1
|
Mathis H, Naquin D, Margeot A, Bidard F. Enhanced heterologous gene expression in Trichoderma reesei by promoting multicopy integration. Appl Microbiol Biotechnol 2024; 108:470. [PMID: 39311996 PMCID: PMC11420251 DOI: 10.1007/s00253-024-13308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Trichoderma reesei displays a high capability to produce extracellular proteins and therefore is used as a platform for the expression of heterologous genes. In a previous study, an expression cassette with the constitutive tef1 promoter and the cbh1 terminator compatible with flow cytometry analysis was developed. Independent transformants obtained by a random integration into the genome of a circular plasmid containing the expression cassette showed a wide range of fluorescence levels. Whole genome sequencing was conducted on eight of the transformed strains using two next-generation sequencing (NGS) platforms: Illumina paired-end sequencing and Oxford Nanopore. In all strains, the expression plasmid was inserted at the same position in the genome, i.e., upstream of the tef1 gene, indicating an integration by homologous recombination. The different levels of fluorescence observed correspond to different copy numbers of the plasmid. Overall, the integration of a circular plasmid with the green fluorescence protein (egfp) transgene under the control of tef1 promoter favors multicopy integration and allows over-production of this heterologous protein on glucose. In conclusion, an expression system based on using the tef1 promotor could be one of the building blocks for improving high-value heterologous protein production by increasing the copy number of the encoding genes into the genome of the platform strain. KEY POINTS: • Varied eGFP levels from tef1 promoter and cbh1 terminator expression. • Whole genome sequencing on short and long reads platforms reveals various plasmid copy numbers in strains. • Plasmids integrate at the same genomic site by homologous recombination in all strains.
Collapse
Affiliation(s)
- Hugues Mathis
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison, France.
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Antoine Margeot
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Frederique Bidard
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| |
Collapse
|
2
|
Adnan M, Liu G. Promoters and Synthetic Promoters in Trichoderma reesei. Methods Mol Biol 2024; 2844:47-68. [PMID: 39068331 DOI: 10.1007/978-1-0716-4063-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Trichoderma reesei holds immense promise for large-scale protein production, rendering it an excellent subject for deeper exploration using genetic engineering methods to achieve a comprehensive grasp of its cellular physiology. Understanding the genetic factors governing its intrinsic regulatory network is crucial, as lacking this knowledge could impede the expression of target genes. Prior and ongoing studies have concentrated on advancing new expression systems grounded in synthetic biology principles. These methodologies involve utilizing established potent promoters or engineered variations. Genomic and transcriptomic analyses have played a pivotal role in identifying robust promoters and expression systems, including light-responsive, copper-inducible, L-methionine-inducible, and Tet-On systems, among others. This chapter seeks to highlight various research endeavors focusing on tunable and constitutive promoters, the impact of different promoters on both native and foreign protein expression, the discovery of fresh promoters, and strategies conducive to future research aimed at refining and enhancing protein expression in T. reesei. Characterizing new promoters and adopting innovative expression systems hold the potential to significantly expand the molecular toolkit accessible for genetically engineering T. reesei strains. For instance, modifying potent inducible promoters such as Pcbh1 by replacing transcriptional repressors (cre1, ace1) with activators (xyr1, ace2, ace3, hap2/3/5) and integrating synthetic expression systems can result in increased production of crucial enzymes such as endoglucanases (EGLs), β-glucosidases (BGLs), and cellobiohydrolases (CBHs). Similarly, robust constitutive promoters such as Pcdna1 can be converted into synthetic hybrid promoters by incorporating activation elements from potent inducible promoters, facilitating cellulase induction and expression even under repressive conditions. Nevertheless, further efforts are necessary to uncover innovative promoters and devise novel expression strategies to enhance the production of desired proteins on an industrial scale.
