1
|
Ma B, Nian L, Ain NU, Liu X, Yang Y, Zhu X, Haider FU, Lv Y, Bai P, Zhang X, Li Q, Mao Z, Xue Z. Genome-Wide Identification and Expression Profiling of the SRS Gene Family in Melilotus albus Reveals Functions in Various Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:3101. [PMID: 36432830 PMCID: PMC9693462 DOI: 10.3390/plants11223101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The plant-specific SHI-related sequence (SRS) family of transcription factors plays a vital role in growth regulation, plant development, phytohormone biosynthesis, and stress response. However, the genome-wide identification and role in the abiotic stress-related functions of the SRS gene family were not reported in white sweet clover (Melilotus albus). In this study, nine M. albus SRS genes (named MaSRS01-MaSRS09) were identified via a genome-wide search method. All nine genes were located on six out of eight chromosomes in the genome of M. albus and duplication analysis indicated eight segmentally duplicated genes in the MaSRS family. These MaSRS genes were classified into six groups based on their phylogenetic relationships. The gene structure and motif composition results indicated that MaSRS members in the same group contained analogous intron/exon and motif organizations. Further, promoter region analysis of MaSRS genes uncovered various growth, development, and stress-responsive cis-acting elements. Protein interaction networks showed that each gene has both functions of interacting with other genes and members within the family. Moreover, real-time quantitative PCR was also performed to verify the expression patterns of nine MaSRS genes in the leaves of M. albus. The results showed that nine MaSRSs were up- and down-regulated at different time points after various stress treatments, such as salinity, low-temperature, salicylic acid (SA), and methyl jasmonate (MeJA). This is the first systematic study of the M. albus SRS gene family, and it can serve as a strong foundation for further elucidation of the stress response and physiological improvement of the growth functions in M. albus.
Collapse
Affiliation(s)
- Biao Ma
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Noor ul Ain
- Centre of Genomics and Biotechnology, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Xuelu Liu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Yingbo Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ying Lv
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengpeng Bai
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoning Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Quanxi Li
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Zixuan Mao
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Zongyang Xue
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Yang Y, Qi L, Nian L, Zhu X, Yi X, Jiyu Z, Qiu J. Genome-Wide Identification and Expression Analysis of the SRS Gene Family in Medicago sativa. DNA Cell Biol 2021; 40:1539-1553. [PMID: 34931872 DOI: 10.1089/dna.2021.0462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
SHI-related sequence (SRS) transcription factors, specific to plants, act as crucial regulators of plant organ growth and development. Here, we examined the Medicago sativa (alfalfa) SRS gene family (MsSRSs) to analyze the structure and function of MsSRSs using bioinformatics methods, and verify their abiotic stress responses through growth experiments. Twenty-seven MsSRS genes were identified from the genome-wide data of nontransgenic alfalfa. MsSRSs were distributed on 16 chromosomes and classified into seven different subfamilies by phylogenetic analysis. Forty-five cis-regulatory elements related to stress and phytohormone responsiveness, and tissue-specific expression occurred in the promoter sequences of MsSRSs. Ks values and Ka/Ks ratios of duplicate gene pairs showed that purifying selection affected most duplicate genes during their evolutionary history, while rapid recent positive selection strongly influenced MsSRS25 and MsSRS01. Real-time fluorescence quantitative PCR results showed that MsSRS genes could be induced by cold and salt stress. Within 12 h of salt stress exposure, the expression levels of seven and nine MsSRSs showed significant upregulation and downregulation, respectively. Within 12 h of cold stress exposure, the expression levels of the 3 and 13 selected MsSRSs showed significant upregulation and downregulation, respectively. Thus, this study provides novel comprehensive information on the MsSRS gene family, helpful for the study of SRS-mediated tolerance in alfalfa and the functional characteristics of SRS genes in other plants.
