1
|
Wang J, Singer SD, Chen G. Biotechnological advances in the production of unusual fatty acids in transgenic plants and recombinant microorganisms. Biotechnol Adv 2024; 76:108435. [PMID: 39214484 DOI: 10.1016/j.biotechadv.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Certain plants and microorganisms can produce high amounts of unusual fatty acids (UFAs) such as hydroxy, conjugated, cyclic, and very long-chain polyunsaturated fatty acids, which have distinct physicochemical properties and significant applications in the food, feed, and oleochemical industries. Since many natural sources of UFAs are not ideal for large-scale agricultural production or fermentation, it is attractive to produce them through synthetic biology. Although several UFAs have been commercially or pre-commercially produced in transgenic plants and microorganisms, their contents in transgenic hosts are generally much lower than in natural sources. Moreover, reproducing this success for a wider spectrum of UFAs has remained challenging. This review discusses recent advancements in our understanding of the biosynthesis, accumulation, and heterologous production of UFAs, and addresses the challenges and potential strategies for achieving high UFA content in engineered plants and microorganisms.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
2
|
Wu C, Chen H, Mei Y, Yang B, Zhao J, Stanton C, Chen W. Advances in research on microbial conjugated linoleic acid bioconversion. Prog Lipid Res 2024; 93:101257. [PMID: 37898352 DOI: 10.1016/j.plipres.2023.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Conjugated linoleic acid (CLA) is a functional food ingredient with prebiotic properties that provides health benefits for various human pathologies and disorders. However, limited natural CLA sources in animals and plants have led microorganisms like Lactobacillus and Bifidobacterium to emerge as new CLA sources. Microbial conversion of linoleic acid to CLA is mediated by linoleic acid isomerase and multicomponent enzymatic systems, with CLA production efficiency dependent on microbial species and strains. Additionally, complex factors like LA concentration, growth status, culture substrates, precursor type, prebiotic additives, and co-cultured microbe identity strongly influence CLA production and isomer composition. This review summarizes advances in the past decade regarding microbial CLA production, including bacteria and fungi. We highlight CLA production and potential regulatory mechanisms and discuss using microorganisms to enhance CLA content and nutritional value of fermented products. We also identify primary microbial CLA production bottlenecks and provide strategies to address these challenges and enhance production through functional gene and enzyme mining and downstream processing. This review aims to provide a reference for microbial CLA production and broaden the understanding of the potential probiotic role of microbial CLA producers.
Collapse
Affiliation(s)
- Chen Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yongchao Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Catherine Stanton
- International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
3
|
Zhang B, Zhu T, Huang X. Enhanced Soluble Expression of Linoleic Acid Isomerase by Coordinated Regulation of Promoter and Fusion Tag in Escherichia coli. Foods 2022; 11:1515. [PMID: 35627089 PMCID: PMC9141242 DOI: 10.3390/foods11101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
PAI is a linoleic acid isomerase from Propionibacterium acnes and is the key enzyme in the synthesis of trans10, cis12-conjugated linoleic acid. However, the majority of the expressed PAI in Escherichia coli occurs in its nonfunctional form in inclusion bodies, limiting the biosynthesis of conjugated linoleic acid. In an attempt to improve the solubility of recombinant PAI in Escherichia coli, three promoters representing different transcriptional strengths (T7, CspA, and Trc), paired with three fusion tags, (His6, MBP, and Fh8), respectively, were investigated in this study. Among the nine recombinant strains, Escherichia coli BL21 (DE3) (pET24a-Mpai), containing the T7 promoter and MBP fusion tag, led to a considerable increase in PAI solubility to 86.2%. MBP-PAI was purified 41-fold using affinity column chromatography. The optimum catalytical conditions of MBP-PAI were 37 °C and pH 7.5 with the addition of 1 mmol/L Tween-20. Most of the tested metal ions inhibited MBP-PAI activity. The apparent kinetic parameters (Km and Vmax) were measured with linoleic acid concentrations ranging from 71 μM to 1428 μM. The substrate linoleic acid did not exert any inhibitory effect on MBP-PAI. The Km of MBP-PAI was 253.9 μmol/L, and the Vmax was 2253 nmol/min/mg. This study provided a new method for improving the solubility of the recombinant linoleic acid isomerase in Escherichia coli.
