1
|
Ebrahimi A, Ghorbanpoor H, Apaydın E, Demir Cevizlidere B, Özel C, Tüfekçioğlu E, Koç Y, Topal AE, Tomsuk Ö, Güleç K, Abdullayeva N, Kaya M, Ghorbani A, Şengel T, Benzait Z, Uysal O, Eker Sarıboyacı A, Doğan Güzel F, Singh H, Hassan S, Ankara H, Pat S, Atalay E, Avci H. Convenient rapid prototyping microphysiological niche for mimicking liver native basement membrane: Liver sinusoid on a chip. Colloids Surf B Biointerfaces 2024; 245:114292. [PMID: 39383580 DOI: 10.1016/j.colsurfb.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Liver is responsible for the metabolization processes of up to 90 % of compounds and toxins in the body. Therefore liver-on-a-chip systems, as an in vitro promising cell culture platform, have great importance for fundamental science and drug development. In most of the liver-on-a-chip studies, seeding cells on both sides of a porous membrane, which represents the basement membrane, fail to resemble the native characteristics of biochemical, biophysical, and mechanical properties. In this study, polycarbonate (PC) and polyethylene terephthalate (PET) membranes were coated with gelatin to address this issue by accurately mimicking the native basement membrane present in the space of Disse. Various coating methods were used, including doctor blade, gel micro-injection, electrospinning, and spin coating. Spin coating was demonstrated to be the most effective technique owing to the ability to produce thin gel thickness with desirable surface roughness for cell interactions on both sides of the membrane. HepG2 and EA.HY926 cells were seeded on the upper and bottom sides of the gelatin-coated PET membrane and cultured on-chip for 7 days. Cell viability increased from 90 % to 95 %, while apoptotic index decreased. Albumin secretion notably rose between days 1-7 and 4-7, while GST-α secretion decreased from day 1 to day 7. In conclusion, the optimized spin coating process reported here can effectively modify the membranes to better mimic the native basement membrane niche characteristics.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Hamed Ghorbanpoor
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biomedical Engineering, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Elif Apaydın
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biochemistry, Institute of Health Sciences, Anadolu University, Eskisehir, Türkiye
| | - Bahar Demir Cevizlidere
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ceren Özel
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Emre Tüfekçioğlu
- Department of Industrial Design/Department of Industrial Design, Faculty of Architecture and Design, Eskisehir Technical University, Eskisehir, Türkiye
| | - Yücel Koç
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ahmet Emin Topal
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biochemistry, School of Pharmacy, Bahçeşehir University, Istanbul, Türkiye
| | - Özlem Tomsuk
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Kadri Güleç
- Department of Analytical Chemistry, Institute of Health Sciences, Anadolu University, Eskisehir, Türkiye
| | - Nuran Abdullayeva
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Murat Kaya
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Aynaz Ghorbani
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Tayfun Şengel
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye; Central Research Laboratory Research and Application Center (ARUM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Zineb Benzait
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Onur Uysal
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ayla Eker Sarıboyacı
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Fatma Doğan Güzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Türkiye
| | - Hemant Singh
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Functional Biomaterials Group, Khalifa University, San Campus, Abu Dhabi, United Arab Emirates
| | - Shabir Hassan
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Functional Biomaterials Group, Khalifa University, San Campus, Abu Dhabi, United Arab Emirates
| | - Hüseyin Ankara
- Mining Engineering Department, Engineering-Architecture Faculty, Eskisehir Osmangazi University, Meşelik Campus, Eskisehir 26480, Türkiye
| | - Suat Pat
- Eskisehir Osmangazi University, Faculty of Science, Department of Physics, Eskisehir TR-26040, Türkiye
| | - Eray Atalay
- Department of Ophthalmology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir, Türkiye; Translational Medicine Research and Clinical Center (TATUM), Eskisehir Osmangazi University, Eskisehir, Türkiye.