Collapse
Affiliation(s)
- Yingbo Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China.,Guangxi Institute of Animal Sciences, Nanning, China
| | - Lin Qi
- College of Agricultural, Henan Science and Technology University, Luoyang, China
| | - Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xianfeng Yi
- Guangxi Institute of Animal Sciences, Nanning, China
| | - Zhang Jiyu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jinhua Qiu
- Guangxi Institute of Animal Sciences, Nanning, China
| |
Collapse
|
3
|
An H, Zhang J, Xu F, Jiang S, Zhang X. Transcriptomic profiling and discovery of key genes involved in adventitious root formation from green cuttings of highbush blueberry (Vaccinium corymbosum L.). BMC PLANT BIOLOGY 2020; 20:182. [PMID: 32334538 PMCID: PMC7183619 DOI: 10.1186/s12870-020-02398-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/15/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Propagation of cuttings is frequently used in various plant species, including blueberry, which shows special root characteristics that may hinder adventitious root (AR) formation. AR formation is influenced by various factors, and auxin is considered to play a central role; however, little is known of the related regulatory mechanisms. In this study, a comparative transcriptome analysis of green cuttings treated with or without indole-butyric acid (IBA) was performed via RNA_seq to identify candidate genes associated with IBA-induced AR formation. RESULTS Rooting phenotypes, especially the rooting rate, were significantly promoted by exogenous auxin in the IBA application. Blueberry AR formation was an auxin-induced process, during which adventitious root primordium initiation (rpi) began at 14 days after cutting (DAC), root primordium (rp) was developed at 21 DAC, mature AR was observed at 28 DAC and finally outgrowth from the stem occurred at 35 DAC. Higher IAA levels and lower ABA and zeatin contents might facilitate AR formation and development. A time series transcriptome analysis identified 14,970 differentially expressed genes (DEGs) during AR formation, of which there were 7467 upregulated and 7503 downregulated genes. Of these, approximately 35 candidate DEGs involved in the auxin-induced pathway and AR formation were further identified, including 10 auxin respective genes (ARFs and SAURs), 13 transcription factors (LOB domain-containing protein (LBDs)), 6 auxin transporters (AUX22, LAX3/5 and PIN-like 6 (PIL6s)) and 6 rooting-associated genes (root meristem growth factor 9 (RGF9), lateral root primordium 1 (LRP1s), and dormancy-associated protein homologue 3 (DRMH3)). All these identified DEGs were highly upregulated in certain stages during AR formation, indicating their potential roles in blueberry AR formation. CONCLUSIONS The transcriptome profiling results indicated candidate genes or major regulatory factors that influence adventitious root formation in blueberry and provided a comprehensive understanding of the rooting mechanism underlying the auxin-induced AR formation from blueberry green cuttings.
Collapse
Affiliation(s)
- Haishan An
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
| | - Jiaying Zhang
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
| | - Fangjie Xu
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China
| | - Shuang Jiang
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
| | - Xueying Zhang
- Forestry and Pomology Research Insitute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai, 201403, China.
| |
Collapse
|
4
|
He B, Shi P, Lv Y, Gao Z, Chen G. Gene coexpression network analysis reveals the role of SRS genes in senescence leaf of maize (Zea mays L.). J Genet 2019. [DOI: 10.1007/s12041-019-1162-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Xu W, Zheng B, Bai Q, Wu L, Liu Y, Wu G. Functional study of the brassinosteroid biosynthetic genes from Selagnella moellendorfii in Arabidopsis. PLoS One 2019; 14:e0220038. [PMID: 31344072 PMCID: PMC6658078 DOI: 10.1371/journal.pone.0220038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
Brassinosteroids (BRs) are essential hormones for plant growth and development. Enzymes DET2 and CYP90 family are responsible for BR biosynthesis in seed plants. Yet, their roles in non-seed plants are unknown. Here, we report the first functional study of DET2 and all 4 CYP90 genes isolated from Selaginella moellendorfii. Sm89026 (SmCPD) belonged to a clade with CYP90A1 (CPD) and CYP90B1 (DWF4) while Sm182839, Sm233379 and Sm157387 formed a distinct clade with CYP90C1 (ROT3) and CYP90D1. SmDET2, SmCPD and Sm157387 were highly expressed in both leaves and strobili while Sm233379 was only highly expressed in the leaves but not strobili, implying their differential functions in a tissue-specific manner in S. moellendorfii. We showed that only SmDET2 and SmCPD completely rescued Arabidopsis det2 and cpd mutant phenotypes, respectively, suggestive of their conserved BR biosynthetic functions. However, neither SmCPD nor other CYP90 genes rescued any other cyp90 mutants. Yet overexpression of Sm233379 altered plant fertility and BR response, which means that Sm233379 is not an ortholog of any CYP90 genes in Arabidopsis but appears to have a BR function in the S. moellendorfii leaves. This function is likely turned off during the development of the strobili. Our results suggest a dramatic functional divergence of CYP90 family in the non-seed plants. While some of them are functionally similar to that of seed plants, the others may be functionally distinct from that of seed plants, shedding light for future exploration.
Collapse
Affiliation(s)
- Weijun Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Bowen Zheng
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qunwei Bai
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Lei Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yuping Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- * E-mail:
| |
Collapse
|
6
|
Wai CM, Zhang J, Jones TC, Nagai C, Ming R. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population. BMC Genomics 2017; 18:773. [PMID: 29020919 PMCID: PMC5637070 DOI: 10.1186/s12864-017-4158-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. RESULTS To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. CONCLUSIONS We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.
Collapse
Affiliation(s)
- Ching Man Wai
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | | | | | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|