1
|
Baby EK, Savitha R, Kinsella GK, Nolan K, Ryan BJ, Henehan GT. Influence of deep eutectic solvents on redox biocatalysis involving alcohol dehydrogenases. Heliyon 2024; 10:e32550. [PMID: 38948051 PMCID: PMC11209023 DOI: 10.1016/j.heliyon.2024.e32550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Redox biocatalysis plays an increasingly important role in modern organic synthesis. The recent integration of novel media such as deep eutectic solvents (DESs) has significantly impacted this field of chemical biology. Alcohol dehydrogenases (ADHs) are important biocatalysts where their unique specificity is used for enantioselective synthesis. This review explores aspects of redox biocatalysis in the presence of DES both with whole cells and with isolated ADHs. In both cases, the presence of DES has a significant influence on the outcome of reactions albeit via different mechanisms. For whole cells, DES was shown to be a useful tool to direct product formation or configuration - a process of solvent engineering. Whole cells can tolerate DES as media components for the solubilization of hydrophobic substrates. In some cases, DES in the growth medium altered the enantioselectivity of whole cell transformations by solvent control. For isolated enzymes, on the other hand, the presence of DES promotes substrate solubility as well as enhancing enzyme stability and activity. DES can be employed as a smart solvent or smart cosubstrate particularly for cofactor regeneration purposes. From the literatures examined, it is suggested that DES based on choline chloride (ChCl) such as ChCl:Glycerol (Gly), ChCl:Glucose (Glu), and ChCl:1,4-butanediol (1,4-BD) are useful starting points for ADH-based redox biocatalysis. However, each specific reaction will require optimisation due to the influence of several factors on biocatalysis in DES. These include solvent composition, enzyme source, temperature, pH and ionic strength as well as the substrates and products under investigation.
Collapse
Affiliation(s)
- Ebin K. Baby
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, Dublin 7, D07 E244, Ireland
| | - Rangasamy Savitha
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, Dublin 7, D07 E244, Ireland
| | - Gemma K. Kinsella
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, Dublin 7, D07 E244, Ireland
| | - Kieran Nolan
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, D09 V209, Ireland
| | - Barry J. Ryan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, Dublin 7, D07 E244, Ireland
| | - Gary T.M. Henehan
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, Dublin 7, D07 E244, Ireland
| |
Collapse
|
2
|
Chlipała P, Janeczko T, Mazur M. Bioreduction of 4'-Hydroxychalcone in Deep Eutectic Solvents: Optimization and Efficacy with Various Yeast Strains. Int J Mol Sci 2024; 25:7152. [PMID: 39000255 PMCID: PMC11241015 DOI: 10.3390/ijms25137152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
4'-dihydrochalcones are secondary metabolites isolated from many medicinal plants and from the resin known as 'dragon's blood'. Due to their biological potential, our research objective was to determine the possibilities of using biocatalysis processes carried out in deep eutectic solvents (DESs) to obtain 4'-dihydrochalcones as a model compound. The processes were carried out in a culture of the yeast Yarrowia lipolytica KCh 71 and also in cultures of strains of the genera Rhodotorula and Debaryomyces. Based on the experiments carried out, an optimum process temperature of 35 °C was chosen, and the most suitable DES contained glycerol as a hydrogen bond donor (HBD). For a medium with 30% water content (DES 11), the conversion observed after 24 h exceeded 70%, while increasing the amount of water to 50% resulted in a similar level of conversion after just 1 h. A fivefold increase in the amount of added substrate resulted in a reduction in conversion, which reached 30.3%. Of the other yeast strains tested, Rhodotorula marina KCh 77 and Rhodotorula rubra KCh 4 also proved to be good biocatalysts for the bioreduction process. For these strains, the conversion reached 95.4% and 95.1%, respectively. These findings highlight the potential of yeast as a biocatalyst for the selective reduction of α,β-unsaturated ketones and the possibility of using a DESs as a reaction medium in this process.
Collapse
Affiliation(s)
| | | | - Marcelina Mazur
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (P.C.); (T.J.)
| |
Collapse
|
3
|
Combination of Enzymes and Deep Eutectic Solvents as Powerful Toolbox for Organic Synthesis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020516. [PMID: 36677575 PMCID: PMC9863131 DOI: 10.3390/molecules28020516] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
During the last decade, a wide spectrum of applications and advantages in the use of deep eutectic solvents for promoting organic reactions has been well established among the scientific community. Among these synthetic methodologies, in recent years, various examples of biocatalyzed processes have been reported, making use of eutectic mixtures as reaction media, as an improvement in terms of selectivity and sustainability. This review aims to show the newly reported protocols in the field, subdivided by reaction class as a 'toolbox' guide for organic synthesis.
