1
|
Feng F, Tu T, Wang H, Song R, Li J, Zhu Y, Zhang S, Zhang M, Zhao Y, Liu Y. Mechano-growth factor regulates periodontal ligament stem cell proliferation and differentiation through Fyn-RhoA-YAP signaling. Biochem Biophys Res Commun 2024; 733:150450. [PMID: 39067248 DOI: 10.1016/j.bbrc.2024.150450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Mechano-growth factor (MGF), which is a growth factor produced specifically in response to mechanical stimuli, with potential of tissue repair and regeneration. Our previous research has shown that MGF plays a crucial role in repair of damaged periodontal ligaments by promoting differentiation of periodontal ligament stem cells (PDLSCs). However, the molecular mechanism is not fully understood. This study aimed to investigated the regulatory effect of MGF on differentiation of PDLSCs and its molecular mechanism. METHODS Initially, we investigated how MGF impacts cell growth and differentiation, and the relationship with the activation of Fyn-p-YAPY357 and LATS1-p-YAPS127. Then, inhibitors were used to interfere Fyn phosphorylation to verify the role of Fyn-p-YAP Y357 signal after MGF stimulation; moreover, siRNA was used to downregulate YAP expression to clarify the function of YAP in PDLSCs proliferation and differentiation. Finally, after C3 was used to inhibit the RhoA expression, we explored the role of RhoA in the Fyn-p-YAP Y357 signaling pathway in PDLSCs proliferation and differentiation. RESULTS Our study revealed that MGF plays a regulatory role in promoting PDLSCs proliferation and fibrogenic differentiation by inducing Fyn-YAPY357 phosphorylation but not LATS1-YAP S127 phosphorylation. Moreover, the results indicated that Fyn could not activate YAP directly but rather activated YAP through RhoA in response to MGF stimulation. CONCLUSION The research findings indicated that the Fyn-RhoA-p-YAPY357 pathway is significant in facilitating the proliferation and fibrogenic differentiation of PDLSCs by MGF. Providing new ideas for the study of MGF in promoting periodontal regenerative repair.
Collapse
Affiliation(s)
- Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Teng Tu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Hui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Runfang Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Junrong Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Yue Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Songbai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Min Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China.
| | - Ying Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China; Department of Anesthesiology and Perioperative Medicine, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University, Xi'an, 710004, China.
| | - Yanli Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China.
| |
Collapse
|
2
|
Qiu D, Wei W, Chen J, Huang J, Yang Y, Luo Z. In vitro determination of osteo-adipogenic lineage choice of bone marrow stromal/stem cells (BMSCs). MethodsX 2024; 12:102637. [PMID: 38445171 PMCID: PMC10912731 DOI: 10.1016/j.mex.2024.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Bone marrow stromal/stem cells (BMSCs) are primitive and heterogeneous cells that can be differentiated into osteoblasts, adipocytes and other subsets. Their bone-fat lineage commitment is responsible for the homeostasis of bone marrow microenvironment. However, there are little effective methods and evidence to simultaneously visualise the lineage commitment of BMSCs. Here we provide a bivalent differentiation medium that can enable BMSCs differentiation into osteoblasts and adipocytes in vitro, and establish a method to simultaneously distinguish osteoblasts or adipocytes from the heterogeneous BMSCs based on Alizarin red S and Oil red O staining, which have been used for detection of specific mineralized nodules and lipid droplets, respectively. This assay provides a specifically simple but effective and low-cost method to evaluate the efficiency of osteo-adipogenic (OA) allocation of BMSCs.►Researchers can utilize the bivalent differentiation medium to evaluate the efficiency of osteogenic and adipogenic differentiation of BMSCs in vitro.
