1
|
Elbanna K, Alsulami FS, Neyaz LA, Abulreesh HH. Poly (γ) glutamic acid: a unique microbial biopolymer with diverse commercial applicability. Front Microbiol 2024; 15:1348411. [PMID: 38414762 PMCID: PMC10897055 DOI: 10.3389/fmicb.2024.1348411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Microbial biopolymers have emerged as promising solutions for environmental pollution-related human health issues. Poly-γ-glutamic acid (γ-PGA), a natural anionic polymeric compound, is composed of highly viscous homo-polyamide of D and L-glutamic acid units. The extracellular water solubility of PGA biopolymer facilitates its complete biodegradation and makes it safe for humans. The unique properties have enabled its applications in healthcare, pharmaceuticals, water treatment, foods, and other domains. It is applied as a thickener, taste-masking agent, stabilizer, texture modifier, moisturizer, bitterness-reducing agent, probiotics cryoprotectant, and protein crystallization agent in food industries. γ-PGA is employed as a biological adhesive, drug carrier, and non-viral vector for safe gene delivery in tissue engineering, pharmaceuticals, and medicine. It is also used as a moisturizer to improve the quality of hair care and skincare cosmetic products. In agriculture, it serves as an ideal stabilizer, environment-friendly fertilizer synergist, plant-growth promoter, metal biosorbent in soil washing, and animal feed additive to reduce body fat and enhance egg-shell strength.
Collapse
Affiliation(s)
- Khaled Elbanna
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Fatimah S Alsulami
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Leena A Neyaz
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussein H Abulreesh
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Wei X, Chen Z, Liu A, Yang L, Xu Y, Cao M, He N. Advanced strategies for metabolic engineering of Bacillus to produce extracellular polymeric substances. Biotechnol Adv 2023; 67:108199. [PMID: 37330153 DOI: 10.1016/j.biotechadv.2023.108199] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Extracellular polymeric substances are mainly synthesized via a variety of biosynthetic pathways in bacteria. Bacilli-sourced extracellular polymeric substances, such as exopolysaccharides (EPS) and poly-γ-glutamic acid (γ-PGA), can serve as active ingredients and hydrogels, and have other important industrial applications. However, the functional diversity and widespread applications of these extracellular polymeric substances, are hampered by their low yields and high costs. Biosynthesis of extracellular polymeric substances is very complex in Bacillus, and there is no detailed elucidation of the reactions and regulations among various metabolic pathways. Therefore, a better understanding of the metabolic mechanisms is required to broaden the functions and increase the yield of extracellular polymeric substances. This review systematically summarizes the biosynthesis and metabolic mechanisms of extracellular polymeric substances in Bacillus, providing an in-depth understanding of the relationships between EPS and γ-PGA synthesis. This review provides a better clarification of Bacillus metabolic mechanisms during extracellular polymeric substance secretion and thus benefits their application and commercialization.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Ailing Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Nair P, Navale GR, Dharne MS. Poly-gamma-glutamic acid biopolymer: a sleeping giant with diverse applications and unique opportunities for commercialization. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:4555-4573. [PMID: 33824848 PMCID: PMC8016157 DOI: 10.1007/s13399-021-01467-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/06/2023]
Abstract
Poly-gamma-glutamic acid (γ-PGA) is a biodegradable, non-toxic, ecofriendly, and non-immunogenic biopolymer. Its phenomenal properties have gained immense attention in the field of regenerative medicine, the food industry, wastewater treatment, and even in 3D printing bio-ink. The γ-PGA has the potential to replace synthetic non-degradable counterparts, but the main obstacle is the high production cost and lower productivity. Extensive research has been carried out to reduce the production cost by using different waste; however, it is unable to match the commercialization needs. This review focuses on the biosynthetic mechanism of γ-PGA, its production using the synthetic medium as well as different wastes by L-glutamic acid-dependent and independent microbial strains. Furthermore, various metabolic engineering strategies and the recovery processes for γ-PGA and their possible applications are discussed. Finally, highlights on the challenges and unique approaches to reduce the production cost and to increase the productivity for commercialization of γ-PGA are also summarized.
