1
|
Li M, Ding Y, Tuersong T, Chen L, Zhang ML, Li T, Feng SM, Guo Q. Let-7 family regulates HaCaT cell proliferation and apoptosis via the ΔNp63/PI3K/AKT pathway. Open Med (Wars) 2024; 19:20240925. [PMID: 38584846 PMCID: PMC10997002 DOI: 10.1515/med-2024-0925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 04/09/2024] Open
Abstract
We evaluated the expression profiles of differentially expressed miRNAs (DEmiRNAs) involved in human fetal skin development via high-throughput sequencing to explore the expression difference and the regulatory role of miRNA in different stages of fetal skin development. Analysis of expression profiles of miRNAs involved collecting embryo samples via high-throughput sequencing, then bioinformatics analyses were performed to validate DEmiRNAs. A total of 363 miRNAs were differentially expressed during the early and mid-pregnancy of development, and upregulated DEmiRNAs were mainly concentrated in the let-7 family. The transfection of let-7b-5p slowed down HaCaT cell proliferation and promoted apoptosis, as evidenced by the cell counting kit-8 assay, quantitative real-time polymerase chain reaction, and flow cytometry. The double luciferin reporter assay also confirmed let-7b-5p and ΔNp63 downregulation through the combination with the 3'-untranslated region of ΔNp63. Moreover, treatment with a let-7b-5p inhibitor upregulated ΔNp63 and activated the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. The let-7b-5p caused a converse effect on HaCaT cells because of Np63 upregulation. Let-7b-5p regulates skin development by targeting ΔNp63 via PI3K-AKT signaling, contributing to future studies on skin development and clinical scar-free healing.
Collapse
Affiliation(s)
- Min Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, 834000, Xinjiang, China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Tayier Tuersong
- Department of Pharmacy, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Long Chen
- Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Mei-Lin Zhang
- Xinjiang Urumqi City Center Blood Station, Urumqi, 830000, Xinjiang, China
| | - Tian Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Shu-Mei Feng
- Key Laboratory of Xinjiang Uygur Autonomous Region, Laboratory of Molecular Biology of Endemic Diseases, Urumqi, 830000, Xinjiang, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, No. 567 Suntech North Road, Shuimogou District, Urumqi, 830000, Xinjiang, China
| | - Qiong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, No. 567 Suntech North Road, Shuimogou District, Urumqi, 830000, Xinjiang, China
| |
Collapse
|
2
|
Garcia-Fossa F, de Jesus MB. Cationic solid lipid nanoparticles (SLN) complexed with plasmid DNA enhance prostate cancer cells (PC-3) migration. Nanotoxicology 2024; 18:36-54. [PMID: 38300021 DOI: 10.1080/17435390.2024.2307616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Nanotechnology applications in biomedicine have increased in recent decades, primarily as therapeutic agents, drugs, and gene delivery systems. Among the nanoparticles used in medicine, we highlight cationic solid lipid nanoparticles (SLN). Given their nontoxic properties, much research has focused on the beneficial effects of SLN for drug or gene delivery system. However, little attention has been paid to the adverse impacts of SLN on the cellular environment, particularly their influence on intracellular signaling pathways. In this work, we investigate the effects triggered by cationic SLN on human prostate non-tumor cells (PNT1A) and tumor cells (PC-3). Our results demonstrate that cationic SLN enhances the migration of PC-3 prostate cancer cells but not PNT1A non-tumor prostate cells, an unexpected and unprecedented development. Furthermore, we observed that the enhanced cell migration velocity is a concentration-dependent and nanoparticle-dependent effect, and not related to any individual nanoparticle component. Moreover, cationic SLN increased vimentin expression (p < 0.05) but SLN did not affect Smad2 nuclear translocation. Meanwhile, EMT-related (epithelial-to-mesenchymal transition) proteins, such as ZEB1, underwent nuclear translocation when treated with cationic SLN, thereby affecting PC-3 cell motility through ZEB1 and vimentin modulation. From a therapeutic perspective, cationic SLN could potentially worsen a patient's condition if these results were reproduced in vivo. Understanding the in vitro molecular mechanisms triggered by nanomaterials and their implications for cell function is crucial for defining their safe and effective use.