Collapse
Affiliation(s)
- Dawei Qiu
- Department of Physical Education, Guangxi University of Chinese Medicine, Guangxi, Nanning 530200, China
| | - Wanyi Wei
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Guangxi, Nanning 530200, China
| | - Jia Chen
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Guangxi, Nanning 530200, China
| | - Jingwen Huang
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Guangxi, Nanning 530200, China
| | - Yong Yang
- Faculty of Nursing, Guangxi University of Chinese Medicine, Guangxi, Nanning 530200, China
| | - Ziwei Luo
- College of Orthopedics, Guangxi University of Chinese Medicine, Guangxi, Nanning 530200, China
| |
Collapse
|
3
|
Periosteal topology creates an osteo-friendly microenvironment for progenitor cells. Mater Today Bio 2022; 18:100519. [PMID: 36590983 PMCID: PMC9800298 DOI: 10.1016/j.mtbio.2022.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The periosteum on the skeletal surface creates a unique micro-environment for cortical bone homeostasis, but how this micro-environment is formed remains a mystery. In our study, we observed the cells in the periosteum presented elongated spindle-like morphology within the aligned collagen fibers, which is in accordance with the differentiated osteoblasts lining on the cortical surface. We planted the bone marrow stromal cells(BMSCs), the regular shaped progenitor cells, on collagen-coated aligned fibers, presenting similar cell morphology as observed in the natural periosteum. The aligned collagen topology induced the elongation of BMSCs, whichfacilitated the osteogenic process. Transcriptome analysis suggested the aligned collagen induced the regular shaped cells to present part of the periosteum derived stromal cells(PDSCs) characteristics by showing close correlation of the two cell populations. In addition, the elevated expression of PDSCs markers in the cells grown on the aligned collagen-coated fibers further indicated the function of periosteal topology in manipulating cells' behavior. Enrichment analysis revealed cell-extracellular matrix interaction was the major pathway initiating this process, which created an osteo-friendly micro-environment as well. At last, we found the aligned topology of collagen induced mechano-growth factor expression as the result of Igf1 alternative splicing, guiding the progenitor cells behavior and osteogenic process in the periosteum. This study uncovers the key role of the aligned topology of collagen in the periosteum and explains the mechanism in creating the periosteal micro-environment, which gives the inspiration for artificial periosteum design.
Collapse
|
4
|
Ma Z, Li S, Sun Y. Effect of enhanced masticatory force on OPG, RANKL and MGF in alveolar bone of ovariectomized rats. J Appl Oral Sci 2020; 28:e20190409. [PMID: 32267378 PMCID: PMC7135953 DOI: 10.1590/1678-7757-2019-0409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Menopause induces oral bone loss, leading to various oral diseases. Mastication importantly affects bone metabolism in the jawbone. OBJECTIVE To analyze the effect of enhanced masticatory force on osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), and mechano-growth factor (MGF) in alveolar bone of ovariectomized rats and to study the mechanics mechanism of the alveolar bone of ovariectomized rats response to enhanced masticatory force. METHODOLOGY Thirty Sprague Dawley rats were randomly divided into three groups: sham-operation group (fat around the removed ovary + normal hard diet), model group (ovariectomy + normal hard diet), and experimental group (ovariectomy + high hard diet). It was a 2-month experiment. Enzyme-linked immunosorbent assay (ELISA) detected serum estradiol (E2), osteocalcin (BGP) and alkaline phosphatase (ALP) in rats. Bone histomorphometric indices in the third molar region of maxilla were detected by micro-CT; protein expressions of OPG, RANKL, and MGF in the third molar region of maxilla was detected by Western blot; and gene expression of OPG, RANKL, and MGF in the third molar region of maxilla was detected by Quantitative Real-Time PCR. RESULTS Comparing with model group, serum E2 in experimental group increased but not significantly, serum BGP and serum ALP in experimental group decreased but not significantly, OPG in experimental group in alveolar bone increased significantly, RANKL in experimental group in alveolar bone decreased significantly, RANKL/OPG ratio in experimental group decreased significantly, MGF in experimental group in alveolar bone increased significantly, bone volume to total volume fraction increased significantly in experimental group, trabecular thickness increased significantly in experimental group, and trabecular separation decreased significantly in experimental group. CONCLUSION Enhanced masticatory force affected the expression of OPG, RANKL, and MGF in alveolar bone of ovariectomized rats, improved the quality of jaw bone of ovariectomized rats, and delayed oral bone loss by ovariectomy.
