1
|
Long J, Ye Z, Li X, Tian Y, Bai Y, Chen L, Qiu C, Xie Z, Jin Z, Svensson B. Enzymatic preparation and potential applications of agar oligosaccharides: a review. Crit Rev Food Sci Nutr 2022; 64:5818-5834. [PMID: 36547517 DOI: 10.1080/10408398.2022.2158452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oligosaccharides derived from agar, that is, agarooligosaccharides and neoagarooligosaccharides, have demonstrated various kinds of bioactivities which have been utilized in a variety of fields. Enzymatic hydrolysis is a feasible approach that principally allows for obtaining specific agar oligosaccharides in a sustainable way at an industrial scale. This review summarizes recent technologies employed to improve the properties of agarase. Additionally, the relationship between the degree of polymerization, bioactivities, and potential applications of agar-derived oligosaccharides for pharmaceutical, food, cosmetic, and agricultural industries are discussed. Engineered agarase exhibited general improvement of enzymatic performance, which is mostly achieved by truncation. Rational and semi-rational design assisted by computational methods present the latest strategy for agarase improvement with greatest potential to satisfy future industrial needs. Agarase immobilized on magnetic Fe3O4 nanoparticles via covalent bond formation showed characteristics well suited for industry. Additionally, albeit with the relationship between the degree of polymerization and versatile bioactivities like anti-oxidants, anti-inflammatory, anti-microbial agents, prebiotics and in skin care of agar-derived oligosaccharides are discussed here, further researches are still needed to unravel the complicated relationship between bioactivity and structure of the different oligosaccharides.
Collapse
Affiliation(s)
- Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Ziying Ye
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Zhao B, Jin Z, Yu Y, Li Y, Wang J, Wan W, Hu C, Li X, Li Y, Xin W, Kang L, Yang H, Wang J, Gao S. A Thermostable Dissolving Microneedle Vaccine with Recombinant Protein of Botulinum Neurotoxin Serotype A. Toxins (Basel) 2022; 14:toxins14120881. [PMID: 36548778 PMCID: PMC9781108 DOI: 10.3390/toxins14120881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As a Class A bioterrorism agent, botulinum neurotoxin serotype A (BoNT/A) carries the risk of being used by terrorists to cause mass poisoning. The microneedle (MN) patch has a great potential for application as a novel vaccine delivery method. The aim of this study is to develop a thermally stable, dissolving microneedle patch for the delivery of a recombinant protein vaccine using a recombinant C-terminal heavy chain of BoNT/A (Hc of BoNT/A, AHc) to prevent botulism. METHODS Fish gelatin, a natural non-toxic and bacteriostatic material, was selected as the microneedle matrix for the preparation of the dissolving microneedle vaccine. Subsequently, the mechanical performance, bacteriostatic properties, vaccination effect, and stability of the microneedle patches were evaluated using instruments such as the displacement-force test station and optical coherence tomography (OCT) scanner. RESULTS Fish gelatin matrix at high concentrations has good bacteriostatic properties, and excellent mechanical performance and vaccination effect, meeting the necessities of a vaccine. In both in vivo and in vitro neutralization experiments, MN vaccines containing different antigen doses achieved the same protective efficacy as subcutaneous vaccinations, protecting mice against 106 LD50 of BoNT/A injected intraperitoneally. Thermal stability analysis of the MN vaccines revealed that the fish gelatin matrix protected the AHc vaccine from protein denaturation even after 7 days of storage at 37 °C and enabled the vaccine patches to maintain good immunogenicity and protective efficacy even after 6 months of storage at room temperature. CONCLUSION In this study, we successfully prepared a bacteriostatic MN patch using a fish gelatin matrix that not only has a good vaccination effect, but also obviates the need for a cold chain for the AHc vaccine, providing the possibility of rapid, painless, and large-scale vaccination.
Collapse
Affiliation(s)
- Baohua Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhiying Jin
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Yunzhou Yu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Yue Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Wei Wan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Chenyi Hu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Xiaoyang Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Hao Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
- Correspondence: (H.Y.); (J.W.); (S.G.); Tel./Fax: +86+010+66948643 (H.Y. & S.G.); +86+010+66948531 (J.W.)
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
- Correspondence: (H.Y.); (J.W.); (S.G.); Tel./Fax: +86+010+66948643 (H.Y. & S.G.); +86+010+66948531 (J.W.)