Collapse
Affiliation(s)
- Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
TtCel7A: A Native Thermophilic Bifunctional Cellulose/Xylanase Exogluclanase from the Thermophilic Biomass-Degrading Fungus Thielavia terrestris Co3Bag1, and Its Application in Enzymatic Hydrolysis of Agroindustrial Derivatives. J Fungi (Basel) 2023; 9:jof9020152. [PMID: 36836267 PMCID: PMC9961574 DOI: 10.3390/jof9020152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The biomass-degrading thermophilic ascomycete fungus Thielavia terrestris Co3Bag1 produces TtCel7A, a native bifunctional cellulase/xylanase GH7 family. The purified TtCel7A, with an estimated molecular weight of 71 kDa, was biochemically characterized. TtCel7A displayed an optimal pH of 5.5 for both activities and an optimal temperature of 60 and 50 °C for cellulolytic and xylanolytic activities, respectively. The half-lives determined for cellulase activity were 140, 106, and 41 min at 50, 60, and 70 °C, respectively, whereas the half-lives observed for xylanase activity were 24, 10, and 1.4 h at 50, 60, and 70 °C, respectively. The KM and Vmax values were 3.12 mg/mL and 50 U/mg for cellulase activity and 0.17 mg/mL and 42.75 U/mg for xylanase activity. Circular dichroism analysis suggests changes in the secondary structure of TtCel7A in the presence of CMC as the substrate, whereas no modifications were observed with beechwood xylan. TtCel7A displayed the excellent capability to hydrolyze CMC, beechwood xylan, and complex substrates such as oat bran, wheat bran, and sugarcane bagasse, with glucose and cellobiose being the main products released; also, slightly less endo cellulase and xylanase activities were observed. Thus, suggesting TtCel7A has an exo- and endomode of action. Based on the characteristics of the enzyme, it might be considered a good candidate for industrial applications.
Collapse
|
4
|
Liang Q, Cao L, Zhu C, Kong Q, Sun H, Zhang F, Mou H, Liu Z. Characterization of Recombinant Antimicrobial Peptide BMGlv2 Heterologously Expressed in Trichoderma reesei. Int J Mol Sci 2022; 23:ijms231810291. [PMID: 36142214 PMCID: PMC9499586 DOI: 10.3390/ijms231810291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) serve as alternative candidates for antibiotics and have attracted the attention of a wide range of industries for various purposes, including the prevention and treatment of piglet diarrhea in the swine industry. Escherichia coli, Salmonella, and Clostridium perfringens are the most common pathogens causing piglet diarrhea. In this study, the antimicrobial peptide gloverin2 (BMGlv2), derived from Bombyx mandarina, was explored to determine the efficient prevention effect on bacterial piglet diarrhea. BMGlv2 was heterologously expressed in Trichoderma reesei Tu6, and its antimicrobial properties against the three bacteria were characterized. The results showed that the minimum inhibitory concentrations of the peptide against E. coli ATCC 25922, S. derby ATCC 13076, and C. perfringens CVCC 2032 were 43.75, 43.75, and 21.86 μg/mL, respectively. The antimicrobial activity of BMGlv2 was not severely affected by high temperature, salt ions, and digestive enzymes. It had low hemolytic activity against rabbit red blood cells, indicating its safety for use as a feed additive. Furthermore, the measurements of the leakage of bacterial cell contents and scanning electron microscopy of C. perfringens CVCC 2032 indicated that BMGlv2 exerted antimicrobial activity by destroying the cell membrane. Overall, this study showed the heterologous expression of the antimicrobial peptide BMGlv2 in T. reesei and verified its antimicrobial properties against three common pathogenic bacteria associated with piglet diarrhea, which can provide a reference for the applications of AMPs as an alternative product in industrial agriculture.
Collapse
|
5
|
Kumar Saini J, Himanshu, Hemansi, Kaur A, Mathur A. Strategies to enhance enzymatic hydrolysis of lignocellulosic biomass for biorefinery applications: A review. BIORESOURCE TECHNOLOGY 2022; 360:127517. [PMID: 35772718 DOI: 10.1016/j.biortech.2022.127517] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Global interest in lignocellulosic biorefineries has increased in the recent past due to technological advancements in sustainable and cost-effective production of numerous commodity and speciality chemicals and fuels from renewable lignocellulosic biomass (LCB). As a result, the market value of biorefinery products has also increased over the time, with an estimated worth of USD 867.7 billion by 2025. However, biorefinery operations, especially enzymatic hydrolysis, suffer from many challenges that limits the cost-effectiveness of conversion of LCB. Therefore, it is essential to understand and address these challenges in future biorefineries. The paper focuses on recent trends and challenges in enzymatic hydrolysis of LCB during lignocellulosic biorefinery operation for greener synthesis of energy, fuels, chemicals and other high-value products. Insights into the gaps in knowledge and technological challenges have also been addressed together with focus on future research needs and perspectives of enzymatic hydrolysis of LCB for biorefinery applications.