Collapse
Affiliation(s)
- Zongmin Ma
- Dalian University, Mechanical Engineering College, Dalian, China
| | - Shuxian Li
- Dalian University, Mechanical Engineering College, Dalian, China
| | - Yuchen Sun
- Dalian University, Graduate School, Dalian, China
| |
Collapse
|
5
|
Yue D, Zhang M, Lu J, Zhou J, Bai Y, Pan J. The rate of fluid shear stress is a potent regulator for the differentiation of mesenchymal stem cells. J Cell Physiol 2019; 234:16312-16319. [PMID: 30784070 DOI: 10.1002/jcp.28296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 01/24/2023]
Abstract
We have previously demonstrated that the rate of fluid shear stress (ΔSS) can manipulate the fate of mesenchymal stem cells (MSCs) to osteogenic or chondrogenic cells. However, whether ΔSS is comparable to other two means of induction medium and substrate stiffness that have been proven to be potent in differentiation control is unknown. In this study, we subjected MSCs to 1-7 days of osteogenic or chondrogenic chemical induction, or 1-4 days of 37 or 86 kPa of substrate stiffness induction, followed by 20 min of Fast ΔSS (0-0') or Slow ΔSS (0-2'), which is a laminar FSS that linearly increased from 0 to 10 dyn/cm 2 in 0 (Fast) or 2 min (Slow) and maintained at 10 dyn/cm 2 for a total of 20 min. We found that 20 min of ΔSS could compete with 5 days' chemical and 2 days' substrate stiffness inductions. Our study confirmed that ΔSS is a powerful tool to control the differentiation of MSCs, which stressed the possible application in MSCs linage specification.
Collapse
Affiliation(s)
- Danyang Yue
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Mengxue Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Juan Lu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jin Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuying Bai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Xu C, Zhang Y, Sutrisno L, Yang L, Chen R, Sung KLP. Bay11-7082 facilitates wound healing by antagonizing mechanical injury- and TNF-α-induced expression of MMPs in posterior cruciate ligament. Connect Tissue Res 2019; 60:311-322. [PMID: 30372627 DOI: 10.1080/03008207.2018.1512978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purposes: To investigate the ability of synoviocytes (SCs) in regulating MMPs expression in the posterior cruciate ligament fibroblasts (PCLfs) after TNF-α treatment, to test whether a specific inflammation inhibitor Bay11-7082 can antagonize the expression of MMPs in PCLfs after injury. Methods: The microenvironment of knee joint cavity after PCL injury was mimicked in an in vitro co-culture system. The effects of TNF-α treatment on the expression of MMPs in PCL fibroblasts (PCLfs) were studied. The expression of MMPs mRNA and protein was detected by qRT-PCR and western blot. For the in vivo study, the Bay11-7082 inhibitor was injected into the knee joint cavity after injury, and then were performed on histological analysis. Results: In the mono-culture conditions, 6% mechanical injury upregulated the expression of MMP-2, whereas downregulated MMP-1 and -3, additionally 12% mechanical injury were upregulated all. However, in co-culture conditions, 6% and 12% both significantly increased MMPs expressions. Stretch injury and TNF-α treatment significantly upregulated expression of MMPs mRNA and protein levels in mono-cultured PCLfs. This effect was more significant in PCLfs Plus SCs co-culture system, in which the cells were treated by combination of stretch injury and TNF-α. In addition, Bay11-7082, a specific inflammation inhibitor, could significantly decrease the expression of MMPs induced by stretch injury and/or TNF-α treatment. Less infiltrated inflammatory cells and more integrated tissues were detected in injury PCL 2 weeks after Bay11-7082 treatment, compared to injury group. Immunofluorescent staining showed very low expression levels of MMPs in PCL of Bay11-7082-treated group, compared to the injury groups. Conclusions: SCs sever as the supporting cells that aggravate the TNF-α-induced MMPs accumulation in PCLfs. Inhibition of the expression of MMPs by Bay11-7082 is a promising way to facilitate the self-healing of PCL.
