1
|
Sha Y, Zhang B, Chen L, Hong H, Chi Q. Mechano Growth Factor Accelerates ACL Repair and Improves Cell Mobility of Mechanically Injured Human ACL Fibroblasts by Targeting Rac1-PAK1/2 and RhoA-ROCK1 Pathways. Int J Mol Sci 2022; 23:ijms23084331. [PMID: 35457148 PMCID: PMC9026312 DOI: 10.3390/ijms23084331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Exceeded mechanical stress leads to a sublethal injury to anterior cruciate ligament (ACL) fibroblasts, and it will hinder cell mobility and ACL regeneration, and even induce osteoarthritis. The mechano growth factor (MGF) could be responsible for mechanical stress and weakening its negative effects on cell physiological behaviors. In this study, effects of MGF on cell mobility and relevant molecules expression in injured ACL fibroblasts were detected. After an injurious mechanical stretch, the analysis carried out, at 0 and 24 h, respectively, showed that the cell area, roundness, migration, and adhesion of ACL fibroblasts were reduced. MGF (10, 100 ng/mL) treatment could improve cell area, roundness and promote cell migration and adhesion capacity compared with the injured group without MGF. Further study indicated that cell mobility-relevant molecules (PAK1/2, Cdc42, Rac1, RhoA, and ROCK1) expression in ACL fibroblasts was down-regulated at 0 or 24 h after injurious stretch (except Rac1 and RhoA at 0 h). Similarly, MGF improved cell mobility-relevant molecule expression, especially the ROCK1 expression level in ACL fibroblasts at 0 or 24 h after injurious stretch. Protein expression of ROCK1 in injured ACL fibroblasts was also reduced and could be recovered by MGF treatment. In a rabbit partial ACL transection (ACLT) model, ACL exhibited poor regenerative capacity in collagen and extracellular matrix (ECM) synthesis after partial ACLT for 2 or 4 weeks, and MGF remarkably accelerated ACL regeneration and restored its mechanical loading capacity after partial ACLT for four weeks. Our findings suggest that MGF weakens the effects of pathological stress on cell mobility of ACL fibroblasts and accelerates ACL repair, and might be applied as a future treatment approach to ACL rupture in the clinic.
Collapse
Affiliation(s)
- Yongqiang Sha
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China;
- Correspondence:
| | - Beibei Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
| | - Liping Chen
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
| | - Huhai Hong
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
| | - Qingjia Chi
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China;
- Department of Mechanics and Engineering Structure, Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Gu H, Chen S, Zhang M, Wen Y, Li B. Differences in the expression profiles of lncRNAs and mRNAs in partially injured anterior cruciate ligament and medial collateral ligament of rabbits. PeerJ 2022; 10:e12781. [PMID: 35070509 PMCID: PMC8760859 DOI: 10.7717/peerj.12781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), as a novel regulatory factor, are considered to play a vital role in various biological processes and diseases. However, the overall expression profile and biological functions of lncRNAs in the partially injured anterior cruciate ligament (ACL) and medial collateral ligament (MCL) have not been clearly explored. Partially injured models of ACL and MCL were established in 3-month-old healthy male New Zealand white rabbits. Expression of lncRNAs and mRNAs in the ligament tissue was detected by high-throughput sequencing technology, and biological functions of differentially expressed RNAs were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Validation of several differentially expressed RNAs was performed using quantitative real-time PCR (qRT-PCR). Protein-protein interaction (PPI) analysis and competitive endogenous RNA (ceRNA) prediction were used to identify interactions among hub genes and the interaction among lncRNAs, miRNAs, and mRNAs. The results showed that compared with the normal group, there were 267 mRNAs and 329 lncRNAs differentially expressed in ACL and 726 mRNAs and 609 lncRNAs in MCL in the injured group. Compared with MCL, 420 mRNAs and 470 lncRNAs were differentially expressed in ACL in the normal group; 162 mRNAs and 205 lncRNAs were differentially expressed in ACL in the injured group. Several important lncRNAs and genes were identified, namely, COL7A1, LIF, FGFR2, EPHA2, CSF1, MMP2, MMP9, SOX5, LOX, MSTRG.1737.1, MSTRG.26038.25, MSTRG.20209.5, MSTRG.22764.1, and MSTRG.18113.1, which are closely related to inflammatory response, tissue damage repair, cell proliferation, differentiation, migration, and apoptosis. Further study of the functions of these genes may help to better understand the specific molecular mechanisms underlying the occurrence of endogenous repair disorders in ACL, which may provide new ideas for further exploration of effective means to promote endogenous repair of ACL injury.