Collapse
Affiliation(s)
- Pranav Nair
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Govinda R. Navale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Mahesh S. Dharne
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| |
Collapse
|
4
|
Hu LX, Zhao M, Hu WS, Zhou MJ, Huang JB, Huang XL, Gao XL, Luo YN, Li C, Liu K, Xue ZL, Liu Y. Poly-γ-Glutamic Acid Production by Engineering a DegU Quorum-Sensing Circuit in Bacillus subtilis. ACS Synth Biol 2022; 11:4156-4170. [PMID: 36416371 DOI: 10.1021/acssynbio.2c00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
As a natural biological macromolecule, γ-polyglutamic acid (γ-PGA) plays a significant role in medicine, food, and cosmetic industries owing to its unique properties of biocompatibility, biodegradability, water solubility, and viscosity. Although many strategies have been adopted to increase the yield of γ-PGA in Bacillus subtilis, the effectiveness of these common approaches is not high because the strong viscosity affects cell growth. However, dynamic regulation based on quorum sensing (QS) has been extensively applied as a fundamental tool for fine-tuning gene expression in reaction to changes in cell density without adding expensive inducers. A modular PhrQ-RapQ-DegU QS system is developed based on promoter PD4, which is upregulated by phosphorylated DegU (DegU-P). In this study, first, we analyzed the DegU-based gene expression regulation system in B. subtilis 168. We constructed a promoter library of different abilities, selected suitable promoters from the library, and performed mutation screening on the selected promoters and degU region. Furthermore, we constructed a PhrQ-RapQ-DegU QS system to dynamically control the synthesis of γ-PGA in BS168. Cell growth and efficient synthesis of the target product can be dynamically balanced by the QS system. Our dynamic adjustment approach increased the yield of γ-PGA to 6.53-fold of that by static regulation in a 3 L bioreactor, which verified the effectiveness of this strategy. In summary, the PhrQ-RapQ-DegU QS system has been successfully integrated with biocatalytic functions to achieve dynamic metabolic pathway control in BS168, which can be stretched to a large number of microorganisms to fine-tune gene expression and enhance the production of metabolites.
Collapse
Affiliation(s)
- Liu-Xiu Hu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Zhang Hengchun Pharmaceutical Co., Ltd., Wuhu 241000, China
| | - Ming Zhao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| | - Wen-Song Hu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Meng-Jie Zhou
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Jun-Bao Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xi-Lin Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xu-Li Gao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Ya-Ni Luo
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuang Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| | - Kun Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| | - Zheng-Lian Xue
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| | - Yan Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China.,Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
| |
Collapse
|
5
|
Zhang Z, He P, Cai D, Chen S. Genetic and metabolic engineering for poly-γ-glutamic acid production: current progress, challenges, and prospects. World J Microbiol Biotechnol 2022; 38:208. [DOI: 10.1007/s11274-022-03390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
|
6
|
Li D, Hou L, Gao Y, Tian Z, Fan B, Wang F, Li S. Recent Advances in Microbial Synthesis of Poly-γ-Glutamic Acid: A Review. Foods 2022; 11:foods11050739. [PMID: 35267372 PMCID: PMC8909396 DOI: 10.3390/foods11050739] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural, safe, non-immunogenic, biodegradable, and environmentally friendly glutamic biopolymer. γ-PGA has been regarded as a promising bio-based materials in the food field, medical field, even in environmental engineering field, and other industrial fields. Microbial synthesis is an economical and effective way to synthesize γ-PGA. Bacillus species are the most widely studied producing strains. γ-PGA biosynthesis involves metabolic pathway of racemization, polymerization, transfer, and catabolism. Although microbial synthesis of γ-PGA has already been used extensively, productivity and yield remain the major constraints for its industrial application. Metabolic regulation is an attempt to solve the above bottleneck problems and meet the demands of commercialization. Therefore, it is important to understand critical factors that influence γ-PGA microbial synthesis in depth. This review focuses on production strains, biosynthetic pathway, and metabolic regulation. Moreover, it systematically summarizes the functional properties, purification procedure, and industrial application of γ-PGA.
Collapse
Affiliation(s)
- Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
| | - Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.W.); (S.L.); Tel.: +86-010-62815977 (F.W.); +86-010-62810295 (S.L.)
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (D.L.); (L.H.); (Y.G.); (Z.T.); (B.F.)