Collapse
Affiliation(s)
- Chunming Xu
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Yanjun Zhang
- b Department of Life Science , Hunan University of Science and Technology , Xiangtan , Hunan , China
| | - Linawati Sutrisno
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Li Yang
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Rongfu Chen
- c Department of Orthopedics , People's hospital of Changshou , Chongqing , China
| | - K L Paul Sung
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China.,d Departments of Bioengineering and Orthopedics , University of California , San Diego , CA , USA
| |
Collapse
|
7
|
Cao W, Lin W, Cai H, Chen Y, Man Y, Liang J, Wang Q, Sun Y, Fan Y, Zhang X. Dynamic mechanical loading facilitated chondrogenic differentiation of rabbit BMSCs in collagen scaffolds. Regen Biomater 2019; 6:99-106. [PMID: 30967964 PMCID: PMC6446999 DOI: 10.1093/rb/rbz005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
Mechanical signals have been played close attention to regulate chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In this study, dynamic mechanical loading simulation with natural frequencies and intensities were applied to the 3D cultured BMSCs-collagen scaffold constructs. We investigated the effects of dynamic mechanical loading on cell adhesion, uniform distribution, proliferation, secretion of extracellular matrix (ECM) and chondrogenic differentiation of BMSCs-collagen scaffold constructs. The results indicated that dynamic mechanical loading facilitated the BMSCs adhesion, uniform distribution, proliferation and secretion of ECM with a slight contraction, which significantly improved the mechanical strength of the BMSCs-collagen scaffold constructs for better mimicking the structure and function of a native cartilage. Gene expression results indicated that dynamic mechanical loading contributed to the chondrogenic differentiation of BMSCs with higher levels of AGG, COL2A1 and SOX9 genes, and prevented of hypertrophic process with lower levels of COL10A1, and reduced the possibility of fibrocartilage formation due to down-regulated COL1A2. In conclusion, this study emphasized the important role of dynamic mechanical loading on promoting BMSCs chondrogenic differentiation and maintaining the cartilage phenotype for in vitro reconstruction of tissue-engineered cartilage, which provided an attractive prospect and a feasibility strategy for cartilage repair.
Collapse
Affiliation(s)
- Wanxu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanxu Cai
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yafang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Liang
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| |
Collapse
|
8
|
Wang L, Zhu LX, Wang Z, Lou AJ, Yang YX, Guo Y, Liu S, Zhang C, Zhang Z, Hu HS, Yang B, Zhang P, Ouyang HW, Zhang ZY. Development of a centrally vascularized tissue engineering bone graft with the unique core-shell composite structure for large femoral bone defect treatment. Biomaterials 2018; 175:44-60. [PMID: 29800757 DOI: 10.1016/j.biomaterials.2018.05.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 01/09/2023]
Abstract
Great effort has been spent to promote the vascularization of tissue engineering bone grafts (TEBG) for improved therapeutic outcome. However, the thorough vascularization especially in the central region still remained as a major challenge for the clinical translation of TEBG. Here, we developed a new strategy to construct a centrally vascularized TEBG (CV-TEBG) with unique core-shell composite structure, which is consisted of an angiogenic core and an osteogenic shell. The in vivo evaluation in rabbit critical sized femoral defect was conducted to meticulously compare CV-TEBG to other TEBG designs (TEBG with osteogenic shell alone, or angiogenic core alone or angiogenic core+shell). Microfil-enhanced micro-CT analysis has been shown that CV-TEBG could outperform TEBG with pure osteogenic or angiogenic component for neo-vascularization. CV-TEBG achieved a much higher and more homogenous vascularization throughout the whole scaffold (1.52-38.91 folds, p < 0.01), and generated a unique burrito-like vascular network structure to perfuse both the central and peripheral regions of TEBG, indicating a potential synergistic effect between the osteogenic shell and angiogenic core in CV-TEBG to enhance neo-vascularization. Moreover, CV-TEBG has generated more new bone tissue than other groups (1.99-83.50 folds, p < 0.01), achieved successful bridging defect with the formation of both cortical bone like tissue externally and cancellous bone like tissue internally, and restored approximately 80% of the stiffness of the defected femur (benchmarked to the intact femur). It has been further observed that different bone regeneration patterns occurred in different TEBG implants and closely related to their vascularization patterns, revealing the potential profound influence of vascularization patterns on the osteogenesis pattern during defect healing.
Collapse
Affiliation(s)
- Le Wang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| | - Li-Xin Zhu
- Department of Orthopaedic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Zhao Wang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Ai-Ju Lou
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Department of Rheumatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yi-Xi Yang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yuan Guo
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Song Liu
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Chi Zhang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Zheng Zhang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing 100088, China
| | - Han-Sheng Hu
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Bo Yang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Ping Zhang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hong-Wei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Zhi-Yong Zhang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Translational Research Centre of Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China.
