1
|
Ma H, Khusnutdinova AN, Lemak S, Chernikova TN, Golyshina OV, Almendral D, Ferrer M, Golyshin PN, Yakunin AF. Polyesterase activity is widespread in the family IV carboxylesterases from bacteria. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136540. [PMID: 39561546 DOI: 10.1016/j.jhazmat.2024.136540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Enzyme-based depolymerization of plastics, including polyesters, has emerged as a promising approach for plastic waste recycling and reducing environmental plastic pollution. Currently, most of the known polyester-degrading enzymes are represented by a few natural and engineered PETases from the carboxylesterase family V. To identify novel groups of polyesterases, we selected 25 proteins from the carboxylesterase family IV, which share 22 % to 80 % sequence identity to the metagenomic thermophilic polyesterase IS12. All purified proteins were found to be active against chromogenic para-nitrophenyl esters with a preference for short acyl chains. Screening for polyesterase activity using emulsified polyesters demonstrated the presence of hydrolytic activity against bis(benzoyloxyethyl) terephthalate (3PET), polycaprolactone (PCL), and polylactic acid (PLA) in all tested proteins. Biochemical characterization of four selected polyesterases revealed high thermostability in CBA10055, whereas the mesophilic GEN0105 exhibited higher polyesterase activity. Two ancestral variants of GEN0105 showed higher thermostability and activity against PCL and PLA, but reduced activity with amorphous PET. Furthermore, six established PETases were found to be highly active against PCL and PLA. Thus, our results indicate that polyesterase activity is widespread in the family IV carboxylesterases, and that most polyesterases are promiscuous being able to degrade different polyesters.
Collapse
Affiliation(s)
- Hairong Ma
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Anna N Khusnutdinova
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Tatyana N Chernikova
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Olga V Golyshina
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - David Almendral
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Alexander F Yakunin
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Wang Y, Du Y, Jin X, Xia Y, Zhao Y, Wu Z, Gomi K, Zhang W. Temperature-dependent alcohol acyltransferase reactions as the main enzymatic way to produce short-chain (C4-C8) and medium-chain (C9-C13) esters over the whole Daqu-making process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3939-3949. [PMID: 36352497 DOI: 10.1002/jsfa.12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND The ester-synthesis enzymes influenced by environmental factors during Daqu-making process largely determine the flavor of Chinese liquor, but the main ester-synthesis enzyme and its key influencer remain unclear. Here, the volatile ester profiles over the whole Daqu-making process, under different treatments, for at least 90 days, were carefully analyzed, and the potential ester-synthesis enzymes, as well as their dependently environmental factors, were explored. RESULTS In the detected 46 volatile esters, only the short-chain (C4-C8) and medium-chain (C9-C13) ester content obviously changed, as the primary contributor discriminating different samples. Their trends were both consistent with that of the alcohols and the primary metabolism, which included alcohol acyltransferases (AATs) reaction with alcohols and acyl-CoAs as the substrates. Among the potential ester-synthesis enzymes, the typical AAT activity also exhibited the highest correlation with the short- and medium-chain esters (r > 0.78, P < 0.05). The Mantel test between environmental factors and ester production showed that temperature of Daqu was directly correlated with the short-chain esters (r = 0.58, P < 0.01) and AAT activity (r = 0.56, P < 0.01). Further, the short- and medium-chain ester content in Daqu under the treatment nearer to the reported optimal temperature of 40-50 °C of AATs reaction was overall higher than that of the other treatment Daqu. CONCLUSION This study revealed that the temperature-dependent AATs reaction was the main enzymatic method producing the short- and medium-chain esters over the whole Daqu-making process. The results could contribute to the flavor improvement of Baijiu. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yake Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Xuelian Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yajiao Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Katsuya Gomi
- Laboratory of Fermentation Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan, China
| |
Collapse
|
3
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. A new hyper-thermostable carboxylesterase from Anoxybacillus geothermalis D9. Int J Biol Macromol 2022; 222:2486-2497. [DOI: 10.1016/j.ijbiomac.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
4
|
Nagaroor V, Gummadi SN. An overview of mammalian and microbial hormone-sensitive lipases (lipolytic family IV): biochemical properties and industrial applications. Biotechnol Genet Eng Rev 2022:1-30. [PMID: 36154870 DOI: 10.1080/02648725.2022.2127071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
In mammals, hormone-sensitive lipase (EC 3.1.1.79) is an intracellular lipase that significantly regulates lipid metabolism. Mammalian HSL is more active towards diacylglycerol but lacks a lid covering the active site. Dyslipidemia, hepatic steatosis, cancer, and cancer-associated cachexia are symptoms of HSL pathophysiology. Certain microbial proteins show a sequence homologous to the catalytic domain of mammalian HSL, hence called microbial HSL. They possess a funnel-shaped substrate-binding pocket and restricted length of acyl chain esters, thus known as esterases. These enzymes have broad substrate specificities and are capable of stereo, regio, and enantioselective, making them attractive biocatalysts in a wide range of industrial applications in the production of flavors, pharmaceuticals, biosensors, and fine chemicals. This review will provide insight into mammalian and microbial HSLs, their sources, structural features related to substrate specificity, thermal stability, and their applications.
