1
|
Chen SH, Lee YW, Kao HK, Yang PC, Chen SH, Liu SW, Yang PC, Lin YJ, Huang CC. The Transplantation of 3-Dimensional Spheroids of Adipose-Derived Stem Cells Promotes Achilles Tendon Healing in Rabbits by Enhancing the Proliferation of Tenocytes and Suppressing M1 Macrophages. Am J Sports Med 2024; 52:406-422. [PMID: 38193194 DOI: 10.1177/03635465231214698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
BACKGROUND Tendons have limited regenerative potential, so healing of ruptured tendon tissue requires a prolonged period, and the prognosis is suboptimal. Although stem cell transplantation-based approaches show promise for accelerating tendon repair, the resultant therapeutic efficacy remains unsatisfactory. HYPOTHESIS The transplantation of stem cells preassembled as 3-dimensional spheroids achieves a superior therapeutic outcome compared with the transplantation of single-cell suspensions. STUDY DESIGN Controlled laboratory study. METHODS Adipose-derived stem cells (ADSCs) were assembled as spheroids using a methylcellulose hydrogel system. The secretome of ADSC suspensions or spheroids was collected and utilized to treat tenocytes and macrophages to evaluate their therapeutic potential and investigate the mechanisms underlying their effects. RNA sequencing was performed to investigate the global difference in gene expression between ADSC suspensions and spheroids in an in vitro inflammatory microenvironment. For the in vivo experiment, rabbits that underwent Achilles tendon transection, followed by stump suturing, were randomly assigned to 1 of 3 groups: intratendinous injection of saline, rabbit ADSCs as conventional single-cell suspensions, or preassembled ADSC spheroids. The tendons were harvested for biomechanical testing and histological analysis at 4 weeks postoperatively. RESULTS Our in vitro results demonstrated that the secretome of ADSCs assembled as spheroids exhibited enhanced modulatory activity in (1) tenocyte proliferation (P = .015) and migration (P = .001) by activating extracellular signal-regulated kinase (ERK) signaling and (2) the suppression of the secretion of interleukin-6 (P = .005) and interleukin-1α (P = .042) by M1 macrophages via the COX-2/PGE2/EP4 signaling axis. Gene expression profiling of cells exposed to an inflammatory milieu revealed significantly enriched terms that were associated with the immune response, cytokines, and tissue remodeling in preassembled ADSC spheroids. Ex vivo fluorescence imaging revealed that the engraftment efficiency of ADSCs in the form of spheroids was higher than that of ADSCs in single-cell suspensions (P = .003). Furthermore, the transplantation of ADSC spheroids showed superior therapeutic effects in promoting the healing of sutured stumps, as evidenced by improvements in the tensile strength (P = .019) and fiber alignment (P < .001) of the repaired tendons. CONCLUSION The assembly of ADSCs as spheroids significantly advanced their potential to harness tenocytes and macrophages. As a proof of concept, this study clearly demonstrates the effectiveness of using ADSC spheroids to promote tendon regeneration. CLINICAL RELEVANCE The present study lays a foundation for future clinical applications of stem cell spheroid-based therapy for the management of tendon injuries.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Wei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Ching Yang
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Hsien Chen
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shao-Wen Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Ching Yang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Trotta MC, Itro A, Lepre CC, Russo M, Guida F, Moretti A, Braile A, Tarantino U, D’Amico M, Toro G. Effects of adipose-derived mesenchymal stem cell conditioned medium on human tenocytes exposed to high glucose. Ther Adv Musculoskelet Dis 2024; 16:1759720X231214903. [PMID: 38204801 PMCID: PMC10775729 DOI: 10.1177/1759720x231214903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/26/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction Diabetic tendinopathy is a common invalidating and challenging disease that may be treated using stem cells. However, the effects of adipose-derived mesenchymal stem cell conditioned medium (ASC-CM) in diabetic tendinopathy have never been explored. Objectives The present study evaluated the effects of ASC-CM on morphology, cell viability, structure, and scratch wound closure of human tenocytes (HTNC) exposed to high glucose (HG). Design Experimental study. Methods HTNC were exposed to HG (25 mM) for 7, 14 and 21 days with or without ASC-CM for the last 24 h. CM was collected from 4 × 105 ASCs, centrifuged for 10 min at 200 g and sterilized with 0.22 μm syringe filter. Results At 7 days, HG-HTNC had decreased cell viability [72 ± 2%, p < 0.01 versus normal glucose (NG)] compared to NG-HTNC (90 ± 5%). A further decrement was detected after 14 and 21 days (60 ± 4% and 60 ± 5%, both, p < 0.01 versus NG and p < 0.01 versus HG7). While NG-HTNC evidenced a normal fibroblast cell-like elongated morphology, HG-HTNC showed increased cell roundness. In contrast, HG-HTNC exposed to ASC-CM showed a significant increase in cell viability, an improved cell morphology and higher scratch wound closure at all HG time points. Moreover, the exposure to ASC-CM significantly increased thrombospondin 1 and transforming growth factor beta 1 (TGF-β1) content in HG-HTNC. The TGF-β1 elevation was paralleled by higher Collagen I and Vascular Endothelial Growth Factor in HG-HTNC. Conclusion ASC-CM may restore the natural morphology, cell viability and structure of HTNC, promoting their scratch wound closure through TGF-β1 increase.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Annalisa Itro
- PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Marina Russo
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Antimo Moretti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Adriano Braile
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
- Caterina ClaudiaLepre is also affiliated to PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitell’, Naples, Italy
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Giuseppe Toro
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Via L. De Crecchio 6, Naples 80138, Italy
| |
Collapse
|
3
|
Li J, Zhou X, Chen J, Eliasson P, Kingham PJ, Backman LJ. Secretome from myoblasts statically loaded at low intensity promotes tenocyte proliferation via the IGF-1 receptor pathway. FASEB J 2023; 37:e23203. [PMID: 37732638 DOI: 10.1096/fj.202301097r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Exercise is widely recognized as beneficial for tendon healing. Recently, it has been described that muscle-derived molecules secreted in response to static exercise influence tendon healing. In this study, the optimal static loading intensity for tendon healing and the composition of secretome released by myoblasts in response to different intensities of static strain were investigated. In an in vitro coculture model, myoblasts were mechanically loaded using a Flexcell Tension System. Tenocytes were seeded on transwell inserts that allowed communication between the tenocytes and myoblasts without direct contact. Proliferation and migration assays, together with RNA sequencing, were used to determine potential cellular signaling pathways. The secretome from myoblasts exposed to 2% static loading increased the proliferation and migration of the cocultured tenocytes. RNA-seq analysis revealed that this loading condition upregulated the expression of numerous genes encoding secretory proteins, including insulin-like growth factor-1 (IGF-1). Confirmation of IGF-1 expression and secretion was carried out using qPCR and enzyme-linked immunosorbt assay (ELISA), revealing a statistically significant upregulation in response to 2% static loading in comparison to both control conditions and higher loading intensities of 5% and 10%. Addition of an inhibitor of the IGF-1 receptor (PQ401) to the tenocytes significantly reduced myoblast secretome-induced tenocyte proliferation. In conclusion, IGF-1 may be an important molecule in the statically loaded myoblast secretome, which is responsible for influencing tenocytes during exercise-induced healing.
