenic microorganisms. By contrast, EFN of nonmyrmecophytes, which is secreted only transiently in response to herbivory, did not exhibit a detectable inhibitory activity. Combining two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with nanoflow liquid chromatography-tandem mass spectrometry analysis confirmed that PR proteins represented over 90% of all proteins in myrmecophyte EFN. The inhibition of microbial growth was exerted by the protein fraction, but not the small metabolites of this EFN, and disappeared when nectar was heated. In-gel assays demonstrated the activity of acidic and basic chitinases in all EFNs, whereas glucanases were detected only in EFN of myrmecophytes. Our results demonstrate that PR proteins causally underlie the protection of Acacia EFN from microorganisms and that acidic and basic glucanases likely represent the most important prerequisite in this defensive function.
Collapse
|