Collapse
Affiliation(s)
- Vijayalakshmi Nagaroor
- Applied and Industrial Microbiology laboratory (AIM lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology laboratory (AIM lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
5
|
Matrawy AA, Khalil AI, Embaby AM. Molecular study on recombinant cold-adapted, detergent- and alkali stable esterase (EstRag) from Lysinibacillus sp.: a member of family VI. World J Microbiol Biotechnol 2022; 38:217. [PMID: 36070019 PMCID: PMC9452428 DOI: 10.1007/s11274-022-03402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Cold-adapted esterases have potential industrial applications. To fulfil the global continuous demand for these enzymes, a cold-adapted esterase member of family VI from Lysinibacillus sp. YS11 was cloned on pET-28b (+) vector and expressed in E. coli BL21(DE3) Rosetta cells for the first time. The open reading frame (654 bp: GenBank MT120818.1) encodes a polypeptide (designated EstRag: 217 amino acid residues). EstRag amino acid sequence has conserved esterase signature motifs: pentapeptide (GFSQG) and catalytic triad Ser110-Asp163-His194. EstRag 3D predicted model, built with LOMETS3 program, showed closest structural similarity to PDB 1AUO_A (esterase: Pseudomonas fluorescens); TM-align score program inferences. Purified EstRag to 9.28-fold, using Ni2+affinity agarose matrix, showed a single protein band (25 kDa) on SDS-PAGE, Km (0.031 mM) and Kcat/Km (657.7 s−1 mM−1) on p-NP-C2. Temperature and pH optima of EstRag were 35 °C and 8.0, respectively. EstRag was fully stable at 5–30 °C for 120 min and at pH(s) 8.0–10.0 after 24 h. EstRag activity (391.46 ± 0.009%) was impressively enhanced after 30 min preincubation with 5 mM Cu2+. EstRag retained full stability after 30 min pre-incubation with 0.1%(v/v) SDS, Triton X-100, and Tween-80. EstRag promising characteristics motivate performing guided evolution and industrial applications prospective studies.
Collapse
Affiliation(s)
- Amira A Matrawy
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt
| | - Ahmed I Khalil
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt
| | - Amira M Embaby
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt.
| |
Collapse
|
6
|
Lu M, Schneider D, Daniel R. Metagenomic Screening for Lipolytic Genes Reveals an Ecology-Clustered Distribution Pattern. Front Microbiol 2022; 13:851969. [PMID: 35756004 PMCID: PMC9226776 DOI: 10.3389/fmicb.2022.851969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lipolytic enzymes are one of the most important enzyme types for application in various industrial processes. Despite the continuously increasing demand, only a small portion of the so far encountered lipolytic enzymes exhibit adequate stability and activities for biotechnological applications. To explore novel and/or extremophilic lipolytic enzymes, microbial consortia in two composts at thermophilic stage were analyzed using function-driven and sequence-based metagenomic approaches. Analysis of community composition by amplicon-based 16S rRNA genes and transcripts, and direct metagenome sequencing revealed that the communities of the compost samples were dominated by members of the phyla Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Chloroflexi. Function-driven screening of the metagenomic libraries constructed from the two samples yielded 115 unique lipolytic enzymes. The family assignment of these enzymes was conducted by analyzing the phylogenetic relationship and generation of a protein sequence similarity network according to an integrated classification system. The sequence-based screening was performed by using a newly developed database, containing a set of profile Hidden Markov models, highly sensitive and specific for detection of lipolytic enzymes. By comparing the lipolytic enzymes identified through both approaches, we demonstrated that the activity-directed complements sequence-based detection, and vice versa. The sequence-based comparative analysis of lipolytic genes regarding diversity, function and taxonomic origin derived from 175 metagenomes indicated significant differences between habitats. Analysis of the prevalent and distinct microbial groups providing the lipolytic genes revealed characteristic patterns and groups driven by ecological factors. The here presented data suggests that the diversity and distribution of lipolytic genes in metagenomes of various habitats are largely constrained by ecological factors.