Collapse
Affiliation(s)
- Junhong Li
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Xin Zhou
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, China
| | - Pernilla Eliasson
- Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Yang G, Chen F, Zhang C, Gu C. Circ_0005736 promotes tenogenic differentiation of tendon-derived stem cells through the miR-636/MAPK1 axis. J Orthop Surg Res 2023; 18:660. [PMID: 37670347 PMCID: PMC10481470 DOI: 10.1186/s13018-023-04115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Tendon-derived stem cells (TDSCs) are one of stem cells characterized by greater clonogenicity, tenogenesis, and proliferation capacity. Circ_0005736 has been shown to be decreased in Rotator cuff tendinopathy. Here, we investigated the function and relationship of circ_0005736 in TDSC tenogenic differentiation. METHODS Transforming growth factor β1 (TGF-β1) was used to induce the tenogenic differentiation in TDSC. Cell proliferation, invasion and migration were evaluated by Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine, transwell, and wound healing assays, respectively. The detection of the levels of genes and proteins was performed by qRT-PCR and Western blot. The binding between miR-636 and circ_0005736 or MAPK1 (Mitogen-Activated Protein Kinase 1) was verified using dual-luciferase reporter assay and RIP assays. RESULTS TGF-β1 induced tenogenic differentiation by enhancing the production of tendon-specific markers and TDSC proliferation, invasion and migration. TGF-β1 treatment promoted circ_0005736 expression, knockdown of circ_0005736 abolished TGF-β1-induced tenogenic differentiation in TDSCs. Mechanistically, circ_0005736 acted as a sponge for miR-636 to up-regulate the expression of MAPK1, which was confirmed to be a target of miR-636 in TDSCs. Further rescue assays showed that inhibition of miR-636 could rescue circ_0005736 knockdown-induced suppression on TGF-β1-caused tenogenic differentiation in TDSCs. Moreover, forced expression of miR-636 abolished TGF-β1-caused tenogenic differentiation in TDSCs, which was rescued by MAPK1 up-regulation. CONCLUSION Circ_0005736 enhanced TGF-β1-induced tenogenic differentiation in TDSCs via increasing the production of tendon-specific markers and TDSC proliferation, invasion and migration through miR-636/MAPK1 axis.
Collapse
Affiliation(s)
- Guangzhao Yang
- Department of Sports, Communication University of China, Nanjing, No.26, Pengshan Road, Jiangning District, Nanjing, 211172, China.
| | - Fei Chen
- Department of Sports, Communication University of China, Nanjing, No.26, Pengshan Road, Jiangning District, Nanjing, 211172, China
| | - Chunyan Zhang
- Department of Sports, Communication University of China, Nanjing, No.26, Pengshan Road, Jiangning District, Nanjing, 211172, China
| | - Chenlin Gu
- Faculty of Cultural Management, Communication University of China, Nanjing, Nanjing, China
| |
Collapse
|
5
|
Soukup R, Gerner I, Mohr T, Gueltekin S, Grillari J, Jenner F. Mesenchymal Stem Cell Conditioned Medium Modulates Inflammation in Tenocytes: Complete Conditioned Medium Has Superior Therapeutic Efficacy than Its Extracellular Vesicle Fraction. Int J Mol Sci 2023; 24:10857. [PMID: 37446034 PMCID: PMC10342101 DOI: 10.3390/ijms241310857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Tendinopathy, a prevalent overuse injury, lacks effective treatment options, leading to a significant impact on quality of life and socioeconomic burden. Mesenchymal stem/stromal cells (MSCs) and their secretome, including conditioned medium (CM) and extracellular vesicles (EVs), have shown promise in tissue regeneration and immunomodulation. However, it remains unclear which components of the secretome contribute to their therapeutic effects. This study aimed to compare the efficacy of CM, EVs, and the soluble protein fraction (PF) in treating inflamed tenocytes. CM exhibited the highest protein and particle concentrations, followed by PF and EVs. Inflammation significantly altered gene expression in tenocytes, with CM showing the most distinct separation from the inflamed control group. Treatment with CM resulted in the most significant differential gene expression, with both upregulated and downregulated genes related to inflammation and tissue regeneration. EV treatment also demonstrated a therapeutic effect, albeit to a lesser extent. These findings suggest that CM holds superior therapeutic efficacy compared with its EV fraction alone, emphasizing the importance of the complete secretome in tendon injury treatment.