| |
Collapse
|
9
|
Jing X, Ye Y, Bao Y, Zhang J, Huang J, Wang R, Guo J, Guo F. Mechano-growth factor protects against mechanical overload induced damage and promotes migration of growth plate chondrocytes through RhoA/YAP pathway. Exp Cell Res 2018; 366:81-91. [PMID: 29470961 DOI: 10.1016/j.yexcr.2018.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 01/19/2023]
Abstract
Epiphyseal growth plate is highly dynamic tissue which is controlled by a variety of endocrine, paracrine hormones, and by complex local signaling loops and mechanical loading. Mechano growth factor (MGF), the splice variant of the IGF-I gene, has been discovered to play important roles in tissue growth and repair. However, the effect of MGF on the growth plate remains unclear. In the present study, we found that MGF mRNA expression of growth plate chondrocytes was upregulated in response to mechanical stimuli. Treatment of MGF had no effect on growth plate chondrocytes proliferation and differentiation. But it could inhibit growth plate chondrocytes apoptosis and inflammation under mechanical overload. Moreover, both wound healing and transwell assay indicated that MGF could significantly enhance growth plate chondrocytes migration which was accompanied with YAP activation and nucleus translocation. Knockdown of YAP with YAP siRNA suppressed migration induced by MGF, indicating the essential role of YAP in MGF promoting growth plate chondrocytes migration. Furthermore, MGF promoted YAP activation through RhoA GTPase mediated cytoskeleton reorganization, RhoA inhibition using C3 toxin abrogated MGF induced YAP activation. Importantly, we found that MGF promoted focal adhesion(FA) formation and knockdown of YAP with YAP siRNA partially suppressed the activation of FA kinase, implying that YAP is associated with FA formation. In conclusion, MGF is an autocrine growth factor which is regulated by mechanical stimuli. MGF could not only protect growth plate chondrocytes against damage by mechanical overload, but also promote migration through activation of RhoA/YAP signaling axis. Most importantly, our findings indicate that MGF promote cell migration through YAP mediated FA formation to determine the FA-cytoskeleton remodeling.
Collapse
Affiliation(s)
- Xingzhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Bao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiachao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
10
|
Shi S, Kelly BJ, Wang C, Klingler K, Chan A, Eckert GJ, Trippel SB. Human IGF-I propeptide A promotes articular chondrocyte biosynthesis and employs glycosylation-dependent heparin binding. Biochim Biophys Acta Gen Subj 2017; 1862:567-575. [PMID: 29174671 DOI: 10.1016/j.bbagen.2017.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Insulin-like growth factor I (IGF-I) is a key regulator of chondrogenesis, but its therapeutic application to articular cartilage damage is limited by rapid elimination from the repair site. The human IGF-I gene gives rise to three IGF-I propeptides (proIGF-IA, proIGF-IB and proIGF-IC) that are cleaved to create mature IGF-I. In this study, we elucidate the processing of IGF-I precursors by articular chondrocytes, and test the hypotheses that proIGF-I isoforms bind to heparin and regulate articular chondrocyte biosynthesis. METHODS Human IGF-I propeptides and mutants were overexpressed in bovine articular chondrocytes. IGF-I products were characterized by ELISA, western blot and FPLC using a heparin column. The biosynthetic activity of IGF-I products on articular chondrocytes was assayed for DNA and glycosaminoglycan that the cells produced. RESULTS Secreted IGF-I propeptides stimulated articular chondrocyte biosynthetic activity to the same degree as mature IGF-I. Of the three IGF-I propeptides, only one, proIGF-IA, strongly bound to heparin. Interestingly, heparin binding of proIGF-IA depended on N-glycosylation at Asn92 in the EA peptide. To our knowledge, this is the first demonstration that N-glycosylation determines the binding of a heparin-binding protein to heparin. CONCLUSION The biosynthetic and heparin binding abilities of proIGF-IA, coupled with its generation of IGF-I, suggest that proIGF-IA may have therapeutic value for articular cartilage repair. GENERAL SIGNIFICANCE These data identify human pro-insulin-like growth factor IA as a bifunctional protein. Its combined ability to bind heparin and augment chondrocyte biosynthesis makes it a promising therapeutic agent for cartilage damage due to trauma and osteoarthritis.
Collapse
Affiliation(s)
- Shuiliang Shi
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Brian J Kelly
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Congrong Wang
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Ken Klingler
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Albert Chan
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - George J Eckert
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Stephen B Trippel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Orthopaedic Surgery Service, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, United States
| |
Collapse
|