Collapse
Affiliation(s)
| | | | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Metagenomic Approaches as a Tool to Unravel Promising Biocatalysts from Natural Resources: Soil and Water. Catalysts 2022. [DOI: 10.3390/catal12040385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Natural resources are considered a promising source of microorganisms responsible for producing biocatalysts with great relevance in several industrial areas. However, a significant fraction of the environmental microorganisms remains unknown or unexploited due to the limitations associated with their cultivation in the laboratory through classical techniques. Metagenomics has emerged as an innovative and strategic approach to explore these unculturable microorganisms through the analysis of DNA extracted from environmental samples. In this review, a detailed discussion is presented on the application of metagenomics to unravel the biotechnological potential of natural resources for the discovery of promising biocatalysts. An extensive bibliographic survey was carried out between 2010 and 2021, covering diverse metagenomic studies using soil and/or water samples from different types and locations. The review comprises, for the first time, an overview of the worldwide metagenomic studies performed in soil and water and provides a complete and global vision of the enzyme diversity associated with each specific environment.
Collapse
|
8
|
Molecular Identification of Keratinase DgokerA from Deinococcus gobiensis for Feather Degradation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Keratin is a tough fibrous structural protein that is difficult to digest with pepsin and trypsin because of the presence of a large number of disulfide bonds. Keratin is widely found in agricultural waste. In recent years, especially, the development of the poultry industry has resulted in a large accumulation of feather keratin resources, which seriously pollute the environment. Keratinase can specifically attack disulfide bridges in keratin, converting them from complex to simplified forms. The keratinase thermal stability has drawn attention to various biotechnological industries. It is significant to identify keratinases and improve their thermostability from microorganism in extreme environments. In this study, the keratinases DgoKerA was identified in Deinococcus gobiensis I-0 from the Gobi desert. The amino acid sequence analysis revealed that DgoKerA was 58.68% identical to the keratinase MtaKerA from M. thermophila WR-220 and 40.94% identical to the classical BliKerA sequence from B. licheniformis PWD-1. In vitro enzyme activity analysis showed that DgoKerA exhibited an optimum temperature of 60 °C, an optimum pH of 7 and a specific enzyme activity of 51147 U/mg. DgoKerA can degrade intact feathers at 60 °C and has good potential for industrial applications. The molecular modification of DgoKerA was also carried out using site-directed mutagenesis, in which the mutant A350S enzyme activity was increased by nearly 30%, and the results provide a theoretical basis for the development and optimization of keratinase applications.
Collapse
|
9
|
An integrated overview of bacterial carboxylesterase: Structure, function and biocatalytic applications. Colloids Surf B Biointerfaces 2021; 205:111882. [PMID: 34087776 DOI: 10.1016/j.colsurfb.2021.111882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Carboxylesterases (CEs) are members of prominent esterase, and as their name imply, they catalyze the cleavage of ester linkages. By far, a considerable number of novel CEs have been identified to investigate their exquisite physiological and biochemical properties. They are abundant enzymes in nature, widely distributed in relatively broad temperature range and in various sources; both macroorganisms and microorganisms. Given the importance of these enzymes in broad industries, interest in the study of their mechanisms and structural-based engineering are greatly increasing. This review presents the current state of knowledge and understanding about the structure and functions of this ester-metabolizing enzyme, primarily from bacterial sources. In addition, the potential biotechnological applications of bacterial CEs are also encompassed. This review will be useful in understanding the molecular basis and structural protein of bacterial CEs that are significant for the advancement of enzymology field in industries.
Collapse
|
10
|
Characterization of EstDR4, a Novel Cold-Adapted Insecticides-Metabolizing Esterase from Deinococcus radiodurans. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cold-adapted esterases are attracting increasing attention owing to their prospective use in biotechnology. In this study, a novel cold-adapted family Ⅳ esterase EstDR4 was identified and obtained from extremophile Deinococcus radiodurans (D. radiodurans). EstDR4 displayed significant substrate preference towards short and medium chain monoesters (C2–C12). It also showed regioselectivity, enantioselectivity and degradation effects on four insecticides. The optimum temperature and pH for EstDR4 activity were 30 °C and pH 8, respectively. Additionally, EstDR4 exhibited relatively high catalytic activity at 0 °C and high stability from 10–40 °C, with over 80% of its initial activity retained after 1 h of incubation. Moreover, EstDR4 activity was stimulated by Tween 80 and Triton X-100, and inhibited by metal ions such as Co2+, Cu2+ and Zn2+ and several organic solvents. Thus, this enzyme shows development potential for many industrial biotechnological applications, including the manufacture of thermolabile pharmaceutical products, cold-wash detergents and insecticide biodegradation.
