1
|
Guerrero Sanchez M, Passot S, Campoy S, Olivares M, Fonseca F. Effect of protective agents on the storage stability of freeze-dried Ligilactobacillus salivarius CECT5713. Appl Microbiol Biotechnol 2022; 106:7235-7249. [PMID: 36192613 DOI: 10.1007/s00253-022-12201-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Ligilactobacillus salivarius is a lactic acid bacterium exhibiting several health benefits but remains commercially underexploited due to its inability to survive during long-term storage in the dried state. Our objective was to study the effect of various protective molecules (maltodextrin, trehalose, antioxidants, and fructooligosaccharides), being efficient on other bacteria, on the freeze-dried stability of L. salivarius CECT5713. The culturability was evaluated after freezing, freeze-drying, and subsequent storage at 37 °C, as well as the biochemical composition of cells in an aqueous environment using Fourier transform infrared (FTIR) micro-spectroscopy. The assignment of principal absorption bands to cellular components was performed using data from the literature on bacteria. The membrane fatty acid composition was determined after freeze-drying and storage. Glass transition temperature of the liquid and freeze-dried bacterial suspensions and water activity of the freeze-dried samples were measured. The best storage stability was observed for the formulations involving maltodextrin and antioxidants. The analysis of the FTIR spectra of freeze-thawed cells and rehydrated cells after freeze-drying and storage revealed that freeze-drying induced damage to proteins, peptidoglycans of the cell wall and nucleic acids. Storage stability appeared to be dependent on the ability of the protective molecules to limit damage during freeze-drying. The inactivation rates of bacteria during storage were analyzed as a function of the temperature difference between the product temperature during sublimation or during storage and the glass transition temperature, allowing a better insight into the stabilization mechanisms of freeze-dried bacteria. Maintaining during the process a product temperature well below the glass transition temperature, especially during storage, appeared essential for L. salivarius CECT5713 storage stability. KEY POINTS: • L. salivarius CECT5713 highly resisted freezing but was sensitive to freeze-drying and storage. • Freeze-drying and storage mainly altered cell proteins, peptidoglycans, and nucleic acids. • A glassy matrix containing maltodextrin and an antioxidant ensured the highest storage stability.
Collapse
Affiliation(s)
| | - Stéphanie Passot
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 91120, Palaiseau, France
| | - Sonia Campoy
- R&D Department, Biosearch S.A.U (a Kerry® Company), 18004, Granada, Spain
| | - Monica Olivares
- R&D Department, Biosearch S.A.U (a Kerry® Company), 18004, Granada, Spain
| | - Fernanda Fonseca
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 91120, Palaiseau, France.
| |
Collapse
|
2
|
Brasiel PGDA, Costa de Almeida T, Mateus K, Fernandes de Carvalho A, Potente Dutra Luquetti SC, Gouveia Peluzio MDC. Maintenance of Probiotic Characteristics of Dry Kefir: Is It Possible? JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2020.1862010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Kácia Mateus
- Departamento De Nutrição, Universidade Federal de Juiz de Fora, Juiz De Fora, Brazil
| | | | | | | |
Collapse
|
3
|
Microencapsulating role of whey protein isolate and sucrose in protecting the cell membrane and enhancing survival of probiotic lactobacilli strains during spray drying, storage, and simulated gastrointestinal passage. Food Res Int 2022; 159:111651. [DOI: 10.1016/j.foodres.2022.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
|
4
|
Rajam R, Subramanian P. Encapsulation of probiotics: past, present and future. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00228-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Probiotics are live microbial supplements known for its health benefits. Consumption of probiotics reported to improve several health benefits including intestinal flora composition, resistance against pathogens. In the recent years, there is an increasing trend of probiotic-based food products in the market.
Main body
Probiotics cells are targeted to reach the large intestine, and the probiotics must survive through the acidic conditions of the gastric environment. It is recommended to formulate the probiotic bacteria in the range of 108–109 cfu/g for consumption and maintain the therapeutic efficacy of 106–107 cfu/g in the large intestine. During the gastrointestinal transit, the probiotics will drastically lose its viability in the gastric environment (pH 2). Maintaining cell viability until it reaches the large intestine remains challenging task. Encapsulating the probiotics cells with suitable wall material helps to sustain the survival of probiotics during industrial processing and in gastrointestinal transit. In the encapsulation process, cells are completely enclosed in the wall material, through different techniques including spray drying, freeze drying, extrusion, spray freeze drying, emulsification, etc. However, spray-drying and freeze-drying techniques are successfully used for the commercial formulation; thus, we limited to review those encapsulation techniques.
Short conclusions
The survival rate of spray-dried probiotics during simulated digestion mainly depends on the inlet air temperature, wall material and exposure in the GI condition. And fermentation, pH and freeze-drying time are the important process parameters for maintaining the viability of bacterial cells in the gastric condition. Improving the viability of probiotic cells during industrial processing and extending the cell viability during storage and digestion will be the main concern for successful commercialization.