| |
Collapse
|
2
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
4
|
Coppola B, Menotti F, Longo F, Banche G, Mandras N, Palmero P, Allizond V. New Generation of Osteoinductive and Antimicrobial Polycaprolactone-Based Scaffolds in Bone Tissue Engineering: A Review. Polymers (Basel) 2024; 16:1668. [PMID: 38932017 PMCID: PMC11207319 DOI: 10.3390/polym16121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
With respect to other fields, bone tissue engineering has significantly expanded in recent years, leading not only to relevant advances in biomedical applications but also to innovative perspectives. Polycaprolactone (PCL), produced in the beginning of the 1930s, is a biocompatible and biodegradable polymer. Due to its mechanical and physicochemical features, as well as being easily shapeable, PCL-based constructs can be produced with different shapes and degradation kinetics. Moreover, due to various development processes, PCL can be made as 3D scaffolds or fibres for bone tissue regeneration applications. This outstanding biopolymer is versatile because it can be modified by adding agents with antimicrobial properties, not only antibiotics/antifungals, but also metal ions or natural compounds. In addition, to ameliorate its osteoproliferative features, it can be blended with calcium phosphates. This review is an overview of the current state of our recent investigation into PCL modifications designed to impair microbial adhesive capability and, in parallel, to allow eukaryotic cell viability and integration, in comparison with previous reviews and excellent research papers. Our recent results demonstrated that the developed 3D constructs had a high interconnected porosity, and the addition of biphasic calcium phosphate improved human cell attachment and proliferation. The incorporation of alternative antimicrobials-for instance, silver and essential oils-at tuneable concentrations counteracted microbial growth and biofilm formation, without affecting eukaryotic cells' viability. Notably, this challenging research area needs the multidisciplinary work of material scientists, biologists, and orthopaedic surgeons to determine the most suitable modifications on biomaterials to design favourable 3D scaffolds based on PCL for the targeted healing of damaged bone tissue.
Collapse
Affiliation(s)
- Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (N.M.); (V.A.)
| |
Collapse
|
5
|
Comini S, Scutera S, Sparti R, Banche G, Coppola B, Bertea CM, Bianco G, Gatti N, Cuffini AM, Palmero P, Allizond V. Combination of Poly(ε-Caprolactone) Biomaterials and Essential Oils to Achieve Anti-Bacterial and Osteo-Proliferative Properties for 3D-Scaffolds in Regenerative Medicine. Pharmaceutics 2022; 14:pharmaceutics14091873. [PMID: 36145620 PMCID: PMC9506294 DOI: 10.3390/pharmaceutics14091873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
Biomedical implants, an essential part of the medical treatments, still suffer from bacterial infections that hamper patients’ recovery and lives. Antibiotics are widely used to cure those infections but brought antibiotic resistance. Essential oils (EOs) demonstrate excellent antimicrobial activity and low resistance development risk. However, EO application in medicine is still quite scarce and almost no research work considers its use in combination with bioresorbable biomaterials, such as the poly(ε-caprolactone) (PCL) polymer. This work aimed to combine the antibacterial properties of EOs and their components, particularly eugenol and cinnamon oil, against Staphylococcus aureus, S. epidermidis and Escherichia coli, with those of PCL for medical applications in which good tissue regeneration and antimicrobial effects are required. The PCL porous scaffolds, added with increasing (from 30% to 50%) concentrations of eugenol and cinnamon oil, were characterized by square-shaped macropores. Saos-2 cells’ cell viability/proliferation was hampered by 40 and 50% EO-enriched PCL, whereas no cytotoxic effect was recorded for both 30% EO-added PCL and pure-PCL. The antibacterial tests revealed the presence of a small inhibition halo around the 30% eugenol and cinnamon oil-functionalized PCL scaffolds only for staphylococci, whereas a significant decrease on both adherent and planktonic bacteria was recorded for all the three microorganisms, thus proving that, even if the EOs are only in part released by the EO-added PCL scaffolds, an anti-adhesive feature is anyway achieved. The scaffold will have the ability to support new tissue formation and simultaneously will be able to prevent post-surgical infection. This research shows the great potential in the use of EOs or their single components, at low concentrations, for biomaterial functionalization with enhanced anti-bacterial and biointegration properties.