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
- Correspondence: (H.Y.); (J.W.); (S.G.); Tel./Fax: +86+010+66948643 (H.Y. & S.G.); +86+010+66948531 (J.W.)
| |
Collapse
|
3
|
Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products. Biotechnol Adv 2020; 45:107641. [PMID: 33035614 DOI: 10.1016/j.biotechadv.2020.107641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022]
Abstract
Red algae are important renewable bioresources with very large annual outputs. Agarose is the major carbohydrate component of many red algae and has potential to be of value in the production of agaro-oligosaccharides, biofuels and other chemicals. In this review, we summarize the degradation pathway of agarose, which includes an upstream part involving transformation of agarose into its two monomers, D-galactose (D-Gal) and 3,6-anhydro-α-L-galactose (L-AHG), and a downstream part involving monosaccharide degradation pathways. The upstream part involves agarolytic enzymes such as α-agarase, β-agarase, α-neoagarobiose hydrolase, and agarolytic β-galactosidase. The downstream part includes the degradation pathways of D-Gal and L-AHG. In addition, the production of functional agaro-oligosaccharides such as neoagarobiose and monosaccharides such as L-AHG with different agarolytic enzymes is reviewed. Third, techniques for the setup, regulation and optimization of agarose degradation to increase utilization efficiency of agarose are summarized. Although heterologous construction of the whole agarose degradation pathway in an engineered strain has not been reported, biotechnologies applied to improve D-Gal utilization efficiency and construct L-AHG catalytic routes are reviewed. Finally, critical aspects that may aid in the construction of engineered microorganisms that can fully utilize agarose to produce agaro-oligosaccharides or as carbon sources for production of biofuels or other value-adding chemicals are discussed.
Collapse
|
4
|
Mutagenesis on the surface of a β-agarase from Vibrio sp. ZC-1 increased its thermo-stability. Enzyme Microb Technol 2019; 127:22-31. [PMID: 31088613 DOI: 10.1016/j.enzmictec.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 01/12/2023]
Abstract
The recombinant rAgaZC-1 was a family GH50 β-agarase from Vibrio sp. ZC-1 (CICC 24670). In this paper, the mutant D622G (i.e., mutate the aspartic acid at position 622 to glycine) had better thermo-stability than rAgaZC-1, showing 1.5℃ higher T5010 (the temperature at which the half-time is 10 min) and 4-folds of half-time at 41℃, while they had almost same optimum temperature (38.5℃), optimum pH (pH6.0) and catalytic efficiency. Thermal deactivation kinetical analysis showed that D622G had higher activation energy for deactivation, enthalpy and Gibbs free energy than rAgaZC-1, indicating that more energy is required by D622G for deactivation. Substrate can protect agarase against thermal inactivation, especially D622G. Hence the yield of agarose hydrolysis catalyzed by D622G was higher than that by rAgaZC-1. The models of D622G and rAgaZC-1 predicted by homology modeling were compared to find that it is the improved distribution of surface electrostatic potential, great symmetric positive potential and more hydrophobic interactions of D622G that enhance the thermo-stability.
Collapse
|
5
|
Kim JD, Lee DG, Lee SH. Cloning, Expression, and Characterization of a Thermotolerant β-agarase from Simiduia sp. SH-4. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0072-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Wilkens C, Tiwari MK, Webb H, Jam M, Czjzek M, Svensson B. Asp271 is critical for substrate interaction with the surface binding site in β-agarase a from Zobellia galactanivorans. Proteins 2018; 87:34-40. [PMID: 30315603 DOI: 10.1002/prot.25614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/11/2018] [Accepted: 10/08/2018] [Indexed: 11/10/2022]
Abstract
In the marine environment agar degradation is assured by bacteria that contain large agarolytic systems with enzymes acting in various endo- and exo-modes. Agarase A (AgaA) is an endo-glycoside hydrolase of family 16 considered to initiate degradation of agarose. Agaro-oligosaccharide binding at a unique surface binding site (SBS) in AgaA from Zobellia galactanivorans was investigated by computational methods in conjunction with a structure/sequence guided approach of site-directed mutagenesis probed by surface plasmon resonance binding analysis of agaro-oligosaccharides of DP 4-10. The crystal structure has shown that agaro-octaose interacts via H-bonds and aromatic stacking along 7 subsites (L through R) of the SBS in the inactive catalytic nucleophile mutant AgaA-E147S. D271 is centrally located in the extended SBS where it forms H-bonds to galactose and 3,6-anhydrogalactose residues of agaro-octaose at subsites O and P. We propose D271 is a key residue in ligand binding to the SBS. Thus AgaA-E147S/D271A gave slightly decreasing KD values from 625 ± 118 to 468 ± 13 μM for agaro-hexaose, -octaose, and -decaose, which represent 3- to 4-fold reduced affinity compared with AgaA-E147S. Molecular dynamics simulations and interaction analyses of AgaA-E147S/D271A indicated disruption of an extended H-bond network supporting that D271 is critical for the functional SBS. Notably, neither AgaA-E147S/W87A nor AgaA-E147S/W277A, designed to eliminate stacking with galactose residues at subsites O and Q, respectively, were produced in soluble form. W87 and W277 may thus control correct folding and structural integrity of AgaA.