Graphical abstract
Collapse
|
5
|
Shu G, Li B, Dai C, Chen L, Yang X, Lei Z, Zhang M, Guo Y. Preparation of Saccharomyces boulardii powder by spray drying: thermoprotectants optimization and stability evaluation. Prep Biochem Biotechnol 2022; 52:1078-1086. [PMID: 35108154 DOI: 10.1080/10826068.2022.2028638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Saccharomyces boulardii as the probiotic yeast was widely used in the pharmaceutical, feed and food industries. The influence of skim milk, gelatin, and carbohydrates on the heat resistance of S. boulardii is explored in the article. Response surface methodology was effectively applied to optimize the thermoprotectant composition for S. boulardii during spray-drying. The accelerated test is applied to evaluate its the subsequent storage stability. The results show that the thermoprotectants composition was comprehensively optimized such as: 15.12% skim milk, 1.81% gelatin, and 9.73% trehalose. The highest viability was 17.77%, which was basically the same as the predicted value of 18.21%. The inactivation rate constant of spray-dried powder was k-18 = 1.04 × 10-5 h-1, the quantity of viable cells stored at this temperature for 1 and 10 years was 8.25 × 108 CFU/g and 1.25 × 108 CFU/g, separately. This work provides a thermoprotectants formula for the S. boulardii during the spray drying process.
Collapse
Affiliation(s)
- Guowei Shu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Bohao Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Chunji Dai
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Li Chen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xin Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Zhangteng Lei
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Meng Zhang
- Depatment of Research and Development, Shaanxi Yatai Dairy Co., Ltd, Xianyang, China
| | - Yuliang Guo
- Depatment of Research and Development, Shaanxi Yatai Dairy Co., Ltd, Xianyang, China
| |
Collapse
|
6
|
Carasi P, Malamud M, Serradell MA. Potentiality of Food-Isolated Lentilactobacillus kefiri Strains as Probiotics: State-of-Art and Perspectives. Curr Microbiol 2021; 79:21. [PMID: 34905095 DOI: 10.1007/s00284-021-02728-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
Lentilactobacillus kefiri is one of the main lactic acid bacteria species in kefir and it was also isolated from other fermented foods. Numerous strains have been isolated and characterized regarding its potential as probiotics for the development of novel functional foods. To our knowledge this is the first review focused on highlighting safety aspects and health beneficial effects reported for L. kefiri strains. Several L. kefiri strains lack of transmissible antibiotic resistance genes, are tolerant to the harsh conditions of the gastrointestinal environment, and could resist different preservation procedures. Moreover, many of the isolated strains have shown antimicrobial activity against pathogens and their toxins, exhibited immunomodulatory activity as well as induced some beneficial effects at metabolic level. Regarding all the scientific evidence, certain L. kefiri strains emerge as excellent candidates to be applied to the development of both food supplements and new fermented foods with health-promoting properties. However, the availability of genomic information is still very limited, so much more work must be done in order to explore the potentiality of L. kefiri as a probiotic and a source of bioactive metabolites.
Collapse
Affiliation(s)
- P Carasi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, UNLP, CONICET, Asociado CIC PBA, La Plata, Argentina
| | - M Malamud
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Cátedra de Microbiología, UNLP, La Plata, Argentina.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - M A Serradell
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Cátedra de Microbiología, UNLP, La Plata, Argentina.
| |
Collapse
|
7
|
Stability of Encapsulated Lactobacillus reuteri during Harsh Conditions, Storage Period, and Simulated In Vitro Conditions. J FOOD QUALITY 2021. [DOI: 10.1155/2021/3872190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viability of probiotics in the foods and human bodies is important, because a certain minimum count of bacteria is necessary to impose health promoting effects. In the present work, we encapsulated Lactobacillus reuteri within whey protein isolate (WPI), soy protein isolate (SPI), WPI + inulin (WPI4I), and SPI + inulin (SPI4I) through spray drying method and investigated the efficiency of the microcapsules on the protection of the cells under different conditions (heat, salt, bile salt, penicillin, pH, simulated gastrointestinal condition, and storage). The particle size of the samples was in the range of 195.2–358.1 nm. The sensitivity of unencapsulated bacteria to heat was considerably higher than that to the encapsulated bacteria, so that, at 80°C, no growth (of unencapsulated type) was observed. At 60°C and 40°C, the cell count of free bacteria decreased to 5.81 and 8.04 log CFU/mL, respectively. The bacteria encapsulated within SPI4I showed the highest viability at these temperatures. A comparison between the effects of different pH values showed pH 1.5 more lethal than 2.5 and 7. The effect of NaCl at 4% concentration on decreasing the bacterial count was more notable than 2%. However, the used wall materials in all conditions resulted in higher viability of the cells compared to the free cells. Among different types of wall materials, it was observed that WPI4I imposed the best protective effect. The higher viability of cells within WPI4I wall material was also observed during the storage time. The viability of encapsulated cells decreased from 10.35 to 10.40 log CFU/g in the first week and to 8.93–9.23 log CFU/g in the last week of storage.