Collapse
Affiliation(s)
- Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India.
| | - Himanshu
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Hemansi
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Research & Development Office, Ashoka University, Sonipat, Haryana PIN- 131029, India
| | - Amanjot Kaur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Aayush Mathur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| |
Collapse
|
6
|
Promoter regulation and genetic engineering strategies for enhanced cellulase expression in Trichoderma reesei. Microbiol Res 2022; 259:127011. [DOI: 10.1016/j.micres.2022.127011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/18/2023]
|
7
|
Dadwal A, Sharma S, Satyanarayana T. Recombinant cellobiohydrolase of Myceliophthora thermophila: characterization and applicability in cellulose saccharification. AMB Express 2021; 11:148. [PMID: 34735642 PMCID: PMC8568750 DOI: 10.1186/s13568-021-01311-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
A codon optimized cellobiohydrolase (CBH) encoding synthetic gene of 1188 bp from a thermophilic mold Myceliophthora thermophila (MtCel6A) was cloned and heterologously expressed in Escherichia coli for the first time. In silico analysis suggested that MtCel6A is a GH6 CBH and belongs to CBHII family, which is structurally similar to Cel6A of Humicola insolens. The recombinant MtCel6A is expressed as active inclusion bodies, and the molecular mass of the purified enzyme is ~ 45 kDa. The rMtCel6A is active in a wide range of pH (4-12) and temperatures (40-100 °C) with optima at pH 10.0 and 60 °C. It exhibits T1/2 of 6.0 and 1.0 h at 60 and 90 °C, respectively. The rMtCel6A is an extremozyme with organic solvent, salt and alkali tolerance. The Km, Vmax, kcat and kcat/Km values of the enzyme are 3.2 mg mL-1, 222.2 μmol mg-1 min-1, 2492 s-1 and 778.7 s-1 mg-1 mL-1, respectively. The product analysis of rMtCel6A confirmed that it is an exoenzyme that acts from the non-reducing end of cellulose. The addition of rMtCel6A to the commercial cellulase mix (Cellic CTec2) led to 1.9-fold increase in saccharification of the pre-treated sugarcane bagasse. The rMtCel6A is a potential CBH that finds utility in industrial processes such as in bioethanol, paper pulp and textile industries.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences & Engineering, Netaji Subhas Institute of Technology (University of Delhi), Azad Hind Fauj Marg, Sector-3 Dwarka, New Delhi, 110078, India
| | - Shilpa Sharma
- Department of Biological Sciences & Engineering, Netaji Subhas Institute of Technology (University of Delhi), Azad Hind Fauj Marg, Sector-3 Dwarka, New Delhi, 110078, India
- Department of Biological Sciences & Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Sector-3 Dwarka, New Delhi, 110078, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences & Engineering, Netaji Subhas Institute of Technology (University of Delhi), Azad Hind Fauj Marg, Sector-3 Dwarka, New Delhi, 110078, India.
- Department of Biological Sciences & Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Sector-3 Dwarka, New Delhi, 110078, India.
| |
Collapse
|
8
|
Wei H, Wu M, Fan A, Su H. Recombinant protein production in the filamentous fungus Trichoderma. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:5163-5184. [PMID: 32337628 DOI: 10.1007/s00253-020-10602-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic material into bioethanol has progressed in the past decades; however, several challenges still exist which impede the industrial application of this technology. Identifying the challenges that exist in all unit operations is crucial and needs to be optimised, but only the barriers related to the secretion of recombinant cellulolytic enzymes in Saccharomyces cerevisiae will be addressed in this review. Fundamental principles surrounding CBP as a biomass conversion platform have been established through the successful expression of core cellulolytic enzymes, namely β-glucosidases, endoglucanases, and exoglucanases (cellobiohydrolases) in S. cerevisiae. This review will briefly address the challenges involved in the construction of an efficient cellulolytic yeast, with particular focus on the secretion efficiency of cellulases from this host. Additionally, strategies for studying enhanced cellulolytic enzyme secretion, which include both rational and reverse engineering approaches, will be discussed. One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development. Furthermore, with the advancement in next-generation sequencing, studies that utilise this method of exploiting intra-strain diversity for industrially relevant traits will be reviewed. Finally, future prospects are discussed for the creation of ideal CBP strains with high enzyme production levels.Key Points• Several challenges are involved in the construction of efficient cellulolytic yeast, in particular, the secretion efficiency of cellulases from the hosts.• Strategies for enhancing cellulolytic enzyme secretion, a core requirement for CBP host microorganism development, include both rational and reverse engineering approaches.• One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development.
Collapse
|