Collapse
|
11
|
A Novel Carboxylesterase Derived from a Compost Metagenome Exhibiting High Stability and Activity towards High Salinity. Genes (Basel) 2021; 12:genes12010122. [PMID: 33478024 PMCID: PMC7835964 DOI: 10.3390/genes12010122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Halotolerant lipolytic enzymes have gained growing interest, due to potential applications under harsh conditions, such as hypersalinity and presence of organic solvents. In this study, a lipolytic gene, est56, encoding 287 amino acids was identified by functional screening of a compost metagenome. Subsequently, the gene was heterologously expressed, and the recombinant protein (Est56) was purified and characterized. Est56 is a mesophilic (Topt 50 °C) and moderate alkaliphilic (pHopt 8) enzyme, showing high thermostability at 30 and 40 °C. Strikingly, Est56 is halotolerant as it exhibited high activity and stability in the presence of up to 4 M NaCl or KCl. Est56 also displayed enhanced stability against high temperatures (50 and 60 °C) and urea (2, 4, and 6 M) in the presence of NaCl. In addition, the recently reported halotolerant lipolytic enzymes were summarized. Phylogenetic analysis grouped these enzymes into 13 lipolytic protein families. The majority (45%) including Est56 belonged to family IV. To explore the haloadaptation of halotolerant enzymes, the amino acid composition between halotolerant and halophilic enzymes was statistically compared. The most distinctive feature of halophilic from non-halophilic enzymes are the higher content of acidic residues (Asp and Glu), and a lower content of lysine, aliphatic hydrophobic (Leu, Met and Ile) and polar (Asn) residues. The amino acid composition and 3-D structure analysis suggested that the high content of acidic residues (Asp and Glu, 12.2%) and low content of lysine residues (0.7%), as well as the excess of surface-exposed acidic residues might be responsible for the haloadaptation of Est56.
Collapse
|
12
|
Identification and characterization of a novel bacterial carbohydrate esterase from the bacterium Pantoea ananatis Sd-1 with potential for degradation of lignocellulose and pesticides. Biotechnol Lett 2020; 42:1479-1488. [PMID: 32144558 DOI: 10.1007/s10529-020-02855-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/27/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Identification and characterization of a novel bacterial carbohydrate esterase (PaCes7) with application potential for lignocellulose and pesticide degradation. RESULTS PaCes7 was identified from the lignocellulolytic bacterium, Pantoea ananatis Sd-1 as a new carbohydrate esterase. Recombinant PaCes7 heterologously expressed in Escherichia coli showed a clear preference for esters with short-chain fatty acids and exhibited maximum activity towards α-naphthol acetate at 37 °C and pH 7.5. Purified PaCes7 exhibited its catalytic activity under mesophilic conditions and retained more than 40% activity below 30 °C. It displayed a relatively wide pH stability from pH 6-11. Furthermore, the enzyme was strongly resistant to Mg2+, Pb2+, and Co2+ and activated by K+ and Ca2+. Both P. ananatis Sd-1 and PaCes7 could degrade the pesticide carbaryl. Additionally, PaCes7 was shown to work in combination with cellulase and/or xylanase in rice straw degradation. CONCLUSIONS The data suggest that PaCes7 possesses promising biotechnological potential.