Collapse
|
8
|
Hain AB, Gomes IT, Gomes RG, Bergamasco RDC. Effect of β-cyclodextrin on the Survival of Alginate–Xanthan Microencapsulated Bifidobacterium-BB12 in Simulated Digestive Conditions and Frozen Yogurt. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1884997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Amanda Brito Hain
- Food Engineering Department, State University of Maringa, Maringá, Brazil
| | | | | | | |
Collapse
|
9
|
Burca-Busaga CG, Betoret N, Seguí L, Betoret E, Barrera C. Survival of Lactobacillus salivarius CECT 4063 and Stability of Antioxidant Compounds in Dried Apple Snacks as Affected by the Water Activity, the Addition of Trehalose and High Pressure Homogenization. Microorganisms 2020; 8:microorganisms8081095. [PMID: 32707848 PMCID: PMC7463932 DOI: 10.3390/microorganisms8081095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
Survival of probiotic microorganisms in dried foods is optimal for water activity (aw) values between 0.1 and 0.3. Encapsulating and adding low-molecular weight additives can enhance probiotic viability in intermediate aw food products, but the effectiveness of sub-lethal homogenization is still not proven. This study evaluates the effect of 10% (w/w) trehalose addition and/or 100 MPa homogenization on Lactobacillussalivarius CECT 4063 counts and antioxidant properties of apple slices dried to different water activity values (freeze-drying to a aw of 0.25 and air-drying at 40 °C to a aw of 0.35 and 0.45) during four-week storage. Optical and mechanical properties of dried samples were also analyzed. Freeze-drying had the least effect on the microbial counts and air drying at 40 °C to a aw of 0.35 had the greatest effect. Antioxidant properties improved with drying, especially with convective drying. Decreases in both microbial and antioxidant content during storage were favored in samples with higher water activity values. Adding trehalose improved cell survival during storage in samples with a water activity of 0.35, but 100 MPa homogenization increased the loss of viability in all cases. Air-dried samples became more translucent and reddish, rather rubbery and less crispy than freeze-dried ones.
Collapse
Affiliation(s)
- Cristina Gabriela Burca-Busaga
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 Valencia, Spain; (C.G.B.-B.); (N.B.); (L.S.)
| | - Noelia Betoret
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 Valencia, Spain; (C.G.B.-B.); (N.B.); (L.S.)
| | - Lucía Seguí
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 Valencia, Spain; (C.G.B.-B.); (N.B.); (L.S.)
| | - Ester Betoret
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Spain;
| | - Cristina Barrera
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 Valencia, Spain; (C.G.B.-B.); (N.B.); (L.S.)
- Correspondence: ; Tel.: +34-629-987-104
| |
Collapse
|
10
|
Maciag T, Krzyzanowska DM, Jafra S, Siwinska J, Czajkowski R. The Great Five-an artificial bacterial consortium with antagonistic activity towards Pectobacterium spp. and Dickeya spp.: formulation, shelf life, and the ability to prevent soft rot of potato in storage. Appl Microbiol Biotechnol 2020; 104:4547-4561. [PMID: 32215712 PMCID: PMC7190590 DOI: 10.1007/s00253-020-10550-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/17/2020] [Accepted: 03/15/2020] [Indexed: 11/18/2022]
Abstract
Abstract “The Great Five” (GF) is an artificial bacterial consortium developed to protect potato tubers from soft rot caused by Pectobacterium spp. and Dickeya spp. To investigate the commercialization potential of the GF, we developed liquid and powder formulations of the consortium and of each of the comprising strains (Serratia plymuthica strain A294, Enterobacter amnigenus strain A167, Rahnella aquatilis strain H145, Serratia rubidaea strain H440, and S. rubidaea strain H469). To form powders, the cells were lyophilized using a newly developed lyoprotectant: Reagent PS. The shelf life of the formulations stored at 8 and 22 °C was monitored for a period of 12 months. The longest shelf life was obtained for formulations stored at 8 °C; however, the viability of all formulations was negatively affected at 22 °C. For the consortium, a 2.5 log10 cfu (colony forming units) drop in cell number was recorded for the liquid formulation after 6 months, while in case of powders, the drop remained below 1 log10 cfu following 12 months. The ability of the powder formulations to preserve biocontrol activity of the consortium was tested on potato tubers treated with the formulations and a mixture of the soft rot pathogens. The inoculated tubers were stored for 6 months at 8 °C to mimic commercial storage conditions. Soft rot severity and incidence on potato tubers treated with formulations were significantly reduced (62–75% and 48–61%, respectively) in comparison to positive control with pathogens alone. The potential use of the newly developed formulations of “The Great Five” for the biocontrol of soft rot is discussed. Key Points • An innovative reagent to protect bacterial cells during lyophilization was developed. • Powder formulations of “The Great Five” prolonged its shelf life. • The powder-formulated “The Great Five” was active against soft rot bacteria on potato tubers. Electronic supplementary material The online version of this article (10.1007/s00253-020-10550-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomasz Maciag
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Dorota M Krzyzanowska
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Joanna Siwinska