Collapse
|
4
|
Lipase-mediated Baeyer-Villiger oxidation of benzylcyclopentanones in ester solvents and deep eutectic solvents. Sci Rep 2022; 12:14795. [PMID: 36042323 PMCID: PMC9427991 DOI: 10.1038/s41598-022-18913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
This work presents the chemo-enzymatic Baeyer-Villiger oxidation of α-benzylcyclopentanones in ester solvents as well as deep eutectic solvents (DES). In the first part of the work the effect of selected reaction conditions on the reaction rate was determined. The oxidation process was most effective in ethyl acetate at 55 °C, with the use of lipase B from Candida antarctica immobilized on acrylic resin and UHP as oxidant. Ultimately, these preliminary studies prompted the development of an effective method for the implementation of lipase-mediated Baeyer-Villiger oxidation of benzylcyclopentanones in DES. The highest conversion was indicated when the oxidizing agent was a component of DESs (minimal DESs). The fastest conversion of ketones to lactones was observed in a mixture of choline chloride with urea hydrogen peroxide. In this case, after 3 days, the conversion of the ketones to lactones products exceeded 92% for all substrates. As a result, two new lactones were obtained and fully characterized by spectroscopic data.
Collapse
|
5
|
Dudu AI, Bencze LC, Paizs C, Toşa MI. Deep eutectic solvents – a new additive in the encapsulation of lipase B from Candida antarctica: biocatalytic applications. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00469g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient, active and stable biocatalyst was prepared by sol–gel CaL-B encapsulation in the presence of a choline–fructose DES, and is able to transform efficiently ten alcohols relevant for various industries.
Collapse
Affiliation(s)
- Adrian Ioan Dudu
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos street, no. 11, 400028, Cluj Napoca, Romania
| | - Laszlo Csaba Bencze
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos street, no. 11, 400028, Cluj Napoca, Romania
| | - Csaba Paizs
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos street, no. 11, 400028, Cluj Napoca, Romania
| | - Monica Ioana Toşa
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany Janos street, no. 11, 400028, Cluj Napoca, Romania
| |
Collapse
|
6
|
Álvarez MS, Longo MA, Deive FJ, Rodríguez A. Synthesis and characterization of a lipase-friendly DES based on cholinium dihydrogen phosphate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Panić M, Radović M, Maros I, Jurinjak Tušek A, Cvjetko Bubalo M, Radojčić Redovniković I. Development of environmentally friendly lipase-catalysed kinetic resolution of (R,S)-1-phenylethyl acetate using aqueous natural deep eutectic solvents. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Panić M, Andlar M, Tišma M, Rezić T, Šibalić D, Cvjetko Bubalo M, Radojčić Redovniković I. Natural deep eutectic solvent as a unique solvent for valorisation of orange peel waste by the integrated biorefinery approach. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:340-350. [PMID: 33340816 DOI: 10.1016/j.wasman.2020.11.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
This research investigates the use of seven natural deep eutectic solvents (NADESs) for valorisation of orange peel waste, with the final goal to propose a unique NADES for integrated biorefinery. Initial screening of NADESs revealed the excellent ability of cholinium-based NADES with ethylene glycol as hydrogen bond donor (ChEg50) to serve as a medium for orange peel-catalysed kinetic resolution (hydrolysis) of (R,S)-1-phenylethyl acetate with high enantioselectivity (ee = 83.2%, X = 35%), as well as it's stabilizing effect on the hydrolytic enzymes (hydrolytic enzymes within ChEg50 peel extract were stabile during 20 days at 4 °C). The ChEg50 also showed a satisfactory capacity to extract D-limonene (0.5 mg gFW-1), and excellent capacity to extract polyphenols (45.7 mg gFW-1), and proteins (7.7 mg gFW-1) from the peel. Based on the obtained results, the integrated biorefinery of orange peel waste using ChEg50 in a multistep process was performed. Firstly, enantioselective kinetic resolution was performed (step I; ee = 83.2%, X = 35%), followed by isolation of the product 1-phenylethanol (step II; h = 82.2%) and extraction of polyphenols (step III; h = 86.8%) from impoverished medium. Finally, the residual orange peel was analysed for sugar and lignin content, and results revealed the potential of waste peel for the anaerobic co-digestion process. The main bottlenecks and futures perspective of NADES-assisted integrated biorefinery of orange peel waste were outlined through SWOT analysis.