Collapse
Affiliation(s)
- Fernanda Garcia-Fossa
- Nano-cell Interactions Laboratory, Department of Biochemistry & Tissue Biology, Biology Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcelo Bispo de Jesus
- Nano-cell Interactions Laboratory, Department of Biochemistry & Tissue Biology, Biology Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
3
|
Thomas J, Sun J, Montclare JK. Constructing Nucleic Acid Delivering Lipoproteoplexes from Coiled-Coil Supercharged Protein and Cationic Liposomes. Methods Mol Biol 2024; 2720:191-207. [PMID: 37775667 DOI: 10.1007/978-1-0716-3469-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The safe and efficient delivery of nucleic acids is crucial for both clinical applications of gene therapy and pre-clinical laboratory research. Such delivery strategies rely on vectors to condense nucleic acid payloads and escort them into the cell without being degraded in the extracellular environment; however, the construction and utilization of these vectors can be difficult and time-consuming. Here, we detail the steps involved in the rapid, laboratory-scale production and assessment of a versatile, nucleic acid delivery vehicle, known as the lipoproteoplex. In this chapter, we outline: (1) the recombinant synthesis and subsequent purification of the supercharged coiled-coil protein component known as N8; (2) the synthesis of cationic liposomes from dioleoyl-3-trimethylammonium propane (DOTAP) and sodium cholate; (3) and finally a protocol for the delivery of a model siRNA cargo into a cultured cell line.
Collapse
Affiliation(s)
- Joseph Thomas
- Department of Biomedical Engineering, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Jonathan Sun
- Department of Chemistry, New York University, New York, NY, USA
- Department of Radiology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA.
- Department of Chemistry, New York University, New York, NY, USA.
- Department of Radiology, State University of New York Downstate Medical Center, Brooklyn, NY, USA.
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA.
| |
Collapse
|
4
|
Hou T, Du M, Gao X, An M. Human Vascular Endothelial Cells Promote the Secretion of Vascularization Factors and Migration of Human Skin Fibroblasts under Co-Culture and Its Preliminary Application. Int J Mol Sci 2022; 23:ijms232213995. [PMID: 36430476 PMCID: PMC9697737 DOI: 10.3390/ijms232213995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The good treatment of skin defects has always been a challenge in the medical field, and the emergence of tissue engineering skin provides a new idea for the treatment of injured skin. However, due to the single seed cells, the tissue engineering skin has the problem of slow vascularization at the premonitory site after implantation into the human body. Cell co-culture technology can better simulate the survival and communication environment of cells in the human body. The study of multicellular co-culture hopes to bring a solution to the problem of tissue engineering. In this paper, human skin fibroblasts (HSFs) and human vascular endothelial cells (HVECs) were co-cultured in Transwell. The Cell Counting Kit 8 (CCK8), Transwell migration chamber, immunofluorescence, Western blot (WB), and real time quantitative PCR (RT-qPCR) were used to study the effects of HVECs on cell activity, migration factor (high mobility group protein 1, HMGB1) and vascularization factor (vascular endothelial growth factor A, VEGFA and fibroblast growth factor 2, FGF2) secretion of HSFs after co-cultured with HVECs in the Transwell. The biological behavior of HSFs co-cultured with HVECs was studied. The experimental results are as follows: (1) The results of cck8 showed that HVECS could promote the activity of HSFs. (2) HVECs could significantly promote the migration of HSFs and promote the secretion of HMGB1. (3) HVECs could promote the secretion of VEGFA and FGF2 of HSFs. (4) The HVECs and HSFs were inoculated on tissue engineering scaffolds at the ratio of 1:4 and were co-cultured and detected for 7 days. The results showed that from the third day, the number of HSFs was significantly higher than that of the control group without HVECs.