- Division of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Robert Czajkowski
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
11
|
Gaucher F, Bonnassie S, Rabah H, Leverrier P, Pottier S, Jardin J, Briard-Bion V, Marchand P, Jeantet R, Blanc P, Jan G. Benefits and drawbacks of osmotic adjustment in Propionibacterium freudenreichii. J Proteomics 2019; 204:103400. [PMID: 31152938 DOI: 10.1016/j.jprot.2019.103400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 02/08/2023]
Abstract
Propionibacterium freudenreichii is a beneficial bacterium used as a cheese starter and as a probiotic. Indeed, selected strains of P. freudenreichii combine both technological and health-promoting abilities. Moreover, during large-scale industrial production of dried bacteria and during consumption, P. freudenreichii may undergo different stressful processes. Osmotic adaptation was shown to enhance P. freudenreichii tolerance towards stresses, which are encountered during freeze-drying and during digestion. In this report, we compared the osmoadaptation molecular mechanisms of two P. freudenreichii strains. Both osmotolerance and osmoadaptation were strain-dependent and had different effects on multiple stress tolerance, depending on the presence of osmoprotectants. Availability of glycine betaine (GB) restored the growth of one of the two strains. In this strain, osmotic preadaptation enhanced heat, oxidative and acid stresses tolerance, as well as survival upon freeze-drying. However, addition of GB in the medium had deleterious effects on stress tolerance, while restoring optimal growth under hyperosmotic constraint. In the other strain, neither salt nor GB enhanced stress tolerance, which was constitutively low. Accordingly, whole cell proteomics revealed that mechanisms triggered by salt in the presence and in the absence of GB are different between strains. Osmotic adjustment may thus have deleterious effects on industrial abilities of P. freudenreichii. BIOLOGICAL SIGNIFICANCE: Propionibacteria are found in various niches including fodder, silage, rumen, milk and cheeses. This means adaptation towards different ecological environments with different physicochemical parameters. Propionibacterium freudenreichii, in particular, is furthermore used both as dairy starter and as probiotic and is thus submitted to high scale industrial production. Production and subsequent stabilization still need optimization. Drying processes like freeze-drying are stressful. Osmotic adjustments may modulated tolerance towards drying. However, they are strain-dependent, medium-dependent and may either reduce or increase stress tolerance. A case-by-case study, for each strain-medium thus seems necessary. In this work, we identify key proteins involved in osmoadaptation and give new insights into adaptation mechanisms in P. freudenreichii. This opens new perspectives for the selections of strains and for the choice of the growth medium composition.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France; Bioprox, 6 rue Barbès, 92532 Levallois-Perret, France
| | - Sylvie Bonnassie
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France; Université de Rennes I, Univ. Rennes, Rennes, France
| | - Houem Rabah
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France; Bba, Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, F-35042 Rennes, France
| | - Pauline Leverrier
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Sandrine Pottier
- Univ. Rennes, CNRS, ISCR, - UMR 6226, PRISM, BIOSIT - UMS 3480, F-35000 Rennes, France
| | - Julien Jardin
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France
| | | | | | - Romain Jeantet
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France
| | | | - Gwénaël Jan
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
| |
Collapse
|
12
|
La Cava EL, Gerbino E, Sgroppo SC, Gómez-Zavaglia A. Pectin Hydrolysates from Different Cultivars of Pink/Red and White Grapefruits (Citrus Paradisi [macf.]) as Culture and Encapsulating Media for Lactobacillus Plantarum. J Food Sci 2019; 84:1776-1783. [PMID: 31218715 DOI: 10.1111/1750-3841.14671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 11/30/2022]
Abstract
Citrus pectin hydrolysates (Citrus paradisi [Mafc.]) from "Foster," "Red Shambar," "Tangelo Orlando," and "Citrumelo Swingle" cultivars were obtained by partial chemical hydrolysis and their properties as culture media (sole carbon/nutrient source) and encapsulating agents of Lactobacillus plantarum CIDCA 83114 were evaluated. The concentration of neutral sugars was maximal after 2-hour hydrolysis. All hydrolysates were rich in glucose >xylose >galactose >galacturonic acid >mannose >arabinose. "Citrumelo Swingle" cultivar was the one with the highest concentration of xylose. After 24 hr of fermentation with L. plantarum CIDCA 83114, bacterial viability increased from 6.76 ± 0.14 to almost 9 log CFU/mL, and lactic acid concentration, from 2.63 ± 0.41 to 7.82 ± 0.15 mmol/L in all hydrolysates. Afterwards, bacteria were entrapped in pectate-calcium beads by ionotropic gelation. Bacterial viability did not significantly decrease after freeze-drying and storage the beads at 4 °C for 45 days. PRACTICAL APPLICATION: Pectin hydrolysates were adequate culture media for microorganisms, as determined by the viabililty and lactic acid production. Considering that citrus peels are agro-wastes obtained in large quantities, their use as encapsulating materials provides a solution to overcome the environmental problem they entail.