Collapse
Affiliation(s)
- Baixi Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (T.Z.); (X.H.)
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tong Zhu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (T.Z.); (X.H.)
| | - Xintian Huang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (T.Z.); (X.H.)
| |
Collapse
|
4
|
Chang L, Lu H, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Lipid metabolism research in oleaginous fungus Mortierella alpina: Current progress and future prospects. Biotechnol Adv 2021; 54:107794. [PMID: 34245810 DOI: 10.1016/j.biotechadv.2021.107794] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The oleaginous fungus Mortierella alpina has distinct advantages in long-chain PUFAs production, and it is the only source for dietary arachidonic acid (ARA) certificated by FDA and European Commission. This review provides an overall introduction to M. alpina, including its major research methods, key factors governing lipid biosynthesis, metabolic engineering and omics studies. Currently, the research interests in M. alpina focus on improving lipid yield and fatty acid desaturation degree by enhancing fatty acid precursors and the reducing power NADPH, and genetic manipulation on PUFAs synthetic pathways is carried to optimise fatty acid composition. Besides, multi-omics studies have been applied to elucidate the global regulatory mechanism of lipogenesis in M. alpina. However, research challenges towards achieving a lipid cell factory lie in strain breeding and cost control due to the coenocytic mycelium, long fermentation period and insufficient conversion rate from carbon to lipid. We also proposed future research goals based on a multilevel regulating strategy: obtaining ideal chassis by directional evolution and high-throughput screening; rewiring central carbon metabolism and inhibiting competitive pathways by multi-gene manipulation system to enhance carbon to lipid conversion rate; optimisation of protein function based on post-translational modification; application of dynamic fermentation strategies suitable for different fermentation phases. By reviewing the comprehensive research progress of this oleaginous fungus, we aim to further comprehend the fungal lipid metabolism and provide reference information and guidelines for the exploration of microbial oils from the perspectives of fundamental research to industrial application.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
5
|
Szczepańska P, Hapeta P, Lazar Z. Advances in production of high-value lipids by oleaginous yeasts. Crit Rev Biotechnol 2021; 42:1-22. [PMID: 34000935 DOI: 10.1080/07388551.2021.1922353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The global market for high-value fatty acids production, mainly omega-3/6, hydroxy fatty-acids, waxes and their derivatives, has seen strong development in the last decade. The reason for this growth was the increasing utilization of these lipids as significant ingredients for cosmetics, food and the oleochemical industries. The large demand for these compounds resulted in a greater scientific interest in research focused on alternative sources of oil production - among which microorganisms attracted the most attention. Microbial oil production offers the possibility to engineer the pathways and store lipids enriched with the desired fatty acids. Moreover, costly chemical steps are avoided and direct commercial use of these fatty acids is available. Among all microorganisms, the oleaginous yeasts have become the most promising hosts for lipid production - their efficient lipogenesis, ability to use various (often highly affordable) carbon sources, feasible large-scale cultivations and wide range of available genetic engineering tools turns them into powerful micro-factories. This review is an in-depth description of the recent developments in the engineering of the lipid biosynthetic pathway with oleaginous yeasts. The different classes of valuable lipid compounds with their derivatives are described and their importance for human health and industry is presented. The emphasis is also placed on the optimization of culture conditions in order to improve the yield and titer of these valuable compounds. Furthermore, the important economic aspects of the current microbial oil production are discussed.