Collapse
|
5
|
Weng T, Wang J, Yang M, Zhang W, Wu P, You C, Han C, Wang X. Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing. BURNS & TRAUMA 2022; 10:tkab049. [PMID: 36960274 PMCID: PMC8944711 DOI: 10.1093/burnst/tkab049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/14/2021] [Indexed: 11/14/2022]
Abstract
Dermal substitutes provide a template for dermal regeneration and reconstruction. They constitutes an ideal clinical treatment for deep skin defects. However, rapid vascularization remains as a major hurdle to the development and application of dermal substitutes. Several bioactive factors play an important regulatory role in the process of angiogenesis and an understanding of the mechanism of achieving their effective delivery and sustained function is vital. Nanomaterials have great potential for tissue engineering. Effective delivery of bioactive factors (including growth factors, peptides and nucleic acids) by nanomaterials is of increasing research interest. This paper discusses the process of dermal substitute angiogenesis and the roles of related bioactive factors in this process. The application of nanomaterials for the delivery of bioactive factors to enhance angiogenesis and accelerate wound healing is also reviewed. We focus on new systems and approaches for delivering bioactive factors for enhancing angiogenesis in dermal substitutes.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Jialiang Wang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Min Yang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Wei Zhang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Pan Wu
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chuangang You
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | - Chunmao Han
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou 310002, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310002,China
| | | |
Collapse
|
6
|
Duran-Mota JA, Yani JQ, Almquist BD, Borrós S, Oliva N. Polyplex-Loaded Hydrogels for Local Gene Delivery to Human Dermal Fibroblasts. ACS Biomater Sci Eng 2021; 7:4347-4361. [PMID: 34081451 DOI: 10.1021/acsbiomaterials.1c00159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Impaired cutaneous healing leading to chronic wounds affects between 2 and 6% of the total population in most developed countries and it places a substantial burden on healthcare budgets. Current treatments involving antibiotic dressings and mechanical debridement are often not effective, causing severe pain, emotional distress, and social isolation in patients for years or even decades, ultimately resulting in limb amputation. Alternatively, gene therapy (such as mRNA therapies) has emerged as a viable option to promote wound healing through modulation of gene expression. However, protecting the genetic cargo from degradation and efficient transfection into primary cells remain significant challenges in the push to clinical translation. Another limiting aspect of current therapies is the lack of sustained release of drugs to match the therapeutic window. Herein, we have developed an injectable, biodegradable and cytocompatible hydrogel-based wound dressing that delivers poly(β-amino ester)s (pBAEs) nanoparticles in a sustained manner over a range of therapeutic windows. We also demonstrate that pBAE nanoparticles, successfully used in previous in vivo studies, protect the mRNA load and efficiently transfect human dermal fibroblasts upon sustained release from the hydrogel wound dressing. This prototype wound dressing technology can enable the development of novel gene therapies for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Jose Antonio Duran-Mota
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain.,Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Júlia Quintanas Yani
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain.,Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Benjamin D Almquist
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Nuria Oliva
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
7
|
Thomas J, Punia K, Montclare JK. Peptides as key components in the design of
non‐viral
vectors for gene delivery. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Joseph Thomas
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
- Department of Biochemistry SUNY Downstate Medical Center Brooklyn New York USA
| | - Kamia Punia
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering New York University Tandon School of Engineering Brooklyn New York USA
- Department of Biochemistry SUNY Downstate Medical Center Brooklyn New York USA
- Department of Chemistry New York University New York New York USA
- Department of Biomaterials New York University College of Dentistry New York New York USA
| |
Collapse
|
8
|
Wu XR, Zhang J, Zhang JH, Xiao YP, He X, Liu YH, Yu XQ. Amino Acid-Linked Low Molecular Weight Polyethylenimine for Improved Gene Delivery and Biocompatibility. Molecules 2020; 25:E975. [PMID: 32098282 PMCID: PMC7070781 DOI: 10.3390/molecules25040975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
The construction of efficient and low toxic non-viral gene delivery vectors is of great significance for gene therapy. Herein, two novel polycations were constructed via Michael addition from low molecular weight polyethylenimine (PEI) 600 Da and amino acid-containing linkages. Lysine and histidine were introduced for the purpose of improved DNA binding and pH buffering capacity, respectively. The ester bonds afforded the polymer biodegradability, which was confirmed by the gel permeation chromatography (GPC) measurement. The polymers could well condense DNA into nanoparticles and protect DNA from degradation by nuclease. Compared with PEI 25 kDa, these polymers showed higher transfection efficiency, lower toxicity, and better serum tolerance. Study of this mechanism revealed that the polyplexes enter the cells mainly through caveolae-mediated endocytosis pathway; this, together with their biodegradability, facilitates the internalization of polyplexes and the release of DNA. The results reveal that the amino acid-linked low molecular weight PEI polymers could serve as promising candidates for non-viral gene delivery.
Collapse
Affiliation(s)
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China; (X.-R.W.); (J.-H.Z.); (Y.-P.X.); (X.H.); (Y.-H.L.)
| | | | | | | | | | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China; (X.-R.W.); (J.-H.Z.); (Y.-P.X.); (X.H.); (Y.-H.L.)
| |
Collapse
|