Collapse
Affiliation(s)
- Robert Soukup
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Iris Gerner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Thomas Mohr
- Science Consult DI Thomas Mohr KG, 2353 Guntramsdorf, Austria
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Sinan Gueltekin
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1090 Vienna, Austria
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
6
|
Koch DW, Schnabel LV, Ellis IM, Bates RE, Berglund AK. TGF-β2 enhances expression of equine bone marrow-derived mesenchymal stem cell paracrine factors with known associations to tendon healing. Stem Cell Res Ther 2022; 13:477. [PMID: 36114555 PMCID: PMC9482193 DOI: 10.1186/s13287-022-03172-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) secrete paracrine factors and extracellular matrix proteins that contribute to their ability to support tissue healing and regeneration. Both the transcriptome and the secretome of MSCs can be altered by treating the cells with cytokines, but neither have been thoroughly investigated following treatment with the specific cytokine transforming growth factor (TGF)-β2. Methods RNA-sequencing and western blotting were used to compare gene and protein expression between untreated and TGF-β2-treated equine bone marrow-derived MSCs (BM-MSCs). A co-culture system was utilized to compare equine tenocyte migration during co-culture with untreated and TGF-β2-treated BM-MSCs. Results TGF-β2 treatment significantly upregulated gene expression of collagens, extracellular matrix molecules, and growth factors. Protein expression of collagen type I and tenascin-C was also confirmed to be upregulated in TGF-β2-treated BM-MSCs compared to untreated BM-MSCs. Both untreated and TGF-β2-treated BM-MSCs increased tenocyte migration in vitro. Conclusions Treating equine BM-MSCs with TGF-β2 significantly increases production of paracrine factors and extracellular matrix molecules important for tendon healing and promotes the migration of tenocytes in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03172-9.
Collapse
|
7
|
Wu T, Qi W, Shan H, Tu B, Jiang S, Lu Y, Wang F. Ginsenoside Rg1 enhances the healing of injured tendon in achilles tendinitis through the activation of IGF1R signaling mediated by oestrogen receptor. J Ginseng Res 2022; 46:526-535. [PMID: 35818420 PMCID: PMC9270649 DOI: 10.1016/j.jgr.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022] Open
Abstract
Background During the pathogenesis of tendinopathy, the chronic inflammation caused by the injury and apoptosis leads to the generation of scars. Ginsenoside Rg1 (Rg1) is extracted from ginseng and has anti-inflammatory effects. Rg1 is a unique phytoestrogen that can activate the estrogen response element. This research aimed to explore whether Rg1 can function in the process of tendon repair through the estrogen receptor. Methods In this research, the effects of Rg1 were evaluated in tenocytes and in a rat model of Achilles tendinitis (AT). Protein levels were shown by western blotting. qRT-PCR was employed for evaluating mRNA levels. Cell proliferation was evaluated through EdU assay and cell migration was evaluated by transwell assay and scratch test assay. Results Rg1 up-regulated the expression of matrix-related factors and function of tendon in AT rat model. Rg1 reduced early inflammatory response and apoptosis in the tendon tissue of AT rat model. Rg1 promoted tenocyte migration and proliferation. The effects of Rg1 on tenocytes were inhibited by ICI182780. Rg1 activates the insulin-like growth factor-I receptor (IGF1R) and MAPK signaling pathway. Conclusion Rg1 promotes injured tendon healing in AT rat model through IGF1R and MAPK signaling pathway activation.
Collapse
Affiliation(s)
| | | | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bin Tu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shilin Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ye Lu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
HEK293-Conditioned Medium Altered the Expression of Renal Markers WT1, CD2AP, and CDH16 in the Human Adipose Mesenchymal Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-021-00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Secretome from In Vitro Mechanically Loaded Myoblasts Induces Tenocyte Migration, Transition to a Fibroblastic Phenotype and Suppression of Collagen Production. Int J Mol Sci 2021; 22:ijms222313089. [PMID: 34884895 PMCID: PMC8657858 DOI: 10.3390/ijms222313089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
It is known that mechanical loading of muscles increases the strength of healing tendon tissue, but the mechanism involved remains elusive. We hypothesized that the secretome from myoblasts in co-culture with tenocytes affects tenocyte migration, cell phenotype, and collagen (Col) production and that the effect is dependent on different types of mechanical loading of myoblasts. To test this, we used an in vitro indirect transwell co-culture system. Myoblasts were mechanically loaded using the FlexCell® Tension system. Tenocyte cell migration, proliferation, apoptosis, collagen production, and several tenocyte markers were measured. The secretome from myoblasts decreased the Col I/III ratio and increased the expression of tenocyte specific markers as compared with tenocytes cultured alone. The secretome from statically loaded myoblasts significantly enhanced tenocyte migration and Col I/III ratio as compared with dynamic loading and controls. In addition, the secretome from statically loaded myoblasts induced tenocytes towards a myofibroblast-like phenotype. Taken together, these results demonstrate that the secretome from statically loaded myoblasts has a profound influence on tenocytes, affecting parameters that are related to the tendon healing process.
Collapse
|
10
|
Chen SH, Chen ZY, Lin YH, Chen SH, Chou PY, Kao HK, Lin FH. Extracellular Vesicles of Adipose-Derived Stem Cells Promote the Healing of Traumatized Achilles Tendons. Int J Mol Sci 2021; 22:ijms222212373. [PMID: 34830254 PMCID: PMC8618291 DOI: 10.3390/ijms222212373] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Healing of ruptured tendons remains a clinical challenge because of its slow progress and relatively weak mechanical force at an early stage. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have therapeutic potential for tissue regeneration. In this study, we isolated EVs from adipose-derived stem cells (ADSCs) and evaluated their ability to promote tendon regeneration. Our results indicated that ADSC-EVs significantly enhanced the proliferation and migration of tenocytes in vitro. To further study the roles of ADSC-EVs in tendon regeneration, ADSC-EVs were used in Achilles tendon repair in rabbits. The mechanical strength, histology, and protein expression in the injured tendon tissues significantly improved 4 weeks after ADSC-EV treatment. Decorin and biglycan were significantly upregulated in comparison to the untreated controls. In summary, ADSC-EVs stimulated the proliferation and migration of tenocytes and improved the mechanical strength of repaired tendons, suggesting that ADSC-EV treatment is a potential highly potent therapeutic strategy for tendon injuries.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.C.); (Z.-Y.C.); (S.-H.C.)