Collapse
Affiliation(s)
- Enzo L La Cava
- Laboratorio de Tecnología Química y Bromatología, Facultad de Ciencias Exactas, Naturales y Agrimensura, UNNE, Av. Libertad 5460, RA3400, Corrientes, Argentina
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), Calle 47 y 116, RA 1900, La Plata, Buenos Aires, Argentina
| | - Sonia C Sgroppo
- Laboratorio de Tecnología Química y Bromatología, Facultad de Ciencias Exactas, Naturales y Agrimensura, UNNE, Av. Libertad 5460, RA3400, Corrientes, Argentina
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), Calle 47 y 116, RA 1900, La Plata, Buenos Aires, Argentina
| |
Collapse
|
13
|
Gaucher F, Bonnassie S, Rabah H, Marchand P, Blanc P, Jeantet R, Jan G. Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses. Front Microbiol 2019; 10:841. [PMID: 31068918 PMCID: PMC6491719 DOI: 10.3389/fmicb.2019.00841] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/02/2019] [Indexed: 01/15/2023] Open
Abstract
This review deals with beneficial bacteria, with a focus on lactobacilli, propionibacteria, and bifidobacteria. As being recognized as beneficial bacteria, they are consumed as probiotics in various food products. Some may also be used as starters in food fermentation. In either case, these bacteria may be exposed to various environmental stresses during industrial production steps, including drying and storage, and during the digestion process. In accordance with their adaptation to harsh environmental conditions, they possess adaptation mechanisms, which can be induced by pretreatments. Adaptive mechanisms include accumulation of compatible solutes and of energy storage compounds, which can be largely modulated by the culture conditions. They also include the regulation of energy production pathways, as well as the modulation of the cell envelop, i.e., membrane, cell wall, surface layers, and exopolysaccharides. They finally lead to the overexpression of molecular chaperones and of stress-responsive proteases. Triggering these adaptive mechanisms can improve the resistance of beneficial bacteria toward technological and digestive stresses. This opens new perspectives for the improvement of industrial processes efficiency with regard to the survival of beneficial bacteria. However, this bibliographical survey evidenced that adaptive responses are strain-dependent, so that growth and adaptation should be optimized case-by-case.
Collapse
Affiliation(s)
- Floriane Gaucher
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Bioprox, Levallois-Perret, France
| | - Sylvie Bonnassie
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Science de la Vie et de la Terre, Université de Rennes 1, Rennes, France
| | - Houem Rabah
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Pôle Agronomique Ouest, Bba, Rennes, France
| | | | | | - Romain Jeantet
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| | - Gwénaël Jan
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| |
Collapse
|
14
|
Brizuela N, Tymczyszyn EE, Semorile LC, Valdes La Hens D, Delfederico L, Hollmann A, Bravo-Ferrada B. Lactobacillus plantarum as a malolactic starter culture in winemaking: A new (old) player? ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2018.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
15
|
Romano N, Mobili P, Zuñiga-Hansen ME, Gómez-Zavaglia A. Physico-chemical and structural properties of crystalline inulin explain the stability of Lactobacillus plantarum during spray-drying and storage. Food Res Int 2018; 113:167-174. [PMID: 30195509 DOI: 10.1016/j.foodres.2018.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 01/21/2023]
Abstract
The stabilizing capacity of crystalline inulin during spray-drying and storage of Lactobacillus plantarum CIDCA 83114 was assessed. In a first step, the physical properties of the matrices were investigated, using amorphous inulin as control. Melting and glass transition temperatures, water sorption isotherms, water activity, and infrared spectra were determined. Microorganisms were spray-dried at a pilot scale in both amorphous and crystalline matrices. After that, scanning electronic and confocal microsopies provided a full landscape about the interactions between microorganisms and crystals, and also the bacterial location within the amorphous matrices. The technological properties of the dehydrated microorganisms (culturability and acidification capacity) during storage at different water activities were also evaluated. Both amorphous and crystalline inulins were adequate matrices to stabilize microorganisms. However, crystalline inulin was more stable than amorphous one, especially when the storage temperature was close to the glass transition temperature, resulting in a better matrix to protect microorganisms during pilot spray-drying and storage. Furthermore, no accumulation of insoluble inulin was observed after resuspending the dehydrated microorganisms in crystalline inulin matrices, which appears as a clear technological advantage with regard to the amorphous one. Considering the prebiotic character of inulin and the probiotic properties of L. plantarum CIDCA 83114, this work developed an integrated approach, both from a fundamental and from an applied viewpoint, supporting the incorporation of such ingredients in the formulation of food products.
Collapse
Affiliation(s)
- Nelson Romano
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina
| | - Pablo Mobili
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina
| | - Maria Elvira Zuñiga-Hansen
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile; Centro Regional de Estudios en Alimentos Saludables (CREAS), Conicyt-Regional, Gore Región de Valparaíso, R06i1004, Blanco 1623, Valparaíso, Chile
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), RA1900 La Plata, Argentina.