- Correspondence: (F.W.); (S.L.); Tel.: +86-010-62815977 (F.W.); +86-010-62810295 (S.L.)
| |
Collapse
|
7
|
Wang L, Chen S, Yu B. Poly-γ-glutamic acid: Recent achievements, diverse applications and future perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Sha Y, Huang Y, Zhu Y, Sun T, Luo Z, Qiu Y, Zhan Y, Lei P, Li S, Xu H. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid Based on Stereochemistry Regulation in Bacillus amyloliquefaciens. ACS Synth Biol 2020; 9:1395-1405. [PMID: 32353226 DOI: 10.1021/acssynbio.0c00080] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-molecular-weight poly-γ-glutamic acid (LMW-γ-PGA) has attracted much attention because of its many potential applications in food, agriculture, medicine, and cosmetics. Enzymatic degradation is an efficient way for the synthesis of LMW-γ-PGA. However, the stereochemistry of γ-PGA limits the degradation of γ-PGA. This study identifies the role of γ-PGA synthase (pgsA) and glutamate racemase (racE) in the regulation of γ-PGA stereochemistry and demonstrates their combinational use for LMW-γ-PGA synthesis. First, the expression of pgsA and racE was enhanced, leading to improvements both in the molecular weight (Mw) and the d-glutamate proportion of γ-PGA. Then, an optimal combination of pgsA, racE, and γ-PGA hydrolase pgdS was constructed by exchanging the gene origins for the synthesis of LMW-γ-PGA. Finally, the Mw of γ-PGA was decreased to 6-8 kDa, which was much lower compared with the case without stereochemistry switching (20-30 kDa). This study provides a novel strategy to control the Mw of γ-PGA based on stereochemistry regulation and lays a solid foundation for synthesis of LMW-γ-PGA.
Collapse
Affiliation(s)
- Yuanyuan Sha
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, P. R. China
| | - Yueyuan Huang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, P. R. China
| | - Yifan Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, P. R. China
| | - Tao Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, P. R. China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, P. R. China
| | - Yibin Qiu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yijing Zhan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, P. R. China
- Nanjing Shineking Biotech Co., Ltd, Nanjing 210061, P. R. China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, P. R. China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, P. R. China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, P. R. China
| |
Collapse
|
9
|
Wang D, Kim H, Lee S, Kim DH, Joe MH. High-level production of poly-γ-glutamic acid from untreated molasses by Bacillus siamensis IR10. Microb Cell Fact 2020; 19:101. [PMID: 32398084 PMCID: PMC7216703 DOI: 10.1186/s12934-020-01361-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background Poly-γ-glutamic acid (γ-PGA) is a promising biopolymer and has been applied in many fields. Bacillus siamensis SB1001 was a newly isolated poly-γ-glutamic acid producer with sucrose as its optimal carbon source. To improve the utilization of carbon source, and then molasses can be effectively used for γ-PGA production, 60cobalt gamma rays was used to mutate the genes of B. siamensis SB1001. Results Bacillus siamensis IR10 was screened for the production of γ-PGA from untreated molasses. In batch fermentation, 17.86 ± 0.97 g/L γ-PGA was obtained after 15 h, which is 52.51% higher than that of its parent strain. Fed-batch fermentation was performed to further improve the yield of γ-PGA with untreated molasses, yielding 41.40 ± 2.01 g/L of γ-PGA with a productivity of 1.73 ± 0.08 g/L/h. An average γ-PGA productivity of 1.85 g/L/h was achieved in the repeated fed-batch fermentation. This is the first report of such a high γ-PGA productivity. The analysis of the enzyme activities showed that they were affected by the carbon sources, enhanced ICDH and GDH, and decreased ODHC, which are important for γ-PGA production. Conclusion These results suggest that untreated molasses can be used for economical and industrial-scale production of γ-PGA by B. siamensis IR10.![]()
Collapse
Affiliation(s)
- Dexin Wang
- Radiation Utilization and Facilities Management Division, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea.,Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics,Center for Fungal Pathogenesis, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyangmi Kim
- Bacteria Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, 37242, Republic of Korea
| | - Sungbeom Lee
- Radiation Research Division, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea.,Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dae-Hyuk Kim
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics,Center for Fungal Pathogenesis, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Min-Ho Joe
- Radiation Utilization and Facilities Management Division, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
10
|
Wang D, Hwang JS, Kim DH, Lee S, Kim DH, Joe MH. A newly isolated Bacillus siamensis SB1001 for mass production of poly-γ-glutamic acid. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Xu G, Zha J, Cheng H, Ibrahim MHA, Yang F, Dalton H, Cao R, Zhu Y, Fang J, Chi K, Zheng P, Zhang X, Shi J, Xu Z, Gross RA, Koffas MAG. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid. Metab Eng 2019; 56:39-49. [PMID: 31449877 DOI: 10.1016/j.ymben.2019.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022]