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan; (Y.-H.L.); (P.-Y.C.)
| | - Zhi-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.C.); (Z.-Y.C.); (S.-H.C.)
- Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ya-Hsuan Lin
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan; (Y.-H.L.); (P.-Y.C.)
| | - Shih-Hsien Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.C.); (Z.-Y.C.); (S.-H.C.)
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan; (Y.-H.L.); (P.-Y.C.)
| | - Pang-Yun Chou
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan; (Y.-H.L.); (P.-Y.C.)
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 33305, Taiwan; (Y.-H.L.); (P.-Y.C.)
- Correspondence: (H.-K.K.); (F.-H.L.); Tel.: +886-328-1200 (ext. 3355) (H.-K.K.); +886-928-260-400 (F.-H.L.)
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10617, Taiwan; (S.-H.C.); (Z.-Y.C.); (S.-H.C.)
- Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 35053, Taiwan
- Correspondence: (H.-K.K.); (F.-H.L.); Tel.: +886-328-1200 (ext. 3355) (H.-K.K.); +886-928-260-400 (F.-H.L.)
| |
Collapse
|
11
|
Xu P, Deng B, Zhang B, Luo Q, Song G. Stretch-Induced Tenomodulin Expression Promotes Tenocyte Migration via F-Actin and Chromatin Remodeling. Int J Mol Sci 2021; 22:4928. [PMID: 34066472 PMCID: PMC8124537 DOI: 10.3390/ijms22094928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022] Open
Abstract
The mechanosensitive gene tenomodulin (Tnmd) is implicated in tendon maturation and repair. However, the mechanism by which mechanical loading regulates Tnmd's expression and its role in tenocyte migration is yet to be defined. Here, we show that Tnmd and migration were upregulated in uniaxial cyclic stress-stimulated tenocytes. The knockdown of Tnmd reduced cell migration in the presence and absence of mechanical loading, suggesting that Tnmd is involved in tenocyte migration. Moreover, the treatment of stress-stimulated tenocytes with the actin inhibitor latrunculin (Lat A), histone acetyltransferase inhibitor anacardic acid (ANA), or histone demethylases inhibitor GSK-J4 suppressed Tnmd expression and tenocyte migration. These results show that actin stress fiber formation and chromatin decondensation regulates Tnmd expression, which might then regulate tenocyte migration. Thus, this study proposes the involvement of the actin and chromatin mechanotransduction pathway in the regulation of Tnmd and reveals a novel role of Tnmd in tenocyte migration. The identification of Tnmd function in tenocyte migration provides insight into the molecular mechanisms involved in Tnmd-mediated tendon repair.
Collapse
Affiliation(s)
- Pu Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (P.X.); (B.D.); (Q.L.)
| | - Bin Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (P.X.); (B.D.); (Q.L.)
| | - Bingyu Zhang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (P.X.); (B.D.); (Q.L.)
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (P.X.); (B.D.); (Q.L.)
| |
Collapse
|
12
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
13
|
Fu G, Lu L, Pan Z, Fan A, Yin F. Adipose-derived stem cell exosomes facilitate rotator cuff repair by mediating tendon-derived stem cells. Regen Med 2021; 16:359-372. [PMID: 33871287 DOI: 10.2217/rme-2021-0004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To evaluate the potential capability of adipose-derived stem cell exosomes (ADSC-exos) on rotator cuff repair by mediating the tendon-derived stem cells (TDSCs) and explored the mechanism. Methods: First, we investigated the growth, survival and migration of TDSCs in the presence of ADSC-exos in vitro. Using a rat rotator cuff injury model to analyze the ability of the ADSC-exos to promote rotator cuff healing in vivo. Results: The hydrogel with ADSC-exos significantly improved the osteogenic and adipogenesis differentiation and enhanced the expression of RUNX2, Sox-9, TNMD, TNC and Scx and the mechanical properties of the articular portion. Conclusion: The ADSC-exos have the potential to promote the rotator cuff repair by mediating the TDSCs.