Collapse
Affiliation(s)
- Casper Wilkens
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Manish K Tiwari
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Helen Webb
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Murielle Jam
- Laboratory for Integrative Biology of Marine Models, Station Biologique, Sorbonne University, Université Pierre et Marie Curie, Roscoff, France
| | - Mirjam Czjzek
- Laboratory for Integrative Biology of Marine Models, Station Biologique, Sorbonne University, Université Pierre et Marie Curie, Roscoff, France
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Li C, Li J, Wang R, Li X, Li J, Deng C, Wu M. Substituting Both the N-Terminal and “Cord” Regions of a Xylanase from Aspergillus oryzae to Improve Its Temperature Characteristics. Appl Biochem Biotechnol 2018; 185:1044-1059. [DOI: 10.1007/s12010-017-2681-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
8
|
Li XQ, Wu Q, Hu D, Wang R, Liu Y, Wu MC, Li JF. Improving the temperature characteristics and catalytic efficiency of a mesophilic xylanase from Aspergillus oryzae, AoXyn11A, by iterative mutagenesis based on in silico design. AMB Express 2017; 7:97. [PMID: 28508385 PMCID: PMC5432455 DOI: 10.1186/s13568-017-0399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
To improve the temperature characteristics and catalytic efficiency of a glycoside hydrolase family (GHF) 11 xylanase from Aspergillus oryzae (AoXyn11A), its variants were predicted based on in silico design. Firstly, Gly21 with the maximum B-factor value, which was confirmed by molecular dynamics (MD) simulation on the three-dimensional structure of AoXyn11A, was subjected to site-saturation mutagenesis. Thus, one variant with the highest thermostability, AoXyn11AG21I, was selected from the mutagenesis library, E. coli/Aoxyn11AG21X (X: any one of 20 amino acids). Secondly, based on the primary structure multiple alignment of AoXyn11A with seven thermophilic GHF11 xylanases, AoXyn11AY13F or AoXyn11AG21I–Y13F, was designed by replacing Tyr13 in AoXyn11A or AoXyn11AG21I with Phe. Finally, three variant-encoding genes, Aoxyn11AG21I, Aoxyn11AY13F and Aoxyn11AG21I–Y13F, were constructed by two-stage whole-plasmid PCR method, and expressed in Pichia pastoris GS115, respectively. The temperature optimum (Topt) of recombinant (re) AoXyn11AG21I–Y13F was 60 °C, being 5 °C higher than that of reAoXyn11AG21I or reAoXyn11AY13F, and 10 °C higher than that of reAoXyn11A. The thermal inactivation half-life (t1/2) of reAoXyn11AG21I–Y13F at 50 °C was 240 min, being 40-, 3.4- and 2.5-fold longer than those of reAoXyn11A, reAoXyn11AG21I and reAoXyn11AY13F. The melting temperature (Tm) values of reAoXyn11A, reAoXyn11AG21I, reAoXyn11AY13F and reAoXyn11AG21I–Y13F were 52.3, 56.5, 58.6 and 61.3 °C, respectively. These findings indicated that the iterative mutagenesis of both Gly21Ile and Tyr13Phe improved the temperature characteristics of AoXyn11A in a synergistic mode. Besides those, the catalytic efficiency (kcat/Km) of reAoXyn11AG21I–Y13F was 473.1 mL mg−1 s−1, which was 1.65-fold higher than that of reAoXyn11A.