Abstract
γ-Polyglutamic acid (γ-PGA) is a biodegradable polymer naturally produced by Bacillus spp. that has wide applications. Fermentation of γ-PGA using Bacillus species often requires the supplementation of L-glutamic acid, which greatly increases the overall cost. Here, we report a metabolically engineered Corynebacterium glutamicum capable of producing γ-PGA from glucose. The genes encoding γ-PGA synthase complex from B. subtilis (pgsB, C, and A) or B. licheniformis (capB, C, and A) were expressed under inducible promoter Ptac in a L-glutamic acid producer C. glutamicum ATCC 13032, which led to low levels of γ-PGA production. Subsequently, C. glutamicum F343 with a strong L-glutamic acid production capability was tested. C. glutamicum F343 carrying capBCA produced γ-PGA up to 11.4 g/L, showing a higher titer compared with C. glutamicum F343 expressing pgsBCA. By introducing B. subtilis glutamate racemase gene racE under Ptac promoter mutants with different expression strength, the percentage of L-glutamic acid units in γ-PGA could be adjusted from 97.1% to 36.9%, and stayed constant during the fermentation process, while the γ-PGA titer reached 21.3 g/L under optimal initial glucose concentrations. The molecular weight (Mw) of γ-PGA in the engineered strains ranged from 2000 to 4000 kDa. This work provides a foundation for the development of sustainable and cost-effective de novo production of γ-PGA from glucose with customized ratios of L-glutamic acid in C. glutamicum.
Collapse
Affiliation(s)
- Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Jian Zha
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Hui Cheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Mohammad H A Ibrahim
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Chemistry of Natural and Microbial Products Department, National Research Centre, Al-Bohoos St., Cairo, 12622, Egypt
| | - Fan Yang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Hunter Dalton
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Rong Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yaxin Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Jiahua Fang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Kaijun Chi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Pu Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaomei Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; Laboratory of Pharmaceutical Engineering, School of Pharmaceutics, Jiangnan University, Wuxi, 214122, China
| | - Jinsong Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; Laboratory of Pharmaceutical Engineering, School of Pharmaceutics, Jiangnan University, Wuxi, 214122, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China; Laboratory of Pharmaceutical Engineering, School of Pharmaceutics, Jiangnan University, Wuxi, 214122, China.
| | - Richard A Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Chemistry of Natural and Microbial Products Department, National Research Centre, Al-Bohoos St., Cairo, 12622, Egypt; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Mattheos A G Koffas
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Chemistry of Natural and Microbial Products Department, National Research Centre, Al-Bohoos St., Cairo, 12622, Egypt; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
12
|
Deciphering metabolic responses of biosurfactant lichenysin on biosynthesis of poly-γ-glutamic acid. Appl Microbiol Biotechnol 2019; 103:4003-4015. [PMID: 30923871 DOI: 10.1007/s00253-019-09750-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/21/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is an extracellularly produced biodegradable polymer, which has been widely used as agricultural fertilizer, mineral fortifier, cosmetic moisturizer, and drug carrier. This study firstly discovered that lichenysin, as a biosurfactant, showed the capability to enhance γ-PGA production in Bacillus licheniformis. The exogenous addition of lichenysin improved the γ-PGA yield up to 17.9% and 21.9%, respectively, in the native strain B. licheniformis WX-02 and the lichenysin-deficient strain B. licheniformis WX02-ΔlchAC. The capability of intracellular biosynthesis of lichenysin was positively correlated with γ-PGA production. The yield of γ-PGA increased by 25.1% in the lichenysin-enhanced strain B. licheniformis WX02-Psrflch and decreased by 12.2% in the lichenysin-deficient strain WX02-ΔlchAC. Analysis of key enzyme activities and gene expression in the TCA cycle, precursor glutamate synthesis, and γ-PGA synthesis pathway revealed that the existence of lichenysin led to increased γ-PGA via shifting the carbon flux in the TCA cycle towards glutamate and γ-PGA biosynthetic pathways, minimizing by-product formation, and facilitating the uptake of extracellular substrates and the polymerization of glutamate to γ-PGA. Insight into the mechanisms of enhanced production of γ-PGA by lichenysin would define the essential parameters involved in γ-PGA biosynthesis and provide the basis for large-scale production of γ-PGA.