Collapse
Affiliation(s)
- Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Hapeta
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
6
|
Yao Q, Chen H, Wang S, Tang X, Gu Z, Zhang H, Chen W, Chen YQ. An efficient strategy for screening polyunsaturated fatty acid-producing oleaginous filamentous fungi from soil. J Microbiol Methods 2019; 158:80-85. [DOI: 10.1016/j.mimet.2018.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 02/05/2023]
|
7
|
The role of acyl-CoA thioesterase ACOT8I in mediating intracellular lipid metabolism in oleaginous fungus Mortierella alpina. ACTA ACUST UNITED AC 2018; 45:281-291. [DOI: 10.1007/s10295-018-2006-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022]
Abstract
Abstract
Thioesterases (TEs) play an essential role in the metabolism of fatty acids (FAs). To explore the role of TEs in mediating intracellular lipid metabolism in the oleaginous fungus Mortierella alpina, the acyl-CoA thioesterase ACOT8I was overexpressed. The contents of total fatty acids (TFAs) were the same in the recombinant strains as in the wild-type M. alpina, whilst the production of free fatty acids (FFAs) was enhanced from about 0.9% (wild-type) to 2.8% (recombinant), a roughly threefold increase. Linoleic acid content in FFA form constituted about 9% of the TFAs in the FFA fraction in the recombinant strains but only about 1.3% in the wild-type M. alpina. The gamma-linolenic acid and arachidonic acid contents in FFA form accounted for about 4 and 25%, respectively, of the TFAs in the FFA fraction in the recombinant strains, whilst neither of them in FFA form were detected in the wild-type M. alpina. Overexpression of the TE ACOT8I in the oleaginous fungus M. alpina reinforced the flux from acyl-CoAs to FFAs, improved the production of FFAs and tailored the FA profiles of the lipid species.
Collapse
|
8
|
Yang B, Qi H, Gu Z, Zhang H, Chen W, Chen H, Chen YQ. Characterization of the triple-component linoleic acid isomerase in Lactobacillus plantarum ZS2058 by genetic manipulation. J Appl Microbiol 2017; 123:1263-1273. [PMID: 28833935 DOI: 10.1111/jam.13570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
AIM To assess the mechanism for conjugated linoleic acid (CLA) production in Lactobacillus plantarum ZS2058. METHODS AND RESULTS CLA has attracted great interests for decades due to its health-associated benefits including anticancer, anti-atherogenic, anti-obesity and modulation of the immune system. A number of microbial CLA producers were widely reported including lactic acid bacteria. Lactobacillus plantarum ZS2058, an isolate from Chinese traditional fermented food, could convert LA to CLA with various intermediates. To characterize the genetic determinants for generating CLA, a cre-lox-based system was utilized to delete the genes encoding myosin cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC) in Lact. plantarum ZS2058, respectively. Neither intermediate was detected in the corresponding gene deletion mutant. Meanwhile all those mutants could recover the ability to convert linoleic acid to CLA when the corresponding gene was completed. CONCLUSIONS The results indicated that CLA production was a multiple-step reaction catalysed by triple-component linoleate isomerase system encoded by mcra, dh and dc. SIGNIFICANCE AND IMPACT OF THE STUDY Multicomponent linoleic acid isomerase provided important results for illustration unique mechanism for CLA production in Lact. plantarum ZS2058. Lactobacilli with CLA production ability offer novel opportunities for functional food development.