Collapse
Affiliation(s)
- Sara Comini
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
| | - Sara Scutera
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
| | - Rosaria Sparti
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
- Correspondence: (G.B.); (A.M.C.); Tel.: +39-011-670-5627 (G.B.); +39-011-670-5638 (A.M.C.)
| | - Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Cinzia Margherita Bertea
- Department of Life Sciences and Systems Biology, University of Torino, Via Quarello 15/A, 10135 Turin, Italy
| | - Gabriele Bianco
- Microbiology and Virology Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Corso Bramante 88/90, 10126 Turin, Italy
| | - Noemi Gatti
- Department of Life Sciences and Systems Biology, University of Torino, Via Quarello 15/A, 10135 Turin, Italy
| | - Anna Maria Cuffini
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
- Correspondence: (G.B.); (A.M.C.); Tel.: +39-011-670-5627 (G.B.); +39-011-670-5638 (A.M.C.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, Via Santena 9, 10126 Turin, Italy
| |
Collapse
|
6
|
Coimbra A, Ferreira S, Duarte AP. Biological properties of Thymus zygis essential oil with emphasis on antimicrobial activity and food application. Food Chem 2022; 393:133370. [PMID: 35667177 DOI: 10.1016/j.foodchem.2022.133370] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/29/2022] [Indexed: 11/19/2022]
Abstract
The Thymus plants have been used for centuries in traditional medicine and as a food spice, among this genus, Thymus zygis (red thyme) is a widespread plant, vastly used as a culinary flavouring agent. Its essential oil has demonstrated diverse bioactive properties, such as antimicrobial, insecticidal, larvicidal and antiparasitic activities. Numerous studies have characterized this essential oil showing that it possesses a broad antimicrobial spectrum and may even enhance the effect of certain antimicrobial agents. Its potential application as a food preservative has been analysed on different matrixes pointing to its antimicrobial activity against spoilage and pathogenic microorganisms in food. This review provides an insight in the chemical composition, antimicrobial, insecticidal, larvicidal and antiparasitic activities and toxicity of T. zygis essential oil, as well as its potential application in food as a preservative.
Collapse
Affiliation(s)
- Alexandra Coimbra
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Susana Ferreira
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ana Paula Duarte
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
7
|
Maliszewska I, Czapka T. Electrospun Polymer Nanofibers with Antimicrobial Activity. Polymers (Basel) 2022; 14:polym14091661. [PMID: 35566830 PMCID: PMC9103814 DOI: 10.3390/polym14091661] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, nanofibers with antimicrobial activity are of great importance due to the widespread antibiotic resistance of many pathogens. Electrospinning is a versatile method of producing ultrathin fibers with desired properties, and this technique can be optimized by controlling parameters such as solution/melt viscosity, feeding rate, and electric field. High viscosity and slow feeding rate cause blockage of the spinneret, while low viscosity and high feeding rate result in fiber discontinuities or droplet formation. The electric field must be properly set because high field strength shortens the solidification time of the fluid streams, while low field strength is unable to form the Taylor cone. Environmental conditions, temperature, and humidity also affect electrospinning. In recent years, significant advances have been made in the development of electrospinning methods and the engineering of electrospun nanofibers for various applications. This review discusses the current research on the use of electrospinning to fabricate composite polymer fibers with antimicrobial properties by incorporating well-defined antimicrobial nanoparticles (silver, titanium dioxide, zinc dioxide, copper oxide, etc.), encapsulating classical therapeutic agents (antibiotics), plant-based bioactive agents (crude extracts, essential oils), and pure compounds (antimicrobial peptides, photosensitizers) in polymer nanofibers with controlled release and anti-degradation protection. The analyzed works prove that the electrospinning process is an effective strategy for the formation of antimicrobial fibers for the biomedicine, pharmacy, and food industry.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (T.C.)