Collapse
|
9
|
An K, Shi X, Cui F, Cheng J, Liu N, Zhao X, Zhang XH. Characterization and overexpression of a glycosyl hydrolase family 16 beta-agarase YM01-1 from marine bacterium Catenovulum agarivorans YM01 T. Protein Expr Purif 2017; 143:1-8. [PMID: 28986239 DOI: 10.1016/j.pep.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/20/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
Abstract
Agar, usually extracted from seaweed, has a wide variety of industrial applications due to its gelling and stabilizing characteristics. Agarases are the enzymes which hydrolyze agar into agar oligosaccharides. The produced agar oligosaccharides have been widely used in cosmetic, food, and medical fields due to their biological functions. A beta-agarase gene, YM01-1, was cloned and expressed from a marine bacterium Catenovulum agarivorans YM01T. The encoding agarase of YM01-1 consisted of 331 amino acids with an apparent molecular mass of 37.7 kDa and a 23-amino-acids signal peptide. YM01-1 belongs to glycoside hydrolase 16 (GH16) family based on the amino acid sequence homology. The optimum pH and temperature for its activity was 7.0 and 50 °C, respectively. YM01-1 was stable at a pH of pH 6.0-9.0 and temperatures below 45 °C. Thin layer chromatography (TLC) and ion trap mass spectrometer of the YM01-1 hydrolysis products displayed that YM01-1 was an endo-type β-agarase and degrades agarose, neoagarohexaose, neoagarotetraose into neoagarobiose. The Km, Vmax, Kcat and Kcat/Km values of the YM01-1 for agarose were 8.69 mg/ml, 4.35 × 103 U/mg, 2.4 × 103 s-1 and 2.7 × 106 s-1 M-1, respectively. Hence, the enzyme with high agarolytic activity and single end product was different from other GH16 agarases, which has potential applications for the production of oligosaccharides with remarkable activities.
Collapse
Affiliation(s)
- Ke An
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaochong Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Fangyuan Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingguang Cheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Na Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xia Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
10
|
Directed evolution and secretory expression of a pyrethroid-hydrolyzing esterase with enhanced catalytic activity and thermostability. Microb Cell Fact 2017; 16:81. [PMID: 28490329 PMCID: PMC5425977 DOI: 10.1186/s12934-017-0698-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pyrethroids are potentially harmful to human health and ecosystems. It is necessary to develop some efficient strategies to degrade pyrethroid residues. Biodegradation is generally considered as a safe, efficient, and inexpensive way to eliminate environmental contaminants. To date, although several pyrethroid-hydrolyzing esterases have been cloned, there has been no report about a pyrethroid hydrolase with high hydrolytic activity, good stability, and high productivity, indispensable enzymatic properties in practical biodegradation. Almost all pyrethroid hydrolases are intracellular enzymes, which require complex extraction protocols and present issues in terms of easy inactivation and low production. RESULTS In this study, random mutagenesis was performed on one pyrethroid-hydrolyzing esterase, Sys410, to enhance its activity and thermostability. Two beneficial mutations, A171V and D256N, were obtained by random mutagenesis and gave rise to the mutant M2. The mutant displayed ~1.5-fold improvement in the kcat/Km value and 2.46-fold higher catalytic activity. The optimal temperature was 10 °C higher than that of the wild-type enzyme (55 °C). The half-life at 40-65 °C was 3.3-310 times longer. It was surprising that M2 has a half-life of 12 h at 70 °C while Sys410 was completely inactivated at 70 °C. In addition, the desired gene was extracellularly expressed in a Pichia pastoris host system. The soluble expression level reached up to 689.7 mg/L. Remarkably, the enzyme could efficiently degrade various pyrethroids at moderate temperature for 15 min, exceeding a hydrolysis rate of 98%, which is the highest value ever reported. CONCLUSIONS This is the first report about random mutagenesis and secretory expression of pyrethroid-hydrolyzing esterase with high-level productivity and purity in P. pastoris. Broad substrate specificity, enhanced activity and thermostability make M2 an ideal candidate for the biodegradation of pyrethroid residues.