| |
Collapse
|
16
|
Liu H, Gong J, Chabot D, Miller SS, Cui SW, Zhong F, Wang Q. Improved survival of Lactobacillus zeae LB1 in a spray dried alginate-protein matrix. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Rodklongtan A, Chitprasert P. Combined effects of holy basil essential oil and inlet temperature on lipid peroxidation and survival of Lactobacillus reuteri KUB-AC5 during spray drying. Food Res Int 2017; 100:276-283. [DOI: 10.1016/j.foodres.2017.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/26/2022]
|
18
|
Nale Z, Tontul I, Aşçi Arslan A, Sahin Nadeem H, Kucukcetin A. Microbial viability, physicochemical and sensory properties of kefir microcapsules prepared using maltodextrin/Arabic gum mixes. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zeynep Nale
- Department of Food Engineering; Faculty of Engineering; Akdeniz University; 07059 Antalya Turkey
| | - Ismail Tontul
- Department of Food Engineering; Faculty of Engineering; Akdeniz University; 07059 Antalya Turkey
- Department of Food Engineering; Faculty of Engineering and Architecture; Necmettin Erbakan University; 42050 Konya Turkey
| | - Ayşe Aşçi Arslan
- Department of Food Engineering; Faculty of Engineering; Akdeniz University; 07059 Antalya Turkey
| | - Hilal Sahin Nadeem
- Department of Food Engineering; Faculty of Engineering; Adnan Menderes University; 09100 Aydın Turkey
| | - Ahmet Kucukcetin
- Department of Food Engineering; Faculty of Engineering; Akdeniz University; 07059 Antalya Turkey
| |
Collapse
|
19
|
Quintana G, Gerbino E, Gómez-Zavaglia A. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage. Front Microbiol 2017; 8:641. [PMID: 28446905 PMCID: PMC5388696 DOI: 10.3389/fmicb.2017.00641] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/29/2017] [Indexed: 11/13/2022] Open
Abstract
Okara is a nutritionally valuable by-product produced in large quantities as result of soymilk elaboration. This work proposes its use as both culture and dehydration medium during freeze-drying, spray-drying, and storage of Lactobacillus plantarum CIDCA 83114. Whole and defatted okara were employed as culture media for L. plantarum CIDCA 83114. The growth kinetics were followed by plate counting and compared with those of bacteria grown in MRS broth (control). No significant differences in plate counting were observed in the three media. The fatty acid composition of bacteria grown in whole and defatted okara showed a noticeable increase in the unsaturated/saturated (U/S) fatty acid ratio, with regard to bacteria grown in MRS. This change was mainly due to the increase in polyunsaturated fatty acids, namely C18:2. For dehydration assays, cultures in the stationary phase were neutralized and freeze-dried (with or without the addition of 250 mM sucrose) or spray-dried. Bacteria were plate counted immediately after freeze-drying or spray-drying and during storage at 4°C for 90 days. Freeze-drying in whole okara conducted to the highest bacterial recovery. Regarding storage, spray-dried bacteria previously grown in whole and defatted okara showed higher plate counts than those grown in MRS. On the contrary, freeze-dried bacteria previously grown in all the three culture media were those with the lowest plate counts. The addition of sucrose to the dehydration media improved their recovery. The higher recovery of microorganisms grown in okara after freeze-drying and spray-drying processes and during storage was ascribed to both the presence of fiber and proteins in the dehydration media, and the increase in U/S fatty acids ratio in bacterial membranes. The obtained results support for the first time the use of okara as an innovative matrix to deliver L. plantarum. Considering that okara is an agro-waste obtained in large quantities, these results represent an innovative strategy to add it value, providing a symbiotic ingredient with promising industrial applications in the development of novel functional foods and feeds.
Collapse
Affiliation(s)
- Gabriel Quintana
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata)Buenos Aires, Argentina
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata)Buenos Aires, Argentina
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata)Buenos Aires, Argentina
| |
Collapse
|
20
|
Romano N, Schebor C, Mobili P, Gómez-Zavaglia A. Role of mono- and oligosaccharides from FOS as stabilizing agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus. Food Res Int 2016; 90:251-258. [DOI: 10.1016/j.foodres.2016.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
21
|
Coghetto CC, Brinques GB, Ayub MAZ. Probiotics production and alternative encapsulation methodologies to improve their viabilities under adverse environmental conditions. Int J Food Sci Nutr 2016; 67:929-43. [PMID: 27456038 DOI: 10.1080/09637486.2016.1211995] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotic products are dietary supplements containing live microorganisms producing beneficial health effects on the host by improving intestinal balance and nutrient absorption. Among probiotic microorganisms, those classified as lactic acid bacteria are of major importance to the food and feed industries. Probiotic cells can be produced using alternative carbon and nitrogen sources, such as agroindustrial residues, at the same time contributing to reduce process costs. On the other hand, the survival of probiotic cells in formulated food products, as well as in the host gut, is an essential nutritional aspect concerning health benefits. Therefore, several cell microencapsulation techniques have been investigated as a way to improve cell viability and survival under adverse environmental conditions, such as the gastrointestinal milieu of hosts. In this review, different aspects of probiotic cells and technologies of their related products are discussed, including formulation of culture media, and aspects of cell microencapsulation techniques required to improve their survival in the host.
Collapse
Affiliation(s)
- Chaline Caren Coghetto
- a Biotechnology and Biochemical Engineering Laboratory (BiotecLab) , Federal University of Rio Grande Do Sul , Porto Alegre , Brazil
| | - Graziela Brusch Brinques
- b Nutrition Department , Federal University of Health Sciences of Porto Alegre , Porto Alegre , Brazil
| | - Marco Antônio Záchia Ayub
- a Biotechnology and Biochemical Engineering Laboratory (BiotecLab) , Federal University of Rio Grande Do Sul , Porto Alegre , Brazil
| |
Collapse
|
22
|
Hugo AA, Bruno F, Golowczyc MA. Whey permeate containing galacto-oligosaccharides as a medium for biomass production and spray drying of Lactobacillus plantarum CIDCA 83114. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Sosa N, Gerbino E, Golowczyc MA, Schebor C, Gómez-Zavaglia A, Tymczyszyn EE. Effect of Galacto-Oligosaccharides: Maltodextrin Matrices on the Recovery of Lactobacillus plantarum after Spray-Drying. Front Microbiol 2016; 7:584. [PMID: 27199918 PMCID: PMC4853418 DOI: 10.3389/fmicb.2016.00584] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
In this work maltodextrins were added to commercial galacto-oligosaccharides (GOS) in a 1:1 ratio and their thermophysical characteristics were analyzed. GOS:MD solutions were then used as matrices during spray-drying of Lactobacillus plantarum CIDCA 83114. The obtained powders were equilibrated at different relative humidities (RH) and stored at 5 and 20°C for 12 weeks, or at 30°C for 6 weeks. The Tgs of GOS:MD matrices were about 20-30°C higher than those of GOS at RH within 11 and 52%. A linear relation between the spin-spin relaxation time (T2) and T-Tg parameter was observed for GOS:MD matrices equilibrated at 11, 22, 33, and 44% RH at 5, 20, and 30°C. Spray-drying of L. plantarum CIDCA 83114 in GOS:MD matrices allowed the recovery of 93% microorganisms. In contrast, only 64% microorganisms were recovered when no GOS were included in the dehydration medium. Survival of L. plantarum CIDCA 83114 during storage showed the best performance for bacteria stored at 5°C. In a further step, the slopes of the linear regressions provided information about the rate of microbial inactivation for each storage condition (k values). This information can be useful to calculate the shelf-life of spray-dried starters stored at different temperatures and RH. Using GOS:MD matrices as a dehydration medium enhanced the recovery of L. plantarum CIDCA 83114 after spray-drying. This strategy allowed for the first time the spray-drying stabilization of a potentially probiotic strain in the presence of GOS.