Collapse
|
13
|
Li B, Cai D, Hu S, Zhu A, He Z, Chen S. Enhanced synthesis of poly gamma glutamic acid by increasing the intracellular reactive oxygen species in the Bacillus licheniformis Δ1-pyrroline-5-carboxylate dehydrogenase gene ycgN-deficient strain. Appl Microbiol Biotechnol 2018; 102:10127-10137. [PMID: 30229325 DOI: 10.1007/s00253-018-9372-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
Poly gamma glutamic acid (γ-PGA) is an anionic polyamide with numerous applications. Previous studies revealed that L-proline metabolism is implicated in a wide range of cellular processes by increasing intercellular reactive oxygen species (ROS) generation. However, the relationship between L-proline metabolism and γ-PGA synthesis has not yet been analyzed. In this study, our results confirmed that deletion of Δ1-pyrroline-5-carboxylate dehydrogenase gene ycgN in Bacillus licheniformis WX-02 increased γ-PGA yield to 13.91 g L-1, 85.22% higher than that of the wild type (7.51 g L-1). However, deletion of proline dehydrogenase gene ycgM had no effect on γ-PGA synthesis. Furthermore, a 2.92-fold higher P5C content (19.24 μmol gDCW-1) was detected in the ycgN deficient strain WXΔycgN, while the P5C levels of WXΔycgM and the double mutant strain WXΔycgMN showed no difference, compared to WX-02. Moreover, the ROS level of WXΔycgN was increased by 1.18-fold, and addition of n-acetylcysteine (antioxidant) decreased its ROS level, which further reduced γ-PGA synthesis capability of WXΔycgN. Collectively, our results demonstrated that proline catabolism played an important role in maintaining ROS homeostasis, and deletion of ycgN-enhanced P5C accumulation, which induced a transient ROS signal to promote γ-PGA synthesis in B. licheniformis.
Collapse
Affiliation(s)
- Bichan Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, People's Republic of China
| | - Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Shiying Hu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Anting Zhu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Zhili He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Shouwen Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Mackie J, Kumar H, Bearne SL. Changes in quaternary structure cause a kinetic asymmetry of glutamate racemase-catalyzed homocysteic acid racemization. FEBS Lett 2018; 592:3399-3413. [PMID: 30194685 DOI: 10.1002/1873-3468.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 11/07/2022]
Abstract
Glutamate racemases (GR) catalyze the racemization of d- and l-glutamate and are targets for the development of antibiotics. We demonstrate that GR from the periodontal pathogen Fusobacterium nucleatum (FnGR) catalyzes the racemization of d-homocysteic acid (d-HCA), while l-HCA is a poor substrate. This enantioselectivity arises because l-HCA perturbs FnGR's monomer-dimer equilibrium toward inactive monomer. The inhibitory effect of l-HCA may be overcome by increasing the total FnGR concentration or by adding glutamate, but not by blocking access to the active site through site-directed mutagenesis, suggesting that l-HCA binds at an allosteric site. This phenomenon is also exhibited by GR from Bacillus subtilis, suggesting that enantiospecific, "substrate"-induced dissociation of oligomers to form inactive monomers may furnish a new inhibition strategy.