Collapse
|
13
|
Noby N, Hussein A, Saeed H, Embaby AM. "Recombinant cold -adapted halotolerant, organic solvent-stable esterase (estHIJ) from Bacillus halodurans. Anal Biochem 2019; 591:113554. [PMID: 31863727 DOI: 10.1016/j.ab.2019.113554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/08/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Esterases and lipases enduring harsh conditions, including low temperature and extreme tolerance to organic solvents, have attracted great attention in recent times. In the current study, a full open reading frame of 747 bp that encodes a novel, cold-adapted esterase (estHIJ) of 248 amino acids from Bacillus halodurans strain NAH-Egypt was heterologously cloned and expressed in E. coli BL21 (DE3) Rosetta. Amino acid sequence analysis revealed that estHIJ belongs to family XIII of lipolytic enzymes, with a characteristic pentapeptide motif (G-L-S-L-G). The recombinant estHIJ was purified using Ni-affinity chromatography to homogeneity with purification fold, yield, specific activity, and molecular weight (MW) of 3.5, 47.5%, 19.8 U/mg and 29 kDa, respectively. The enzyme showed preferential substrate specificity towards pNP-acetate (C2), with catalytic efficiency of 46,825 min-1 mM-1 estHIJ displayed optimal activity at 30 °C and pH (7.0-8.0). estHIJ demonstrated robust stability in the presence of 50% (v/v) non-polar solvents and 4 M NaCl after 15 h and 6 h of incubation, respectively. The promising features of the recombinant estHIJ underpin its potential in several fields, e.g., the synthesis of pharmaceutical compounds and the food industry.
Collapse
Affiliation(s)
- Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
14
|
Lu M, Dukunde A, Daniel R. Biochemical profiles of two thermostable and organic solvent-tolerant esterases derived from a compost metagenome. Appl Microbiol Biotechnol 2019; 103:3421-3437. [PMID: 30809711 DOI: 10.1007/s00253-019-09695-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Owing to the functional versatility and potential applications in industry, interest in lipolytic enzymes tolerant to organic solvents is increasing. In this study, functional screening of a compost soil metagenome resulted in identification of two lipolytic genes, est1 and est2, encoding 270 and 389 amino acids, respectively. The two genes were heterologously expressed and characterized. Est1 and Est2 are thermostable enzymes with optimal enzyme activities at 80 and 70 °C, respectively. A second-order rotatable design, which allows establishing the relationship between multiple variables with the obtained responses, was used to explore the combined effects of temperature and pH on esterase stability. The response curve indicated that Est1, and particularly Est2, retained high stability within a broad range of temperature and pH values. Furthermore, the effects of organic solvents on Est1 and Est2 activities and stabilities were assessed. Notably, Est2 activity was significantly enhanced (two- to tenfold) in the presence of ethanol, methanol, isopropanol, and 1-propanol over a concentration range between 6 and 30% (v/v). For the short-term stability (2 h of incubation), Est2 exhibited high tolerance against 60% (v/v) of ethanol, methanol, isopropanol, DMSO, and acetone, while Est1 activity resisted these solvents only at lower concentrations (below 30%, v/v). Est2 also displayed high stability towards some water-immiscible organic solvents, such as ethyl acetate, diethyl ether, and toluene. With respect to long-term stability, Est2 retained most of its activity after 26 days of incubation in the presence of 30% (v/v) ethanol, methanol, isopropanol, DMSO, or acetone. All of these features indicate that Est1 and Est2 possess application potential.
Collapse
Affiliation(s)
- Mingji Lu
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Amélie Dukunde
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany.
| |
Collapse
|
15
|
Istvan P, Souza AA, Garay AV, Dos Santos DFK, de Oliveira GM, Santana RH, Lopes FAC, de Freitas SM, Barbosa JARG, Krüger RH. Structural and functional characterization of a novel lipolytic enzyme from a Brazilian Cerrado soil metagenomic library. Biotechnol Lett 2018; 40:1395-1406. [PMID: 30062528 DOI: 10.1007/s10529-018-2598-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/25/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To isolate putative lipase enzymes by screening a Cerrado soil metagenomic library with novel features. RESULTS Of 6720 clones evaluated, Clone W (10,000 bp) presented lipolytic activity and four predicted coding sequences, one of them LipW. Characterization of a predicted esterase/lipase, LipW, showed 28% sequence identity with an arylesterase from Pseudomonas fluorescens (pdb|3HEA) from protein database (PDB). Phylogenetic analysis showed LipW clustered with family V lipases; however, LipW was clustered in different subclade belonged to family V, suggesting a different subgroup of family V. In addition, LipW presented a difference in family V GH motif, a glycine replaced by a serine in GH motif. Estimated molecular weight and stokes radius values of LipW were 29,338.67-29,411.98 Da and 2.58-2.83 nm, respectively. Optimal enzyme activity was observed at pH 9.0-9.5 and at 40 °C. Circular dichroism analysis estimated secondary structures percentages as approximately 45% α-helix and 15% β-sheet, consistent with the 3D structure predicted by homology. CONCLUSION Our results demonstrate the isolation of novel family V lipolytic enzyme with biotechnological applications from a metagenomic library.