| | - Tomasz Czapka
- Department of Electrical Engineering Fundamentals, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (T.C.)
| |
Collapse
|
8
|
Mayilswamy N, Jaya Prakash N, Kandasubramanian B. Design and fabrication of biodegradable electrospun nanofibers loaded with biocidal agents. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2021.2021905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Neelaambhigai Mayilswamy
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, India
| | - Niranjana Jaya Prakash
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, India
| |
Collapse
|
9
|
Domingues JM, Teixeira MO, Teixeira MA, Freitas D, da Silva SF, Tohidi SD, Fernandes RDV, Padrão J, Zille A, Silva C, Antunes JC, Felgueiras HP. Inhibition of Escherichia Virus MS2, Surrogate of SARS-CoV-2, via Essential Oils-Loaded Electrospun Fibrous Mats: Increasing the Multifunctionality of Antivirus Protection Masks. Pharmaceutics 2022; 14:303. [PMID: 35214032 PMCID: PMC8875402 DOI: 10.3390/pharmaceutics14020303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most important measures implemented to reduce SARS-CoV-2 transmission has been the use of face masks. Yet, most mask options available in the market display a passive action against the virus, not actively compromising its viability. Here, we propose to overcome this limitation by incorporating antiviral essential oils (EOs) within polycaprolactone (PCL) electrospun fibrous mats to be used as intermediate layers in individual protection masks. Twenty EOs selected based on their antimicrobial nature were examined for the first time against the Escherichia coli MS2 virus (potential surrogate of SARS-CoV-2). The most effective were the lemongrass (LGO), Niaouli (NO) and eucalyptus (ELO) with a virucidal concentration (VC) of 356.0, 365.2 and 586.0 mg/mL, respectively. PCL was processed via electrospinning, generating uniform, beadless fibrous mats. EOs loading was accomplished via two ways: (1) physisorption on pre-existing mats (PCLaEOs), and (2) EOs blending with the polymer solution prior to fiber electrospinning (PCLbEOs). In both cases, 10% v/v VC was used as loading concentration, so the mats' stickiness and overwhelming smell could be prevented. The EOs presence and release from the mats were confirmed by UV-visible spectroscopy (≈5257-631 µg) and gas chromatography-mass spectrometry evaluations (average of ≈14.3% EOs release over 4 h), respectively. PCLbEOs mats were considered the more mechanically and thermally resilient, with LGO promoting the strongest bonds with PCL (PCLbLGO). On the other hand, PCLaNO and PCLaELO were deemed the least cohesive combinations. Mats modified with the EOs were all identified as superhydrophobic, capable of preventing droplet penetration. Air and water-vapor permeabilities were affected by the mats' porosity (PCL < PCLaEOs < PCLbEOs), exhibiting a similar tendency of increasing with the increase of porosity. Antimicrobial testing revealed the mats' ability to retain the virus (preventing infiltration) and to inhibit its action (log reduction averaging 1). The most effective combination against the MS2 viral particles was the PCLbLGO. These mats' scent was also regarded as the most pleasant during sensory evaluation. Overall, data demonstrated the potential of these EOs-loaded PCL fibrous mats to work as COVID-19 active barriers for individual protection masks.