Collapse
Affiliation(s)
- Guojian Fu
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, PR China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China.,Department of Joint Surgery, Nanjing Jiangbei Hospital, Nantong University, Nanjing, 210048, PR China
| | - Liangyu Lu
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, PR China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China
| | - Zhangyi Pan
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, PR China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China
| | - Aoyuan Fan
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, PR China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, PR China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China
| |
Collapse
|
14
|
Zhang Z, Li Y, Zhang T, Shi M, Song X, Yang S, Liu H, Zhang M, Cui Q, Li Z. Hepatocyte Growth Factor-Induced Tendon Stem Cell Conditioned Medium Promotes Healing of Injured Achilles Tendon. Front Cell Dev Biol 2021; 9:654084. [PMID: 33898452 PMCID: PMC8059769 DOI: 10.3389/fcell.2021.654084] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Tendon repair is a medical challenge. Our present study investigated the effectiveness of acellular therapy consisting of conditioned medium (CM) of tendon stem cells (TSCs) induced with hepatocyte growth factor (HGF) in promoting the healing of injured Achilles tendon in a rat model. Proteomic analysis of soluble substances in the CM was performed using an array chip, and bioinformatic analysis was carried out to evaluate interactions among the factors. The effects of CM on viability and migratory capacity of tendon fibroblasts derived from rats with ruptured Achilles tendon were evaluated with the Cell Counting Kit 8 and wound healing assay, respectively. The expression of extracellular matrix (ECM)-related protein was assessed by western blotting. Rats with Achilles tendon injury were treated with CM by local injection for 2 weeks, and the organization of tendon fibers at the lesion site was evaluated by hematoxylin and eosin and Masson's trichrome staining of tissue samples. The deposition and degradation of ECM proteins and the expression of inflammatory factors at the lesion site were evaluated by immunohistochemistry and immunofluorescence. Biomechanical testing was carried out on the injured tendons to assess functional recovery. There were 12 bioactive molecules in the CM, with HGF as the hub of the protein-protein interaction network. CM treatment enhanced the viability and migration of tendon fibroblasts, altered the expression of ECM proteins, promoted the organization of tendon fibers, suppressed inflammation and improved the biomechanics of the injured Achilles tendon. These results suggest that HGF stimulates the secretion of soluble secretory products by TSCs and CM promotes the repair and functional recovery of ruptured Achilles tendon. Thus, HGF-induced TSC CM has therapeutic potential for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Zenan Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yutian Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tingting Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Manyu Shi
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Song
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hengchen Liu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingzhao Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Chen ZY, Chen SH, Chen CH, Chou PY, Yang CC, Lin FH. Polysaccharide Extracted from Bletilla striata Promotes Proliferation and Migration of Human Tenocytes. Polymers (Basel) 2020; 12:polym12112567. [PMID: 33139654 PMCID: PMC7694129 DOI: 10.3390/polym12112567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Tendon healing after injury is relatively slow, mainly because of the weak activity and metabolic properties of tendon cells (tenocytes). Bletilla striata polysaccharide (BSP) has been reported to enhance cell proliferation. Here, we aimed to increase tendon cell proliferation by BSP treatment. We isolated tenocytes from the flexor tendon of human origin. Moreover, we improved the process of extracting BSP. When human tenocytes (HTs) were treated with 100 μg/mL BSP, the MEK/ERK1/2 and PI3K/Akt signaling pathways were activated, thereby enhancing the proliferation ability of tenocytes. BSP treatment also increased the migration of HTs and their ability to secrete the extracellular matrix (Col-I and Col-III). In conclusion, BSP was successfully extracted from a natural Chinese herbal extract and was shown to enhance tenocytes proliferation, migration and collagen release ability. This study is the first to demonstrate improved healing of tendons using BSP.
Collapse
Affiliation(s)
- Zhi-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; (Z.-Y.C.); (S.-H.C.)
| | - Shih-Heng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; (Z.-Y.C.); (S.-H.C.)
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 333, Taiwan; (C.-H.C.); (P.-Y.C.)
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 333, Taiwan; (C.-H.C.); (P.-Y.C.)
| | - Pang-Yun Chou
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 333, Taiwan; (C.-H.C.); (P.-Y.C.)
| | - Chun-Chen Yang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 100, Taiwan;
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; (Z.-Y.C.); (S.-H.C.)
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan
- Correspondence: ; Tel.: +886-928260400
| |
Collapse
|
16
|
Zhang M, Liu H, Cui Q, Han P, Yang S, Shi M, Zhang T, Zhang Z, Li Z. Tendon stem cell-derived exosomes regulate inflammation and promote the high-quality healing of injured tendon. Stem Cell Res Ther 2020; 11:402. [PMID: 32943109 PMCID: PMC7499865 DOI: 10.1186/s13287-020-01918-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tendon stem cells (TSCs) have been reported to hold promises for tendon repair and regeneration. However, less is known about the effects of exosomes derived from TSCs. Therefore, we aimed to clarify the healing effects of TSC-derived exosomes (TSC-Exos) on tendon injury. METHODS The Achilles tendons of Sprague-Dawley male rats were used for primary culture of TSCs and tenocytes, and exosomes were isolated from TSCs. The proliferation of tenocytes induced by TSC-Exos was analyzed using an EdU assay; cell migration was measured by cell scratch and transwell assays. We used western blot to analyze the role of the PI3K/AKT and MAPK/ERK1/2 signaling pathways. In vivo, Achilles tendon injury models were created in Sprague-Dawley rats. Rats (n = 54) were then randomly assigned to three groups: the TSC-Exos group, the GelMA group, and the control group. We used immunofluorescence to detect changes in the expression of inflammatory and apoptotic markers at 1 week after surgery. Histology and changes in expression of extracellular matrix (ECM)-related indices were assessed by hematoxylin-eosin (H&E) staining and immunohistochemistry at 2 and 8 weeks. The collagen fiber diameter of the healing tendon was analyzed at 8 weeks by transmission electron microscopy (TEM). RESULTS TSC-Exos were taken up by tenocytes, which promoted the proliferation and migration of cells in a dose-dependent manner; this process may depend on the activation of the PI3K/AKT and MAPK/ERK1/2 signaling pathways. At 1 week after surgery, we found that inflammation and apoptosis were significantly suppressed by TSC-Exos. At 2 and 8 weeks, tendons treated with TSC-Exos showed more continuous and regular arrangement in contrast to disorganized tendons in the GelMA and control groups, and TSC-Exos may help regulate ECM balance and inhibited scar formation. Further, at 8 weeks, the TSC-Exos group had a larger diameter of collagen compared to the control group. CONCLUSIONS Our data suggest that TSC-Exos could promote high-quality healing of injured tendon, which may be a promising therapeutic approach for tendon injury.