Collapse
Affiliation(s)
- Joanna Mackie
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| | - Himank Kumar
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada
| | - Stephen L Bearne
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Canada.,Department of Chemistry, Dalhousie University, Halifax, Canada
| |
Collapse
|
15
|
Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng 2018; 115:2541-2553. [PMID: 29940069 DOI: 10.1002/bit.26774] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 11/07/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important multifunctional biopolymer with various applications, for which adenosine triphosphate (ATP) supply plays a vital role in biosynthesis. In this study, the enhancement of γ-PGA production was attempted through various approaches of improving ATP supply in the engineered strains of Bacillus licheniformis. The first approach is to engineer respiration chain branches of B. licheniformis, elimination of cytochrome bd oxidase branch reduced the maintenance coefficient, leading to a 19.27% increase of γ-PGA yield. The second approach is to introduce Vitreoscilla hemoglobin (VHB) into recombinant B. licheniformis, led to a 13.32% increase of γ-PGA yield. In the third approach, the genes purB and adK in ATP-biosynthetic pathway were respectively overexpressed, with the AdK overexpressed strain increased γ-PGA yield by 14.69%. Our study also confirmed that the respiratory nitrate reductase, NarGHIJ, is responsible for the conversion of nitrate to nitrite, and assimilatory nitrate reductase NasBC is for conversion of nitrite to ammonia. Both NarGHIJ and NasBC were positively regulated by the two-component system ResD-ResE, and overexpression of NarG, NasC, and ResD also improved the ATP supply and the consequent γ-PGA yield. Based on the above individual methods, a method of combining the deletion of cydBC gene and overexpression of genes vgB, adK, and resD were used to enhance ATP content of the cells to 3.53 μmol/g of DCW, the mutant WX-BCVAR with this enhancement produced 43.81 g/L of γ-PGA, a 38.64% improvement compared to wild-type strain WX-02. Collectively, our results demonstrate that improving ATP content in B. licheniformis is an efficient strategy to improve γ-PGA production.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Penghui He
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiyi Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Fei Mo
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, School of food and biological engineering, Hubei University of Technology, Wuhan, China
| | - Qin Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Christopher T Nomura
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
- Department of Chemistry, The State University of New York, College of Environmental Science and Forestry (SUNY ESF), Iowa State University, Syracuse, New York
| | - Zhiyou Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
16
|
Cai D, Hu S, Chen Y, Liu L, Yang S, Ma X, Chen S. Enhanced Production of Poly-γ-glutamic acid by Overexpression of the Global Anaerobic Regulator Fnr in Bacillus licheniformis WX-02. Appl Biochem Biotechnol 2018; 185:958-970. [PMID: 29388009 DOI: 10.1007/s12010-018-2693-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Poly-γ-glutamic acid is a multi-functional biopolymer with various applications. ATP supply plays an important role in poly-γ-glutamic acid (γ-PGA) synthesis. Global anaerobic regulator Fnr plays a key role in anaerobic adaptation and nitrate respiration, which might affect ATP generation during γ-PGA synthesis. In this study, we have improved γ-PGA production by overexpression of Fnr in Bacillus licheniformis WX-02. First, the gene fnr was knocked out in WX-02, and the γ-PGA yields have no significant differences between WX-02 and the fnr-deficient strain WXΔfnr in the medium without nitrate (BFC medium). However, the γ-PGA yield of 8.95 g/L, which was produced by WXΔfnr in the medium with nitrate addition (BFCN medium), decreased by 74% compared to WX-02 (34.53 g/L). Then, the fnr complementation strain WXΔfnr/pHY-fnr restored the γ-PGA synthesis capability, and γ-PGA yield was increased by 13% in the Fnr overexpression strain WX/pHY-fnr (39.96 g/L) in BFCN medium, compared to WX/pHY300 (35.41 g/L). Furthermore, the transcriptional levels of narK, narG, and hmp were increased by 5.41-, 4.93-, and 3.93-fold in WX/pHY-fnr, respectively, which led to the increases of nitrate consumption rate and ATP supply for γ-PGA synthesis. Collectively, Fnr affects γ-PGA synthesis mainly through manipulating the expression level of nitrate metabolism, and this study provides a novel strategy to improve γ-PGA production by overexpression of Fnr.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shiying Hu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Li Liu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shihui Yang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
17
|
Hsueh YH, Huang KY, Kunene SC, Lee TY. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation. Int J Mol Sci 2017; 18:E2644. [PMID: 29215550 PMCID: PMC5751247 DOI: 10.3390/ijms18122644] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/03/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production.
Collapse
Affiliation(s)
- Yi-Huang Hsueh
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| | - Kai-Yao Huang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu city 300, Taiwan.
| | - Sikhumbuzo Charles Kunene
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| | - Tzong-Yi Lee
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan city 32003, Taiwan.
| |
Collapse
|
18
|
A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02. Sci Rep 2017; 7:43404. [PMID: 28230096 PMCID: PMC5322528 DOI: 10.1038/srep43404] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/24/2017] [Indexed: 01/15/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important biochemical product with a variety of applications. This work reports a novel approach to improve γ-PGA through over expression of key enzymes in cofactor NADPH generating process for NADPH pool. Six genes encoding the key enzymes in NADPH generation were over-expressed in the γ-PGA producing strain B. licheniformis WX-02. Among various recombinants, the strain over-expressing zwf gene (coding for glucose-6-phosphate dehydrogenase), WX-zwf, produced the highest γ-PGA concentration (9.13 g/L), 35% improvement compared to the control strain WX-pHY300. However, the growth rates and glucose uptake rates of the mutant WX-zwf were decreased. The transcriptional levels of the genes pgsB and pgsC responsible for γ-PGA biosynthesis were increased by 8.21- and 5.26-fold, respectively. The Zwf activity of the zwf over expression strain increased by 9.28-fold, which led to the improvement of the NADPH generation, and decrease of accumulation of by-products acetoin and 2,3-butanediol. Collectively, these results demonstrated that NADPH generation via over-expression of Zwf is as an effective strategy to improve the γ-PGA production in B. licheniformis.