Collapse
Affiliation(s)
- Joana M. Domingues
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Marta O. Teixeira
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Marta A. Teixeira
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - David Freitas
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.F.); (C.S.)
| | - Samira F. da Silva
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Shafagh D. Tohidi
- Digital Transformation Colab (DTx), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal;
| | - Rui D. V. Fernandes
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Carla Silva
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.F.); (C.S.)
| | - Joana C. Antunes
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| |
Collapse
|
10
|
Beksac K, Sahal G, Donmez HG. Thyme essential oil as an antimicrobial and biofilm inhibitory agent against abscesses with P. mirabilis Infections. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Rather AH, Wani TU, Khan RS, Pant B, Park M, Sheikh FA. Prospects of Polymeric Nanofibers Loaded with Essential Oils for Biomedical and Food-Packaging Applications. Int J Mol Sci 2021; 22:4017. [PMID: 33924640 PMCID: PMC8069027 DOI: 10.3390/ijms22084017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Essential oils prevent superbug formation, which is mainly caused by the continuous use of synthetic drugs. This is a significant threat to health, the environment, and food safety. Plant extracts in the form of essential oils are good enough to destroy pests and fight bacterial infections in animals and humans. In this review article, different essential oils containing polymeric nanofibers fabricated by electrospinning are reviewed. These nanofibers containing essential oils have shown applications in biomedical applications and as food-packaging materials. This approach of delivering essential oils in nanoformulations has attracted considerable attention in the scientific community due to its low price, a considerable ratio of surface area to volume, versatility, and high yield. It is observed that the resulting nanofibers possess antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, they can reduce the use of toxic synthetic drugs that are utilized in the cosmetics, medicine, and food industries. These nanofibers increase barrier properties against light, oxygen, and heat, thereby protecting and preserving the food from oxidative damage. Moreover, the nanofibers discussed are introduced with naturally derived chemical compounds in a controlled manner, which simultaneously prevents their degradation. The nanofibers loaded with different essential oils demonstrate an ability to increase the shelf-life of various food products while using them as active packaging materials.
Collapse
Affiliation(s)
- Anjum Hamid Rather
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Taha Umair Wani
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Rumysa Saleem Khan
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju-Gun 55338, Jeollabuk-do, Korea;
| | - Faheem A. Sheikh
- Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar 190006, Jammu and Kashmir, India; (A.H.R.); (T.U.W.); (R.S.K.)
| |
Collapse
|
12
|
Sahal G, Woerdenbag HJ, Hinrichs WLJ, Visser A, van der Mei HC, Bilkay IS. Candida Biofilm Formation Assay on Essential Oil Coated Silicone Rubber. Bio Protoc 2021; 11:e3941. [PMID: 33796615 DOI: 10.21769/bioprotoc.3941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/02/2022] Open
Abstract
Development of biofilm associated candidemia for patients with implanted biomaterials causes an urgency to develop antimicrobial and biofilm inhibitive coatings in the management of recalcitrant Candida infections. Recently, there is an increase in the number of patients with biofilm formation and resistance to antifungal therapy. Therefore, there is a growing interest to use essential oils as coating agents in order to prevent biomaterial-associated Candida infections. Often high costs, complicated and laborious technologies are used for both applying the coating and determination of the antibiofilm effects hampering a rapid screening of essential oils. In order to determine biofilm formation of Candida on essential oil coated surfaces easier, cheaper and faster, we developed an essential oil (lemongrass oil) coated surface (silicone-rubber) by using a hypromellose ointment/essential oil mixture. Furthermore, we modified the "crystal violet binding assay" to quantify the biofilm mass of Candida biofilm formed on the lemongrass oil coated silicone rubber surface. The essential oil coating and the biomass determination of biofilms on silicone rubber can be easily applied with simple and accessible equipment, and will therefore provide rapid information about whether or not a particular essential oil is antiseptic, also when it is used as a coating agent.