Collapse
Affiliation(s)
- B Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - H Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Z Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - H Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Y Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Yang B, Gao H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen H, Chen W. Bacterial conjugated linoleic acid production and their applications. Prog Lipid Res 2017; 68:26-36. [PMID: 28889933 DOI: 10.1016/j.plipres.2017.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 09/06/2017] [Indexed: 11/19/2022]
Abstract
Conjugated linoleic acid (CLA) has been shown to exert various potential physiological properties including anti-carcinogenic, anti-obesity, anti-cardiovascular and anti-diabetic activities, and consequently has been considered as a promising food supplement. Bacterial biosynthesis of CLA is an attractive approach for commercial production due to its high isomer-selectivity and convenient purification process. Many bacterial species have been reported to convert free linoleic acid (LA) to CLA, hitherto only the precise CLA-producing mechanisms in Propionibacterium acnes and Lactobacillus plantarum have been illustrated completely, prompting the development of recombinant technology used in CLA production. The purpose of the article is to review the bacterial CLA producers as well as the recent progress on describing the mechanism of microbial CLA-production. Furthermore, the advances and potential in the heterologous expression of CLA genetic determinants will be presented.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - He Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland; College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
10
|
Zhang YZ, Wei ZZ, Liu CH, Chen Q, Xu BJ, Guo ZR, Cao YL, Wang Y, Han YN, Chen C, Feng X, Qiao YY, Zong LJ, Zheng T, Deng M, Jiang QT, Li W, Zheng YL, Wei YM, Qi PF. Linoleic acid isomerase gene FgLAI12 affects sensitivity to salicylic acid, mycelial growth and virulence of Fusarium graminearum. Sci Rep 2017; 7:46129. [PMID: 28387243 PMCID: PMC5384231 DOI: 10.1038/srep46129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/13/2017] [Indexed: 11/09/2022] Open
Abstract
Fusarium graminearum is the major causal agent of fusarium head blight in wheat, a serious disease worldwide. Linoleic acid isomerase (LAI) catalyses the transformation of linoleic acid (LA) to conjugated linoleic acid (CLA), which is beneficial for human health. We characterised a cis-12 LAI gene of F. graminearum (FGSG_02668; FgLAI12), which was downregulated by salicylic acid (SA), a plant defence hormone. Disruption of FgLAI12 in F. graminearum resulted in decreased accumulation of cis-9,trans-11 CLA, enhanced sensitivity to SA, and increased accumulation of LA and SA in wheat spikes during infection. In addition, mycelial growth, accumulation of deoxynivalenol, and pathogenicity in wheat spikes were reduced. Re-introduction of a functional FgLAI12 gene into ΔFgLAI12 recovered the wild-type phenotype. Fluorescent microscopic analysis showed that FgLAI12 protein was usually expressed in the septa zone of conidia and the vacuole of hyphae, but was expressed in the cell membrane of hyphae in response to exogenous LA, which may be an element of LA metabolism during infection by F. graminearum. The cis-12 LAI enzyme encoded by FgLAI12 is critical for fungal response to SA, mycelial growth and virulence in wheat. The gene FgLAI12 is potentially valuable for biotechnological synthesis of cis-9,trans-11 CLA.
Collapse
Affiliation(s)
- Ya-Zhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhen-Zhen Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Cai-Hong Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bin-Jie Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhen-Ru Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yong-Li Cao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yan Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ya-Nan Han
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chen Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiang Feng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuan-Yuan Qiao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lu-Juan Zong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ting Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qian-Tao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Li
- Agronomy College, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yu-Ming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Peng-Fei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
11
|
Metabolic Engineering of Mortierella alpina for Enhanced Arachidonic Acid Production through the NADPH-Supplying Strategy. Appl Environ Microbiol 2016; 82:3280-3288. [PMID: 27016571 DOI: 10.1128/aem.00572-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED NADPH is known to be a key cofactor required for fatty acid synthesis and desaturation. Various enzymatic reactions can generate NADPH. To determine the effect of NADPH sources on lipogenesis, glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (PGD), isocitrate dehydrogenase (IDH), and malic enzyme (ME) were overexpressed in Mortierella alpina Our results showed that G6PD2 had the most significant effect on fatty acid synthesis, with a 1.7-fold increase in total fatty acid, whereas ME2 was more effective in desaturation, with a 1.5-fold increase in arachidonic acid (AA) content over control. Co-overexpression of G6PD2 and ME2 improved both fatty acid synthesis and desaturation. Within 96 h of fermentation using the fed-batch method, the co-overexpressing strain accumulated AA at a productivity of 1.9 ± 0.2 g/(liter · day), which was 7.2-fold higher than that in the M. alpina control that was cultured in a flask. IMPORTANCE This study proved that the pentose phosphate pathway is the major NADPH contributor during fatty acid synthesis in M. alpina The NADPH sources may be differently responsible for fatty acid synthesis or desaturation. Co-overexpression of G6PD2 and ME2 significantly increases AA production.
Collapse
|