Collapse
Affiliation(s)
- Mingzhao Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150001, China
| | - Hengchen Liu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150001, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150001, China
| | - Peilin Han
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150001, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150001, China
| | - Manyu Shi
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150001, China
| | - Tingting Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150001, China
| | - Zenan Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150001, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Nangang District, Harbin, 150001, China.
| |
Collapse
|
17
|
Ye D, Chen C, Wang Q, Zhang Q, Li S, Liu H. Short-wave enhances mesenchymal stem cell recruitment in fracture healing by increasing HIF-1 in callus. Stem Cell Res Ther 2020; 11:382. [PMID: 32894200 PMCID: PMC7487968 DOI: 10.1186/s13287-020-01888-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 01/14/2023] Open
Abstract
Background As a type of high-frequency electrotherapy, a short-wave can promote the fracture healing process; yet, its underlying therapeutic mechanisms remain unclear. Purpose To observe the effect of Short-Wave therapy on mesenchymal stem cell (MSC) homing and relative mechanisms associated with fracture healing. Materials and methods For in vivo study, the effect of Short-Wave therapy to fracture healing was examined in a stabilized femur fracture model of 40 SD rats. Radiography was used to analyze the morphology and microarchitecture of the callus. Additionally, fluorescence assays were used to analyze the GFP-labeled MSC homing after treatment in 20 nude mice with a femoral fracture. For in vitro study, osteoblast from newborn rats simulated fracture site was first irradiated by the Short-Wave; siRNA targeting HIF-1 was used to investigate the role of HIF-1. Osteoblast culture medium was then collected as chemotaxis content of MSC, and the migration of MSC from rats was evaluated using wound healing assay and trans-well chamber test. The expression of HIF-1 and its related factors were quantified by q RT-PCR, ELISA, and Western blot. Results Our in vivo experiment indicated that Short-Wave therapy could promote MSC migration, increase local and serum HIF-1 and SDF-1 levels, induce changes in callus formation, and improve callus microarchitecture and mechanical properties, thus speeding up the healing process of the fracture site. Moreover, the in vitro results further indicated that Short-Wave therapy upregulated HIF-1 and SDF-1 expression in osteoblast and its cultured medium, as well as the expression of CXCR-4, β-catenin, F-actin, and phosphorylation levels of FAK in MSC. On the other hand, the inhibition of HIF-1α was significantly restrained by the inhibition of HIF-1α in osteoblast, and it partially inhibited the migration of MSC. Conclusions These results suggested that Short-Wave therapy could increase HIF-1 in callus, which is one of the crucial mechanisms of chemotaxis MSC homing in fracture healing.
Collapse
Affiliation(s)
- Dongmei Ye
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Chen Chen
- Department of Anatomy, Medical College of Dalian University, Dalian, China
| | - Qiwen Wang
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.,Department of Rehabilitation, The people's Hospital of Longhua District, Shenzhen, China
| | - Qi Zhang
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Sha Li
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Hongwei Liu
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
18
|
Rhatomy S, Prasetyo TE, Setyawan R, Soekarno NR, Romaniyanto FNU, Sedjati AP, Sumarwoto T, Utomo DN, Suroto H, Mahyudin F, Prakoeswa CRS. Prospect of stem cells conditioned medium (secretome) in ligament and tendon healing: A systematic review. Stem Cells Transl Med 2020; 9:895-902. [PMID: 32304180 PMCID: PMC7381802 DOI: 10.1002/sctm.19-0388] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/05/2020] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tendon or ligament tears can decrease patients' quality of life. Many therapeutic interventions are available to treat such injuries. Mesenchymal stem cells (MSCs) have been shown to be effective in treating tendon or ligament tears; however, the use of stem cell-conditioned medium (CM) requires further investigation. This review focused on the use of stem cell CM as treatment for tendon or ligament tears. METHODS A systematic literature search was performed on PubMed (MEDLINE), OVID, EMBASE, the Cochrane Library, Scopus, Web of Science, and Science Direct with the terms conditioned media or conditioned medium or secretome or microvesicle or extracellular vesicle or exosome, and tendon or ligament as the search keywords. A total of 852 articles were reviewed. Five articles were identified as relevant for this systematic review. RESULTS Meta-analysis could not be performed because of the high heterogeneity of the reviewed studies; however, the results of this study support a positive effect of conditioned media in tendon and ligament treatment. CONCLUSION This review provides evidence of improvement in the tendon and ligament healing process with stem cell CM therapy in preclinical studies.
Collapse
Affiliation(s)
- Sholahuddin Rhatomy
- Department of Orthopaedics and TraumatologyDr. Soeradji Tirtonegoro General HospitalKlatenIndonesia
- Faculty of Medicine, Public Health, and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| | - Thomas Edison Prasetyo
- Soeradji Tirtonegoro Sport Center and Research UnitDr. Soeradji Tirtonegoro General HospitalKlatenIndonesia
| | - Riky Setyawan
- Soeradji Tirtonegoro Sport Center and Research UnitDr. Soeradji Tirtonegoro General HospitalKlatenIndonesia
| | | | - FNU Romaniyanto
- Department of Orthopaedics and TraumatologySurakartaIndonesia
- Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Andi Priyo Sedjati
- Department of Orthopaedics and TraumatologySurakartaIndonesia
- Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Tito Sumarwoto
- Department of Orthopaedics and TraumatologySurakartaIndonesia
- Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Dwikora Novembri Utomo
- Department of Orthopaedics and TraumatologyDr. Soetomo General HospitalSurabayaIndonesia
- Faculty of MedicineUniversitas AirlanggaSurabayaIndonesia
| | - Heri Suroto
- Department of Orthopaedics and TraumatologyDr. Soetomo General HospitalSurabayaIndonesia
- Faculty of MedicineUniversitas AirlanggaSurabayaIndonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedics and TraumatologyDr. Soetomo General HospitalSurabayaIndonesia
- Faculty of MedicineUniversitas AirlanggaSurabayaIndonesia
| | - Cita Rosita Sigit Prakoeswa
- Faculty of MedicineUniversitas AirlanggaSurabayaIndonesia
- Department of Dermatology and VenereologyDr. Soetomo General HospitalSurabayaIndonesia
| |
Collapse
|
19
|