Collapse
Affiliation(s)
- Gulcan Sahal
- Hacettepe University, Faculty of Sciences, Department of Biology (Biotechnology Division), Beytepe, Ankara, Turkey
| | - Herman J Woerdenbag
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, Groningen, the Netherlands
| | - Wouter L J Hinrichs
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, Groningen, the Netherlands
| | - Anita Visser
- University of Groningen and University Medical Center Groningen, Department of Oral and Maxillofacial Surgery and Maxillofacial Prosthodontics, Groningen, the Netherlands.,University of Groningen and University Medical Center Groningen, Department of Geriatric Dentistry, Dental school, Center for Dentistry and Oral Hygiene, Groningen, the Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, Groningen, the Netherlands
| | - Isil Seyis Bilkay
- Hacettepe University, Faculty of Sciences, Department of Biology (Biotechnology Division), Beytepe, Ankara, Turkey
| |
Collapse
|
13
|
Unalan I, Boccaccini AR. Essential oils in biomedical applications: Recent progress and future opportunities. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Vera-González N, Shukla A. Advances in Biomaterials for the Prevention and Disruption of Candida Biofilms. Front Microbiol 2020; 11:538602. [PMID: 33042051 PMCID: PMC7527432 DOI: 10.3389/fmicb.2020.538602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Candida species can readily colonize a multitude of indwelling devices, leading to biofilm formation. These three-dimensional, surface-associated Candida communities employ a multitude of sophisticated mechanisms to evade treatment, leading to persistent and recurrent infections with high mortality rates. Further complicating matters, the current arsenal of antifungal therapeutics that are effective against biofilms is extremely limited. Antifungal biomaterials are gaining interest as an effective strategy for combating Candida biofilm infections. In this review, we explore biomaterials developed to prevent Candida biofilm formation and those that treat existing biofilms. Surface functionalization of devices employing clinically utilized antifungals, other antifungal molecules, and antifungal polymers has been extremely effective at preventing fungi attachment, which is the first step of biofilm formation. Several mechanisms can lead to this attachment inhibition, including contact killing and release-based killing of surrounding planktonic cells. Eliminating mature biofilms is arguably much more difficult than prevention. Nanoparticles have shown the most promise in disrupting existing biofilms, with the potential to penetrate the dense fungal biofilm matrix and locally target fungal cells. We will describe recent advances in both surface functionalization and nanoparticle therapeutics for the treatment of Candida biofilms.
Collapse
Affiliation(s)
- Noel Vera-González
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Anita Shukla
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
- Institute for Molecular and Nanoscale Innovation, Brown University, Providence, RI, United States
| |
Collapse
|
15
|
Avci H, Akkulak E, Gergeroglu H, Ghorbanpoor H, Uysal O, Eker Sariboyaci A, Demir B, Soykan MN, Pat S, Mohammadigharehbagh R, Özel C, Cabuk A, Doğan Güzel F. Flexible poly(styrene‐ethylene‐butadiene‐styrene) hybrid nanofibers for bioengineering and water filtration applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Huseyin Avci
- Metallurgical and Materials Engineering DepartmentEskisehir Osmangazi University Eskisehir Turkey
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
| | - Esra Akkulak
- Metallurgical and Materials Engineering DepartmentEskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
| | - Hazal Gergeroglu
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
- Department of Nanotechnology and Nanoscience, Graduate School of Natural and Applied SciencesEskisehir Osmangazi University Eskisehir Turkey
| | - Hamed Ghorbanpoor
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
- Department of Polymer Science and TechnologyEskisehir Osmangazi University Eskisehir Turkey
- Department of Biomedical EngineeringAnkara Yildirim Beyazit University Ankara Turkey
| | - Onur Uysal
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
| | - Ayla Eker Sariboyaci
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
| | - Bahar Demir
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
| | - Merve Nur Soykan
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
| | - Suat Pat
- Department of PhysicsEskisehir Osmangazi University Eskisehir Turkey
| | - Reza Mohammadigharehbagh