Collapse
|
11
|
Wu YR, Zhou ZR, Zhao M, Lin B, Zhong M, Hu Z. Molecular characterization of the thermostability and carbohydrate-binding module from a newly identified GH118 family agarase, AgaXa. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Lee SJ, Shin DY, Kim JD, Lee DG, Lee SH. Characterization of α-agarase from Alteromonas sp. SH-1. ACTA ACUST UNITED AC 2016. [DOI: 10.7841/ksbbj.2016.31.2.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Replacing a piece of loop-structure in the substrate-binding groove of Aspergillus usamii β-mannanase, AuMan5A, to improve its enzymatic properties by rational design. Appl Microbiol Biotechnol 2015; 100:3989-98. [DOI: 10.1007/s00253-015-7224-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/12/2015] [Accepted: 12/05/2015] [Indexed: 01/28/2023]
|
14
|
Takagi E, Hatada Y, Akita M, Ohta Y, Yokoi G, Miyazaki T, Nishikawa A, Tonozuka T. Crystal structure of the catalytic domain of a GH16 β-agarase from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94. Biosci Biotechnol Biochem 2015; 79:625-32. [DOI: 10.1080/09168451.2014.988680] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
A deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94, has a β-agarase (MtAgaA) belonging to the glycoside hydrolase family (GH) 16. The optimal temperature of this bacterium for growth is 43–49 °C, and MtAgaA is stable at 60 °C, which is one of the most thermostable enzymes among GH16 β-agarases. Here, we determined the catalytic domain structure of MtAgaA. MtAgaA consists of a β-jelly roll fold, as observed in other GH16 enzymes. The structure of MtAgaA was most similar to two β-agarases from Zobellia galactanivorans, ZgAgaA, and ZgAgaB. Although the catalytic cleft structure of MtAgaA was similar to ZgAgaA and ZgAgaB, residues at subsite −4 of MtAgaA were not conserved between them. Also, an α-helix, designated as α4′, was uniquely located near the catalytic cleft of MtAgaA. A comparison of the structures of the three enzymes suggested that multiple factors, including increased numbers of arginine and proline residues, could contribute to the thermostability of MtAgaA.
Collapse
Affiliation(s)
- Emiko Takagi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Yuji Hatada
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Masatake Akita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yukari Ohta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Gaku Yokoi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takatsugu Miyazaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
15
|
Chi WJ, Lee CR, Dugerjonjuu S, Park JS, Kang DK, Hong SK. Biochemical characterization of a novel iron-dependent GH16 β-agarase, AgaH92, from an agarolytic bacterium Pseudoalteromonas sp. H9. FEMS Microbiol Lett 2015; 362:fnv035. [DOI: 10.1093/femsle/fnv035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2015] [Indexed: 01/26/2023] Open
|
16
|
Extracellular production of a novel endo-β-agarase AgaA from Pseudomonas vesicularis MA103 that cleaves agarose into neoagarotetraose and neoagarohexaose. Int J Mol Sci 2015; 16:5590-603. [PMID: 25768342 PMCID: PMC4394494 DOI: 10.3390/ijms16035590] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/20/2022] Open
Abstract
The gene agaA, of the isolated marine bacterium Pseudomonas vesicularis MA103, comprised 2958-bp nucleotides encoding a putative agarase AgaA of 985 amino acids, which was predicted to contain a signal peptide of 29 amino acids in the N-terminus, a catalytic domain of glycoside hydrolase 16 (GH16) family, a bacterial immunoglobulin group 2 (Big 2), and three carbohydrate binding modules 6 (CBM 6). The gene agaA was cloned and overexpressed in Escherichia coli, and the optimum temperatures for AgaA overexpression were 16, 20 and 24 °C. The agaA was cloned without its signal peptide for cytosolic production overexpression, whereas it was cloned with the heterologous signal peptide PelB and its endogenous signal peptide for periplasmic and extracellular productions, respectively. Extracellular and periplasmic rAgaA showed greater activity than that of cytosolic rAgaA, indicating that membrane translocation of AgaA may encourage proper protein folding. Time-course hydrolysis of agarose by rAgaA was accomplished and the products were analyzed using thin layer chromatography and matrix-assisted laser desorption inoization-time of flight mass spectrometry, indicating that AgaA from P. vesicularis was an endo-type β-1,4 agarase that cleaved agarose into neoagarotetraose and neoagarohexaose as the final products.