Collapse
Affiliation(s)
- Natalia Sosa
- Facultad de Bromatología, Universidad Nacional de Entre RíosGualeguaychú, Argentina
| | - Esteban Gerbino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CCT-CONICET)La Plata, Argentina
| | - Marina A. Golowczyc
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CCT-CONICET)La Plata, Argentina
| | - Carolina Schebor
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad UniversitariaBuenos Aires, Argentina
| | - Andrea Gómez-Zavaglia
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CCT-CONICET)La Plata, Argentina
| | - E. Elizabeth Tymczyszyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de QuilmesBernal, Argentina
| |
Collapse
|
24
|
Broeckx G, Vandenheuvel D, Claes IJ, Lebeer S, Kiekens F. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int J Pharm 2016; 505:303-18. [DOI: 10.1016/j.ijpharm.2016.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023]
|
25
|
Huang S, Cauty C, Dolivet A, Le Loir Y, Chen XD, Schuck P, Jan G, Jeantet R. Double use of highly concentrated sweet whey to improve the biomass production and viability of spray-dried probiotic bacteria. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Barbosa J, Teixeira P. Development of probiotic fruit juice powders by spray-drying: A review. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1175016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Effect of Different Conditions of Growth and Storage on the Cell Counts of Two Lactic Acid Bacteria after Spray Drying in Orange Juice. BEVERAGES 2016. [DOI: 10.3390/beverages2020008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Zoz F, Iaconelli C, Lang E, Iddir H, Guyot S, Grandvalet C, Gervais P, Beney L. Control of Relative Air Humidity as a Potential Means to Improve Hygiene on Surfaces: A Preliminary Approach with Listeria monocytogenes. PLoS One 2016; 11:e0148418. [PMID: 26840373 PMCID: PMC4739610 DOI: 10.1371/journal.pone.0148418] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022] Open
Abstract
Relative air humidity fluctuations could potentially affect the development and persistence of pathogenic microorganisms in their environments. This study aimed to characterize the impact of relative air humidity (RH) variations on the survival of Listeria monocytogenes, a bacterium persisting on food processing plant surfaces. To assess conditions leading to the lowest survival rate, four strains of L. monocytogenes (EGDe, CCL500, CCL128, and LO28) were exposed to different RH conditions (75%, 68%, 43% and 11%) with different drying kinetics and then rehydrated either progressively or instantaneously. The main factors that affected the survival of L. monocytogenes were RH level and rehydration kinetics. Lowest survival rates between 1% and 0.001% were obtained after 3 hours of treatment under optimal conditions (68% RH and instantaneous rehydration). The survival rate was decreased under 0.001% after prolonged exposure (16h) of cells under optimal conditions. Application of two successive dehydration and rehydration cycles led to an additional decrease in survival rate. This preliminary study, performed in model conditions with L. monocytogenes, showed that controlled ambient RH fluctuations could offer new possibilities to control foodborne pathogens in food processing environments and improve food safety.