Collapse
Affiliation(s)
- Paula Istvan
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto Central de Ciências Sul, Universidade de Brasília - UnB, Brasília, DF, 700910-900, Brazil
| | - Amanda Araújo Souza
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Aisel Valle Garay
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Debora Farage Knupp Dos Santos
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto Central de Ciências Sul, Universidade de Brasília - UnB, Brasília, DF, 700910-900, Brazil
| | - Gideane Mendes de Oliveira
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Fabyano Alvares Cardoso Lopes
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto Central de Ciências Sul, Universidade de Brasília - UnB, Brasília, DF, 700910-900, Brazil
| | - Sonia Maria de Freitas
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Ricardo Henrique Krüger
- Laboratório de Enzimologia, Departamento de Biologia Celular, Instituto Central de Ciências Sul, Universidade de Brasília - UnB, Brasília, DF, 700910-900, Brazil.
| |
Collapse
|
16
|
Noby N, Saeed H, Embaby AM, Pavlidis IV, Hussein A. Cloning, expression and characterization of cold active esterase (EstN7) from Bacillus cohnii strain N1: A novel member of family IV. Int J Biol Macromol 2018; 120:1247-1255. [PMID: 30063933 DOI: 10.1016/j.ijbiomac.2018.07.169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/11/2023]
Abstract
Esterases and lipases from extremophiles have attracted great attention due to their unique characteristics and wide applications. In the present study, an open reading frame (ORF) encoding a novel cold active esterase (EstN7) from Bacillus cohnii strain N1 was cloned and expressed in Escherichia coli. The full-length esterase gene encoding a protein of 320 amino acids with estimated molecular weight of 37.0 kDa. Amino acid sequence analysis revealed that the EstN7 belongs to family IV lipases with a characteristic penta-peptide motif (GXSXG), the catalytic triad Ser, Asp, His and the conserved HGGG motif of the family IV. The recombinant enzyme was purified to apparent homogeneity using nickel-affinity chromatography with a purification fold of 5 and recovery 94.5%. The specific activity of the purified enzyme was 336.89 U/mg. The recombinant EstN7 showed optimal activity at 5 °C moreover, EstN7 displayed full robust stability in the presence of wide range of organic solvents. The purified enzyme had Km and Vmax of 45 ± 0.019 μM and 1113 μmol min-1 mg-1, respectively on p-NP-acetate. These promising characteristics of the recombinant EstN7 would underpin its possible usage with high potential in the synthesis of fragile compounds in pharmaceutical industries.
Collapse
Affiliation(s)
- Nehad Noby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Rong Z, Huo YY, Jian SL, Wu YH, Xu XW. Characterization of a novel alkaline esterase from Altererythrobacter epoxidivorans CGMCC 1.7731 T. Prep Biochem Biotechnol 2018; 48:113-120. [PMID: 29099313 DOI: 10.1080/10826068.2017.1387559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A novel esterase gene (e25) was identified from Altererythrobacter epoxidivorans CGMCC 1.7731T by genome sequence screening. The e25 gene is 948 nucleotides in length and encodes a 315 amino acid protein (E25) with a predicted molecular mass of 33,683 Da. A phylogenetic tree revealed that E25 belongs to the hormone-sensitive lipase (HSL) family of lipolytic enzymes. An activity assay of E25 showed that it exhibited the highest catalytic efficiency when using p-nitrophenyl caproate (C6) as a substrate. The optimum pH and temperature were determined to be approximately pH 9 and 45°C, and the Km and Vmax values were 0.12 mM and 1,772 µmol/min/mg, respectively. After an incubation at 40°C for 80 min, E25 retained 75% of its basal activity. The enzyme exhibited good tolerance to metal cations, such as Ba2+, Ca2+, and Cu2+ (10 mM), but its activity was strongly inhibited by Co2+, Ni2+, Mn2+, and Zn2+. The E25 enzyme was stimulated by glycerol and retained over 60% of its basal activity in the presence of 1% Tween-80 and Triton X-100. Overall, the activity of E25 under alkaline conditions and its organic solvent and detergent tolerance indicate that E25 could be useful as a novel industrial catalyst in biotechnological applications.
Collapse
Affiliation(s)
- Zhen Rong
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Ying-Yi Huo
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Shu-Ling Jian
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Yue-Hong Wu
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Xue-Wei Xu
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| |
Collapse
|
18
|
Berini F, Casciello C, Marcone GL, Marinelli F. Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett 2017; 364:4329276. [DOI: 10.1093/femsle/fnx211] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023] Open
|