Li J, Liu ZP, Xu C, Guo A. TGF-β1-containing exosomes derived from bone marrow mesenchymal stem cells promote proliferation, migration and fibrotic activity in rotator cuff tenocytes. Regen Ther 2020; 15:70-76. [PMID: 33426204 PMCID: PMC7770343 DOI: 10.1016/j.reth.2020.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
Objective This study aimed to investigate effects of TGF-β1-containing exosomes derived from bone marrow mesenchymal stem cells (BMSC) on cell function of rotator cuff tenocytes and its implication to rotator cuff tear. Methods The primary BMSC and rotator cuff tenocytes were extracted and cultured. Identification of BMSC were performed by observing cell morphology and measurement of surface biomarkers by flow cytometry. BMSC-derived exosomes were extracted and identified by using electron microscopy, nanoparticle-tracking analysis (NTA) and western blotting. Cell proliferation and cell cycle were measured by CCK-8 assay and flow cytometry assay, respectively. Transwell assay was used for detection of tenocytes migration. The fibrotic activity of tenocytes was determined via qPCR and western blotting assays. Results BMSC and BMSC-derived exosomes were successfully extracted. Treatment of BMSC-derived exosomes or TGF-β1 promoted cell proliferation, migration and increased cell ratio of (S + G2/M) phases in tenocytes, as well as enhanced the expression levels of fibrotic activity associated proteins. However, inhibition of TGF-β1 by transfection of sh-TGF-β1 or treatment of TGFβR I/II inhibitor partially reversed the impact of BMSC-derived exosomes on tenocytes function. Conclusion Taken together, TGF-β1-containing exosomes derived from BMSC promoted proliferation, migration and fibrotic activity in rotator cuff tenocytes, providing a new direction for treatment of rotator cuff tendon healing.
Collapse
Key Words
- BMSC
- BMSC, Bone mesenchymal stem cells
- CCK8, Cell counting kit-8
- Col I, Collagen I
- Col III, Collagen III
- DMEM, Dulbecco's modified Eagle's medium
- Exosomes
- FBS, Fetal bovine serum
- Fibrotic activity
- Migration
- PVDF, Polyvinylidene fluoride
- Proliferation
- Rotator cuff tear
- SDS-PAGE, Sodium dodecyl sulfate polyacrylamide gel electrophoresis
- Scx, Scleraxis
- Smad7, Mothers against decapentaplegic homolog 7
- TGF-β1
- TGF-β1, Transforming growth factors β1
- TGF-βR I/II, Transforming growth factors β1 receptor type I/II
- Tnc, Tenascin C
- qPCR, Quantitative reverse-transcription polymerase chain reaction
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China.,Affiliated Hospital of Chengde Medical College, Chengde 067000, PR China
| | - Zheng-Peng Liu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China.,Affiliated Hospital of Chengde Medical College, Chengde 067000, PR China
| | - Cong Xu
- Affiliated Hospital of Chengde Medical College, Chengde 067000, PR China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| |
Collapse
|
20
|
Yu H, Cheng J, Shi W, Ren B, Zhao F, Shi Y, Yang P, Duan X, Zhang J, Fu X, Hu X, Ao Y. Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomater 2020; 106:328-341. [PMID: 32027991 DOI: 10.1016/j.actbio.2020.01.051] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes are being increasingly focused as the new biological pro-regenerative therapeutic agents for various types of tissue injury. Here, we explored the potential of a novel exosome-based therapeutic application combined with a local fibrin delivery strategy for tendon repair. After discovering that bone marrow mesenchymal stem cells-derived exosomes (BMSCs-exos) promoted the proliferation, migration and tenogenic differentiation of tendon stem/progenitor cells (TSPCs) in vitro, we embedded BMSCs-exos in fibrin and injected it into the defect area of rat patellar tendon, and the results showed that the exosomes could be controlled-released from the fibrin, retained within the defect area, and internalized by TSPCs. BMSCs-exos embedded in fibrin significantly improved the histological scores, enhanced the expression of mohawk, tenomodulin, and type I collagen, as well as the mechanical properties of neotendon, and also promoted the proliferation of local TSPCs in vivo. Overall, we demonstrated the beneficial role of BMSCs-exos in tendon regeneration, and that fibrin-exosomes delivery system represents a successful local treatment strategy of exosomes. This study brings prospects in the potential application of exosomes in novel therapies for tendon injury. STATEMENT OF SIGNIFICANCE: Mesenchymal stem cells have been identified as a preferred approach in tissue regeneration. In this study, we reported bone marrow mesenchymal stem cells (BMSCs) promote the proliferation and migration of tendon stem/progenitor cells (TSPCs) via the paracrine signaling effect of the nanoscale exosomes. We also demonstrated that the application of BMSCs-derived exosomes might be a promising approach to activate the regenerative potential of endogenous TSPCs in tendon injured region, and fibrin-exosomes delivery system represents a successful local treatment strategy of exosomes.
Collapse
|
21
|
Li Z, Xiang S, Li EN, Fritch MR, Alexander PG, Lin H, Tuan RS. Tissue Engineering for Musculoskeletal Regeneration and Disease Modeling. Handb Exp Pharmacol 2020; 265:235-268. [PMID: 33471201 DOI: 10.1007/164_2020_377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Musculoskeletal injuries and associated conditions are the leading cause of physical disability worldwide. The concept of tissue engineering has opened up novel approaches to repair musculoskeletal defects in a fast and/or efficient manner. Biomaterials, cells, and signaling molecules constitute the tissue engineering triad. In the past 40 years, significant progress has been made in developing and optimizing all three components, but only a very limited number of technologies have been successfully translated into clinical applications. A major limiting factor of this barrier to translation is the insufficiency of two-dimensional cell cultures and traditional animal models in informing the safety and efficacy of in-human applications. In recent years, microphysiological systems, often referred to as organ or tissue chips, generated according to tissue engineering principles, have been proposed as the next-generation drug testing models. This chapter aims to first review the current tissue engineering-based approaches that are being applied to fabricate and develop the individual critical elements involved in musculoskeletal organ/tissue chips. We next highlight the general strategy of generating musculoskeletal tissue chips and their potential in future regenerative medicine research. Exemplary microphysiological systems mimicking musculoskeletal tissues are described. With sufficient physiological accuracy and relevance, the human cell-derived, three-dimensional, multi-tissue systems have been used to model a number of orthopedic disorders and to test new treatments. We anticipate that the novel emerging tissue chip technology will continually reshape and improve our understanding of human musculoskeletal pathophysiology, ultimately accelerating the development of advanced pharmaceutics and regenerative therapies.