Collapse
|
17
|
Enhancing thermostability and the structural characterization of Microbacterium saccharophilum K-1 β-fructofuranosidase. Appl Microbiol Biotechnol 2014; 98:6667-77. [PMID: 24633372 DOI: 10.1007/s00253-014-5645-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
A β-fructofuranosidase from Microbacterium saccharophilum K-1 (formerly known as Arthrobacter sp. K-1) is useful for producing the sweetener lactosucrose (4(G)-β-D-galactosylsucrose). Thermostability of the β-fructofuranosidase was enhanced by random mutagenesis and saturation mutagenesis. Clones with enhanced thermostability included mutations at residues Thr47, Ser200, Phe447, Phe470, and Pro500. In the highest stability mutant, T47S/S200T/F447P/F470Y/P500S, the half-life at 60 °C was 182 min, 16.5-fold longer than the wild-type enzyme. A comparison of the crystal structures of the full-length wild-type enzyme and three mutants showed that various mechanisms appear to be involved in thermostability enhancement. In particular, the replacement of Phe447 with Val or Pro induced a conformational change in an adjacent residue His477, which results in the formation of a new hydrogen bond in the enzyme. Although the thermostabilization mechanisms of the five residue mutations were explicable on the basis of the crystal structures, it appears to be difficult to predict which amino acid residues should be modified to obtain thermostabilized enzymes.
Collapse
|
18
|
Zhang H, Li J, Wang J, Yang Y, Wu M. Determinants for the improved thermostability of a mesophilic family 11 xylanase predicted by computational methods. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:3. [PMID: 24393334 PMCID: PMC3895927 DOI: 10.1186/1754-6834-7-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/17/2013] [Indexed: 05/26/2023]
Abstract
BACKGROUND Xylanases have drawn much attention owing to possessing great potential in various industrial applications. However, the applicability of xylanases, exemplified by the production of bioethanol and xylooligosaccharides (XOSs), was bottlenecked by their low stabilities at higher temperatures. The main purpose of this work was to improve the thermostability of AuXyn11A, a mesophilic glycoside hydrolase (GH) family 11 xylanase from Aspergillus usamii E001, by N-terminus replacement. RESULTS A hybrid xylanase with high thermostability, named AEXynM, was predicted by computational methods, and constructed by substituting the N-terminal 33 amino acids of AuXyn11A with the corresponding 38 ones of EvXyn11TS, a hyperthermostable family 11 xylanase. Two AuXyn11A- and AEXynM-encoding genes, Auxyn11A and AExynM, were then highly expressed in Pichia pastoris GS115, respectively. The specific activities of two recombinant xylanases (reAuXyn11A and reAEXynM) were 10,437 and 9,529 U mg-1. The temperature optimum and stability of reAEXynM reached 70 and 75°C, respectively, much higher than those (50 and 45°C) of reAuXyn11A. The melting temperature (Tm) of reAEXynM, measured using the Protein Thermal Shift (PTS) method, increased by 34.0°C as compared with that of reAuXyn11A. Analyzed by HPLC, xylobiose and xylotriose as the major hydrolytic products were excised from corncob xylan by reAEXynM. Additionally, three single mutant genes from AExynM (AExynMC5T, AExynMP9S, and AExynMH14N) were constructed by site-directed mutagenesis as designed theoretically, and expressed in P. pastoris GS115, respectively. The thermostabilities of three recombinant mutants clearly decreased as compared with that of reAEXynM, which demonstrated that the three amino acids (Cys5, Pro9, and His14) in the replaced N-terminus contributed mainly to the high thermostability of AEXynM. CONCLUSIONS This work highly enhanced the thermostability of AuXyn11A by N-terminus replacement, and further verified, by site-directed mutagenesis, that Cys5, Pro9, and His14 contributed mainly to the improved thermostability. It will provide an effective strategy for improving the thermostabilities of other enzymes.