Collapse
Affiliation(s)
- Fiona Zoz
- UMR PAM Université Bourgogne-Franche-Comté / AgroSup Dijon, Dijon, France
| | - Cyril Iaconelli
- UMR PAM Université Bourgogne-Franche-Comté / AgroSup Dijon, Dijon, France
| | - Emilie Lang
- UMR PAM Université Bourgogne-Franche-Comté / AgroSup Dijon, Dijon, France
| | - Hayet Iddir
- UMR PAM Université Bourgogne-Franche-Comté / AgroSup Dijon, Dijon, France
| | - Stéphane Guyot
- UMR PAM Université Bourgogne-Franche-Comté / AgroSup Dijon, Dijon, France
| | - Cosette Grandvalet
- UMR PAM Université Bourgogne-Franche-Comté / AgroSup Dijon, Dijon, France
| | - Patrick Gervais
- UMR PAM Université Bourgogne-Franche-Comté / AgroSup Dijon, Dijon, France
| | - Laurent Beney
- UMR PAM Université Bourgogne-Franche-Comté / AgroSup Dijon, Dijon, France
| |
Collapse
|
29
|
Wirunpan M, Savedboworn W, Wanchaitanawong P. Survival and shelf life of Lactobacillus lactis 1464 in shrimp feed pellet after fluidized bed drying. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.anres.2016.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Liu H, Gong J, Chabot D, Miller SS, Cui S, Ma J, Zhong F, Wang Q. Protection of heat-sensitive probiotic bacteria during spray-drying by sodium caseinate stabilized fat particles. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.05.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Barbosa J, Borges S, Amorim M, Pereira M, Oliveira A, Pintado M, Teixeira P. Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Tavera-Quiroz MJ, Romano N, Mobili P, Pinotti A, Gómez-Zavaglia A, Bertola N. Green apple baked snacks functionalized with edible coatings of methylcellulose containing Lactobacillus plantarum. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
33
|
Martín MJ, Lara-Villoslada F, Ruiz MA, Morales ME. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2014.09.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Edible methylcellulose-based films containing fructo-oligosaccharides as vehicles for lactic acid bacteria. Food Res Int 2014; 64:560-566. [DOI: 10.1016/j.foodres.2014.07.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/08/2014] [Accepted: 07/20/2014] [Indexed: 11/18/2022]
|
35
|
Santos MI, Araujo-Andrade C, Esparza-Ibarra E, Tymczyszyn E, Gómez-Zavaglia A. Galacto-oligosaccharides and lactulose as protectants against desiccation of Lactobacillus delbrueckii subsp. bulcaricus. Biotechnol Prog 2014; 30:1231-8. [PMID: 25098896 DOI: 10.1002/btpr.1969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/01/2014] [Indexed: 11/06/2022]
Abstract
Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333 was dehydrated on desiccators containing silica gel in the presence of 20% w/w of two types of galacto-oligosaccharides (GOS Biotempo and GOS Cup Oligo H-70®) and lactulose, until no changes in water desorption were detected. After rehydration, bacterial growth was monitored at 37°C by determining: (a) the absorbance at 600 nm and (b) the near infrared spectra (NIR). Principal component analysis (PCA) was then performed on the NIR spectra of samples dehydrated in all conditions. A multiparametric flow cytometry assay was carried out using carboxyfluorescein diacetate and propidium iodide probes to determine the relative composition of damaged, viable, and dead bacteria throughout the growth kinetics. The absorbance at 600 nm and the position of the second derivative band at ∼1370 nm were plotted against the time of incubation. The efficiency of the protectants was GOS Biotempo > GOS Cup Oligo H-70® > lactulose. The better protectant capacity of GOS Biotempo was explained on the basis of the lower contribution of damaged cells immediately after rehydration (t = 0). PCA showed three groups along PC1, corresponding to the lag, exponential and stationary phases of growth, which explained 99% of the total variance. Along PC2, two groups were observed, corresponding to damaged or viable cells. The results obtained support the use of NIR to monitor the recovery of desiccated microorganisms in real time and without the need of chemical reagents. The use of GOS and lactulose as protectants in dehydration/rehydration processes was also supported.
Collapse
Affiliation(s)
- Mauricio I Santos
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata), RA, 1900, Argentina
| | | | | | | | | |
Collapse
|
36
|
Yánez-Mendizábal V, Viñas I, Usall J, Torres R, Solsona C, Abadias M, Teixidó N. Formulation development of the biocontrol agent Bacillus subtilis strain CPA-8 by spray-drying. J Appl Microbiol 2012; 112:954-65. [PMID: 22332943 DOI: 10.1111/j.1365-2672.2012.05258.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To prepare commercially acceptable formulations of Bacillus subtilis CPA-8 by spray-drying with long storage life and retained efficacy to control peach and nectarine brown rot caused by Monilinia spp. METHODS AND RESULTS CPA-8 24-h- and 72-h-old cultures were spray dried using 10% skimmed milk, 10% skimmed milk plus 10% MgSO(4) , 10% MgSO(4) and 20% MgSO(4) as carriers/protectants. All carriers/protectants gave good percentages of powder recovery (28-38%) and moisture content (7-13%). CPA-8 survival varied considerably among spray-dried 24-h- and 72-h-old cultures. Seventy-two hours culture spray dried formulations showed the highest survival (28-32%) with final concentration products of 1·6-3·3 × 10(9) CFU g(-1) , while viability of 24-h-old formulations was lower than 1%. Spray-dried 72-h-old formulations were selected to subsequent evaluation. Rehydration of cells with water provided a good recovery of CPA-8 dried cells, similar to other complex rehydration media tested. Spray-dried formulations stored at 4 ± 1 and 20 ± 1°C showed good shelf life during 6 months, and viability was maintained or slightly decreased by 0·2-0·3-log. CPA-8 formulations after 4- and 6 months storage were effective in controlling brown rot caused by Monilinia spp. on nectarines and peaches resulting in a 90-100% reduction in disease incidence. CONCLUSIONS Stable and effective formulations of biocontrol agent B. subtilis CPA-8 could be obtained by spray-drying. SIGNIFICANCE AND IMPACT OF THE STUDY New shelf-stable and effective formulations of a biocontrol agent have been obtained by spray-drying to control brown rot on peach.
Collapse
|