Collapse
Affiliation(s)
- Zhong Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shiqi Xiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eileen N Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA.
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
22
|
Yao X, Wei W, Wang X, Chenglin L, Björklund M, Ouyang H. Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 2019; 224:119492. [PMID: 31557588 DOI: 10.1016/j.biomaterials.2019.119492] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Age-associated musculoskeletal disorders (MSDs) have been historically overlooked by mainstream biopharmaceutical researchers. However, it has now been recognized that stem and progenitor cells confer innate healing capacity for the musculoskeletal system. Current evidence indicates that exosomes are particularly important in this process as they can mediate sequential and reciprocal interactions between cells to initiate and enhance healing. The present review focuses on stem cells (SCs) derived exosomes as a regenerative therapy for treatment of musculoskeletal disorders. We discuss mechanisms involving exosome-mediated transfer of RNAs and how these have been demonstrated in vitro and in vivo to affect signal transduction pathways in target cells. We envision that standardized protocols for stem cell culture as well as for the isolation and characterization of exosomes enable GMP-compliant large-scale production of SCs-derived exosomes. Hence, potential new treatment for age-related degenerative diseases can be seen in the horizon.
Collapse
Affiliation(s)
- Xudong Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhao Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Chenglin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China
| | - Hongwei Ouyang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
23
|
Kimmerling KA, McQuilling JP, Staples MC, Mowry KC. Tenocyte cell density, migration, and extracellular matrix deposition with amniotic suspension allograft. J Orthop Res 2019; 37:412-420. [PMID: 30378182 PMCID: PMC6587843 DOI: 10.1002/jor.24173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/22/2018] [Indexed: 02/04/2023]
Abstract
Amniotic suspension allografts (ASA), derived from placental tissues, contain particulated amniotic membrane and amniotic fluid cells. Recently, ASA and other placental-derived allografts have been used in orthopaedic applications, including tendinopathies and tendon injuries. The purpose of this study was to determine the potential effects of ASA on tenocyte cell density, migration, and responses to inflammatory stimuli. Tenocyte cell density was measured using AlamarBlue over multiple time points, while migration was determined using a Boyden chamber assay. Deposition of ECM markers were measured using BioColor kits. Gene expression and protein production of cytokines and growth factors following stimulus with pro-inflammatory IL-1β and TNF-α was measured using qPCR and ELISAs. Conditioned media (CM) was made from ASA and used for all assays in this study. In vitro, ASA CM treatment significantly promoted tenocyte increases in cell density and migration compared to assay media controls. ASA CM also increased the deposition of extracellular matrix (ECM) proteins, including collagen, elastin, and sGAG. Following inflammatory stimulation and treatment with ASA CM, tenocytes downregulated IL-8 gene expression, a pro-inflammatory cytokine normally elevated during the inflammatory phase of tendon healing. Additionally, tenocytes treated with ASA CM had significantly lower protein levels of TGF-β1 compared to controls. This study evaluated ASA and its effect on tenocytes; specifically, treatment with ASA resulted in increased cell density, more robust migration and matrix deposition, and some alteration of inflammatory targets. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:412-420, 2019.
Collapse
Affiliation(s)
| | | | - Miranda C. Staples
- Milestone Research Organization4901 Morena Blvd, Suite 132San DiegoCalifornia92117
| | - Katie C. Mowry
- Organogenesis Inc.2641 Rocky Ridge LaneBirmingham, AL 35216
| |
Collapse
|
24
|
Dursun G, Tohidnezhad M, Markert B, Stoffel M. Effects of uniaxial stretching on tenocyte migration behaviour. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1515/cdbme-2018-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIt is widely known that tendon tissues are subjected to repeated cyclic mechanical load which influences cellular processes. The involvement of principles of mechanics in tissue engineering contributes to the investigations of the connection between mechanical and biological parameters in cellular processes and as well as to the development of new approaches for specific treatment methods. The healing process of injured tendons includes tenocyte migration which occurs from intact regions of tendon into the wound site. The aim of the present study is to investigate and enhance the migration characteristics of tenocytes under uniaxial mechanical stretching using an in-house tensile bioreactor system. Uniaxial mechanical stretching is applied to tenocyte-seeded silicone as well as collagen membranes, which possess different material properties. Tenocyte-seeded silicone membranes were investigated under three different loading conditions, including unstimulated (control), 3% and 5% strain, at frequency of 0.5 Hz. Tenocyte-seeded collagen membranes were investigated using three different frequencies, including unstimulated (control), 0.1 Hz and 0.5 Hz at strain of 4%. The main finding in this study is that uniaxially mechanical stretching at 3% strain enhances the cell migration more than 5% strain on silicone membranes.
Collapse
Affiliation(s)
- Gözde Dursun
- 1Institute of General Mechanics, RWTH Aachen University,Aachen, Germany
| | | | - Bernd Markert
- 1Institute of General Mechanics, RWTH Aachen University,Aachen, Germany
| | - Marcus Stoffel
- 1Institute of General Mechanics, RWTH Aachen University,Aachen, Germany
| |
Collapse
|