Collapse
Affiliation(s)
- Huimin Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jianfang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Junqing Wang
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Minchen Wu
- Wuxi Medical School, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
19
|
Han WJ, Gu JY, Liu HH, Li FC, Wu ZH, Li YZ. An extra peptide within the catalytic module of a β-agarase affects the agarose degradation pattern. J Biol Chem 2013; 288:9519-31. [PMID: 23378534 DOI: 10.1074/jbc.m112.412247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Agarase hydrolyzes agarose into a series of oligosaccharides with repeating disaccharide units. The glycoside hydrolase (GH) module of agarase is known to be responsible for its catalytic activity. However, variations in the composition of the GH module and its effects on enzymatic functions have been minimally elucidated. The agaG4 gene, cloned from the genome of the agarolytic Flammeovirga strain MY04, encodes a 503-amino acid protein, AgaG4. Compared with elucidated agarases, AgaG4 contains an extra peptide (Asn(246)-Gly(302)) within its GH module. Heterologously expressed AgaG4 (recombinant AgaG4; rAgaG4) was determined to be an endo-type β-agarase. The protein degraded agarose into neoagarotetraose and neoagarohexaose at a final molar ratio of 1.5:1. Neoagarooctaose was the smallest substrate for rAgaG4, whereas neoagarotetraose was the minimal degradation product. Removing the extra fragment from the GH module led to the inability of the mutant (rAgaG4-T57) to degrade neoagarooctaose, and the final degradation products of agarose by the truncated protein were neoagarotetraose, neoagarohexaose, and neoagarooctaose at a final molar ratio of 2.7:2.8:1. The optimal temperature for agarose degradation also decreased to 40 °C for this mutant. Bioinformatic analysis suggested that tyrosine 276 within the extra fragment was a candidate active site residue for the enzymatic activity. Site-swapping experiments of Tyr(276) to 19 various other amino acids demonstrated that the characteristics of this residue were crucial for the AgaG4 degradation of agarose and the cleavage pattern of substrate.
Collapse
Affiliation(s)
- Wen-Jun Han
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|
20
|
Gao SJ, Wang JQ, Wu MC, Zhang HM, Yin X, Li JF. Engineering hyperthermostability into a mesophilic family 11 xylanase from Aspergillus oryzae by in silico design of N-terminus substitution. Biotechnol Bioeng 2012; 110:1028-38. [PMID: 23097144 DOI: 10.1002/bit.24768] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/06/2012] [Accepted: 10/11/2012] [Indexed: 11/11/2022]
Abstract
A mesophilic xylanase from Aspergillus oryzae CICC40186 (abbreviated to AoXyn11A) belongs to glycoside hydrolase family 11. The thermostability of AoXyn11A was significantly improved by substituting its N-terminus with the corresponding region of a hyperthermostable family 11 xylanase, EvXyn11(TS) . The suitable N-terminus of AoXyn11A to be replaced was selected by the comparison of B-factors between AoXyn11A and EvXyn11(TS) , which were generated and calculated after a 15 ns molecular dynamic (MD) simulation process. Then, the predicted hybrid xylanase (designated AEx11A) was modeled, and subjected to a 2 ns MD simulation process for calculating its total energy value. The N-terminus substitution was confirmed by comparing the total energy value of AEx11A with that of AoXyn11A. Based on the in silico design, the AEx11A was constructed and expressed in Pichia pastoris GS115. After 72 h of methanol induction, the recombinant AEx11A (reAEx11A) activity reached 82.2 U/mL. The apparent temperature optimum of reAEx11A was 80°C, much higher than that of reAoXyn11A. Its half-life was 197-fold longer than that of reAoXyn11A at 70°C. Compared with reAoXyn11A, the reAEx11A displayed a slight alteration in K(m) but a decrease in V(max).
Collapse
Affiliation(s)
- Shu-Juan Gao
- School of Medicine and Pharmaceutics, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Improvement in the thermostability of D-psicose 3-epimerase from Agrobacterium tumefaciens by random and site-directed mutagenesis. Appl Environ Microbiol 2011; 77:7316-20. [PMID: 21873475 DOI: 10.1128/aem.05566-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The S213C, I33L, and I33L S213C variants of D-psicose 3-epimerase from Agrobacterium tumefaciens, which were obtained by random and site-directed mutagenesis, displayed increases of 2.5, 5, and 7.5°C in the temperature for maximal enzyme activity, increases of 3.3-, 7.2-, and 29.9-fold in the half-life at 50°C, and increases of 3.1, 4.3, and 7.6°C in apparent melting temperature, respectively, compared with the wild-type enzyme. Molecular modeling suggests that the improvement in thermostability in these variants may have resulted from increased putative hydrogen bonds and formation of new aromatic stacking interactions. The immobilized wild-type enzyme with and without borate maintained activity for 8 days at a conversion yield of 70% (350 g/liter psicose) and for 16 days at a conversion yield of 30% (150 g/liter psicose), respectively. After 8 or 16 days, the enzyme activity gradually decreased, and the conversion yields with and without borate were reduced to 22 and 9.6%, respectively, at 30 days. In contrast, the activities of the immobilized I33L S213C variant with and without borate did not decrease during the operation time of 30 days. These results suggest that the I33L S213C variant may be useful as an industrial producer of D-psicose.
Collapse
|