- Department of PhysicsEskisehir Osmangazi University Eskisehir Turkey
- Department of PhysicsIslamic Azad University, Urmia Branch Urmia Iran
| | - Ceren Özel
- Cellular Therapy and Stem Cell Research Center (ESTEM)Eskisehir Osmangazi University Eskisehir Turkey
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
| | - Ahmet Cabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied SciencesEskisehir Osmangazi University Eskisehir Turkey
- Department of Biology, Faculty of Arts and ScienceEskisehir Osmangazi University Eskisehir Turkey
| | - Fatma Doğan Güzel
- AvciBio Research GroupEskisehir Osmangazi University Eskisehir Turkey
- Department of Biomedical EngineeringAnkara Yildirim Beyazit University Ankara Turkey
| |
Collapse
|
16
|
Mele E. Electrospinning of Essential Oils. Polymers (Basel) 2020; 12:E908. [PMID: 32295167 PMCID: PMC7240577 DOI: 10.3390/polym12040908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 01/13/2023] Open
Abstract
The extensive and sometimes unregulated use of synthetic chemicals, such as drugs, preservatives, and pesticides, is posing big threats to global health, the environment, and food security. This has stimulated the research of new strategies to deal with bacterial infections in animals and humans and to eradicate pests. Plant extracts, particularly essential oils, have recently emerged as valid alternatives to synthetic drugs, due to their properties which include antibacterial, antifungal, anti-inflammatory, antioxidant, and insecticidal activity. This review discusses the current research on the use of electrospinning to encapsulate essential oils into polymeric nanofibres and achieve controlled release of these bioactive compounds, while protecting them from degradation. The works here analysed demonstrate that the electrospinning process is an effective strategy to preserve the properties of essential oils and create bioactive membranes for biomedical, pharmaceutical, and food packaging applications.
Collapse
Affiliation(s)
- Elisa Mele
- Materials Department, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| |
Collapse
|
17
|
Yassin MT, Mostafa AAF, Al-Askar AA. In vitro anticandidal potency of Syzygium aromaticum (clove) extracts against vaginal candidiasis. BMC Complement Med Ther 2020; 20:25. [PMID: 32020877 PMCID: PMC7076834 DOI: 10.1186/s12906-020-2818-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/17/2020] [Indexed: 01/12/2023] Open
Abstract
Background Candida vaginitis is a global health hazard that increases morbidity among women of childbearing age. Recent studies have revealed a high incidence of drug-resistant Candida strains. Additionally, treating Candida vulvovaginitis during pregnancy is challenging as antifungal therapy is associated with fetal abnormalities. Hence, it is important to develop novel therapeutic strategies to treat vulvovaginal candidiasis. Methods In this study, we used the disc diffusion method to evaluate the anticandidal activity of different Syzygium aromaticum extracts (methanol, ethyl acetate, n-hexane, and diethyl ether) against C. albicans, C. glabrata, and C. tropicalis. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis of different S. aromaticum extracts was performed to determine active components exhibiting anticandidal activity. Cytotoxicity of different clove extracts against the HUH7 cell line was evaluated. Results The ethyl acetate extract exhibited the highest antifungal activity against C. albicans, C. glabrata, and C. tropicalis with inhibition zone diameters of 20.9, 14.9, and 30.7 mm, respectively. The minimum inhibitory concentration of the S. aromaticum ethyl acetate extract was 250 μg/disc against C. tropicalis, and 500 μg/disc against C. albicans and C. glabrata, while the minimum fungicidal concentration was 0.5 mg/disc against C. tropicalis and 1 mg/disc against the C. albicans and C. glabrata. GC-MS analysis of the ethyl acetate extract revealed the main bioactive compound as eugenol (58.88%), followed by eugenyl acetate (23.86%), trans-caryophyllene (14.44%), and α-humulene (1.88%). The cytotoxicity assay indicated that the diethyl ether extract demonstrated the lowest toxicological effect against the HUH7 cell line, with a relative IC50 of 62.43 μg/ml; the methanolic extract demonstrated a higher toxicity (IC50, 24.17 μg/ml). Conclusion As the S. aromaticum extract exhibited high antifungal activity at low concentrations, it can be a potential source of natural antifungal drugs.
Collapse
Affiliation(s)
- Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia.
| | - Ashraf Abdel-Fattah Mostafa
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|