Collapse
|
19
|
Zeng W, Liang Z, Li Z, Bian Y, Li Z, Tang Z, Chen G. Regulation of poly-γ-glutamic acid production in Bacillus subtilis GXA-28 by potassium. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Peng Y, Zhang T, Mu W, Miao M, Jiang B. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:66-72. [PMID: 26112100 DOI: 10.1002/jsfa.7318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. RESULTS Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. CONCLUSION The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies.
Collapse
Affiliation(s)
- Yingyun Peng
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry & Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 22400, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry & Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry & Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry & Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Ministry of Education, Key Laboratory of Carbohydrate Chemistry & Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
21
|
Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Zou W, Li S. Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:134. [PMID: 27366207 PMCID: PMC4928254 DOI: 10.1186/s13068-016-0537-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/31/2016] [Indexed: 05/22/2023]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a naturally occurring biopolymer made from repeating units of l-glutamic acid, d-glutamic acid, or both. Since some bacteria are capable of vigorous γ-PGA biosynthesis from renewable biomass, γ-PGA is considered a promising bio-based chemical and is already widely used in the food, medical, and wastewater industries due to its biodegradable, non-toxic, and non-immunogenic properties. In this review, we consider the properties, biosynthetic pathway, production strategies, and applications of γ-PGA. Microbial biosynthesis of γ-PGA and the molecular mechanisms regulating production are covered in particular detail. Genetic engineering and optimization of the growth medium, process control, and downstream processing have proved to be effective strategies for lowering the cost of production, as well as manipulating the molecular mass and conformational/enantiomeric properties that facilitate screening of competitive γ-PGA producers. Finally, future prospects of microbial γ-PGA production are discussed in light of recent progress, challenges, and trends in this field.
Collapse
Affiliation(s)
- Zhiting Luo
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Yuan Guo
- />National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530004 China
| | - Jidong Liu
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Hua Qiu
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Mouming Zhao
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Wei Zou
- />College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000 Sichuan China
| | - Shubo Li
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| |
Collapse
|
22
|
Cao M, Geng W, Zhang W, Sun J, Wang S, Feng J, Zheng P, Jiang A, Song C. Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA. Microb Biotechnol 2013; 6:675-84. [PMID: 23919316 PMCID: PMC3815934 DOI: 10.1111/1751-7915.12075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 11/28/2022] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a promising environmental-friendly material with outstanding water solubility, biocompatibility and degradability. However, it is tough to determine the relationship between functional synthetic enzyme and the strains' yield or substrate dependency. We cloned γ-PGA synthetase genes pgsBCA and glutamate racemase gene racE from both L-glutamate-dependent γ-PGA-producing Bacillus licheniformis NK-03 and L-glutamate-independent B. amyloliquefaciens LL3 strains. The deduced RacE and PgsA from the two strains shared the identity of 84.5% and 78.53%, while PgsB and PgsC possessed greater similarity with 93.13% and 93.96%. The induced co-expression of pgsBCA and racE showed that the engineered Escherichia coli strains had the capacity of synthesizing γ-PGA, and LL3 derived PgsBCA had higher catalytic activity and enhanced productivity than NK-03 in Luria–Bertani medium containing glucose or L-glutamate. However, the differential effect was weakened when providing sufficient immediateness L-glutamate substrate, that is, the supply of substrate could be served as the ascendance upon γ-PGA production. Furthermore, RacE integration could enhance γ-PGA yield through improving the preferred d-glutamate content. This is the first report about co-expression of pgsBCA and racE from the two Bacillus strains, which will be of great value for the determination of the biosynthetic mechanism of γ-PGA.
Collapse
Affiliation(s)
- Mingfeng Cao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | | | | | | | | | | | | | | | | |
Collapse
|