Collapse
Affiliation(s)
- Manuela Panić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 2, 10000 Zagreb, Croatia
| | - Martina Andlar
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 2, 10000 Zagreb, Croatia
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Tonči Rezić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 2, 10000 Zagreb, Croatia
| | - Darijo Šibalić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Marina Cvjetko Bubalo
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotijeva 2, 10000 Zagreb, Croatia.
| | | |
Collapse
|
9
|
Huang L, Bittner JP, Domínguez de María P, Jakobtorweihen S, Kara S. Modeling Alcohol Dehydrogenase Catalysis in Deep Eutectic Solvent/Water Mixtures. Chembiochem 2020; 21:811-817. [PMID: 31605652 PMCID: PMC7154551 DOI: 10.1002/cbic.201900624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 11/17/2022]
Abstract
The use of oxidoreductases (EC1) in non-conventional reaction media has been increasingly explored. In particular, deep eutectic solvents (DESs) have emerged as a novel class of solvents. Herein, an in-depth study of bioreduction with an alcohol dehydrogenase (ADH) in the DES glyceline is presented. The activity and stability of ADH in mixtures of glyceline/water with varying water contents were measured. Furthermore, the thermodynamic water activity and viscosity of mixtures of glyceline/water have been determined. For a better understanding of the observations, molecular dynamics simulations were performed to quantify the molecular flexibility, hydration layer, and intraprotein hydrogen bonds of ADH. The behavior of the enzyme in DESs follows the classic dependence of water activity (aW ) in non-conventional media. At low aW values (<0.2), ADH does not show any activity; at higher aW values, the activity was still lower than that in pure water due to the high viscosities of the DES. These findings could be further explained by increased enzyme flexibility with increasing water content.
Collapse
Affiliation(s)
- Lei Huang
- Department of EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Jan Philipp Bittner
- Institute of Thermal Separation ProcessesHamburg University of TechnologyEißendorfer Strasse 3821073HamburgGermany
| | | | - Sven Jakobtorweihen
- Institute of Thermal Separation ProcessesHamburg University of TechnologyEißendorfer Strasse 3821073HamburgGermany
| | - Selin Kara
- Department of EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| |
Collapse
|
10
|
Vitale P, Lavolpe F, Valerio F, Di Biase M, Perna FM, Messina E, Agrimi G, Pisano I, Capriati V. Sustainable chemo-enzymatic preparation of enantiopure (R)-β-hydroxy-1,2,3-triazoles via lactic acid bacteria-mediated bioreduction of aromatic ketones and a heterogeneous “click” cycloaddition reaction in deep eutectic solvents. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00067a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A chemo-enzymatic strategy for the preparation of enantiopure (R)-β-hydroxy-1,2,3-triazoles using a lactic acid bacterium as a whole-cell biocatalyst and a heterogeneous “click” cycloaddition reaction in deep eutectic solvents is disclosed.
Collapse
Affiliation(s)
- Paola Vitale
- Dipartimento di Farmacia–Scienze del Farmaco
- Università di Bari “A. Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Francesco Lavolpe
- Dipartimento di Farmacia–Scienze del Farmaco
- Università di Bari “A. Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | | | | | - Filippo Maria Perna
- Dipartimento di Farmacia–Scienze del Farmaco
- Università di Bari “A. Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Eugenia Messina
- Department of Biosciences, Biotechnologies and Biopharmaceutics
- University of Bari
- I-70125 Bari
- Italy
- CIRCC - Interuniversity Consortium Chemical Reactivity and Catalysis
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics
- University of Bari
- I-70125 Bari
- Italy
- CIRCC - Interuniversity Consortium Chemical Reactivity and Catalysis
| | - Isabella Pisano
- Department of Biosciences, Biotechnologies and Biopharmaceutics
- University of Bari
- I-70125 Bari
- Italy
- CIRCC - Interuniversity Consortium Chemical Reactivity and Catalysis
| | - Vito Capriati
- Dipartimento di Farmacia–Scienze del Farmaco
- Università di Bari “A. Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| |
Collapse
|
11
|
Rational enhancement of enzyme-catalyzed enantioselective reaction by construction of recombinant enzymes based on additive strategy. Bioprocess Biosyst Eng 2019; 42:1739-1746. [PMID: 31321527 DOI: 10.1007/s00449-019-02170-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Abstract
A rational enhancement of kinetic resolution process for producing (S)-N-(2-ethyl-6-methylphenyl) alanine from racemic methyl ester using lipase B from Candida antarctica (CalB) was investigated. With the benefit results that lipase CalB-catalyzed reactions can be effectively regulated using amino acids (such as histidine and lysine) as additives, CalBs modified (mCalBs) by n-histidines at the N terminal and n-lysines at the C terminal were constructed and expressed. The results show that both soluble and precipitated mCalBs can effectively catalyze the hydrolysis reaction without adding any extra additives. The enantioselective ratio (E value) of soluble and precipitated mCalBs could be improved from 12.1 to 20.3, which were higher than that (E value was only 10.2) of commercial Novozym 435 (immobilized CalB). The study indicated that the amino acid-rich molecules introduced on lipase CalB can produce positive effects on enantioselectivity of enzyme. It provides unusual ideas for reasonable regulation of enzyme-catalyzed reactions.
Collapse
|