Collapse
Affiliation(s)
- Huining Gu
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Siyuan Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Mingzheng Zhang
- Department of Joint Surgery and Sports Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yu Wen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Bin Li
- Department of Joint Surgery and Sports Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Zheng L, Luo D, Li J, Ye H, Han Z, Feng R, Zhong Q, Jing J, Yao Y. Pathological changes and expression of lysine oxidases and matrix metalloproteinases -1, -2, and -3 in ligaments of patients with haemophilic arthritis. Haemophilia 2021; 28:145-150. [PMID: 34697874 DOI: 10.1111/hae.14443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Studying the pathological changes of ligaments in patients with haemophilic arthritis (HA) has important significance for guiding the release of ligaments during total knee arthroplasty (TKA) and exploring interventions to prevent ligament lesions. AIM This study was conducted to show the pathological changes and investigate the lysine oxidase (LOX) and matrix metalloproteinase (MMP)-1, -2, and -3 levels in the ligaments of patients with HA compared with those of patients with osteoarthritis (OA). METHODS Ligaments obtained during the TKA were stained with Masson trichrome, Verhoeff-Van Gieson and haematoxylin and eosin to show the basic pathological changes. Collagen I, elastin, LOXs and MMP-1, -2, and -3 expression levels were detected via western blot. LOX and MMP-1, -2, and -3 mRNA expression levels were analysed via quantitative real-time PCR. RESULTS Compared with OA ligaments, HA ligaments were constructed more loosely with wider gaps, more breaks, haemocytodeposition and local hypertrophy among the fibres. LOXs and MMP mRNA expression levels were upregulated in the HA tissues, which was consistent with the western blot results. Collagen I and elastin levels were also higher in patients with HA. CONCLUSIONS The metabolism of the ligaments in patients with HA is more complex than in those with OA, and the ligaments of patients with HA have stronger healing and destruction processes. This pathology is related to iron overload and imbalanced inflammatory factors due to repeated intra-articular bleeding.
Collapse
Affiliation(s)
- Liujie Zheng
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dasheng Luo
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiale Li
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Houlong Ye
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhiwei Han
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ru Feng
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qigang Zhong
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juehua Jing
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yunfeng Yao
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Idota M, Ishizuka S, Hiraiwa H, Yamashita S, Oba H, Kawamura Y, Sakaguchi T, Haga T, Mizuno T, Kawashima I, Kuriyama K, Imagama S. 4-Methylumbelliferone suppresses catabolic activation in anterior cruciate ligament-derived cells via a mechanism independent of hyaluronan inhibition. J Orthop Surg Res 2021; 16:507. [PMID: 34404442 PMCID: PMC8369759 DOI: 10.1186/s13018-021-02637-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The anterior cruciate ligament (ACL) has a key role as a dynamic stabilizer of the knee joints, and ACL dysfunction caused by traumatic or degenerative rupture accelerates osteoarthritis progression. Thus, it is important to prevent the degenerative rupture of the ACL. 4-Methylumbelliferone (4-MU), a pre-approved drug, exerts anti-inflammatory effects in osteoarthritis chondrocytes. It was originally used as an inhibitor of hyaluronan synthesis in chondrocytes. METHODS In this study, we investigated whether 4-MU affects the expression of catabolic factors, such as matrix metalloproteinase (MMP)-1, MMP-3, and interleukin (IL)-6, in ACL-derived cells and ACL explant cultures using immunohistochemistry, real-time RT-qPCR, and capillary western immunoassay. Furthermore, the hyaluronan concentration was evaluated using a colorimetric assay. Statistical analyses were conducted using analysis of variance for multi-group comparisons, followed by Tukey or Tukey-Kramer post hoc test. RESULTS Our results revealed, for the first time, that 4-MU suppressed the IL-β-induced upregulation of pro-catabolic factors, such as MMP-1, MMP-3, and IL-6, in ACL-derived cells. This suppressive effect was also observed in the cultured ligament tissues in ex vivo experiments. 4-MU also reversed an enhanced dependence on glycolysis in IL-1β-activated ACL-derived cells. Furthermore, we found that the suppressive effects of 4-MU were exerted directly and not through the inhibition of hyaluronan synthesis. CONCLUSIONS We conclude that 4-MU could be an effective and useful treatment for knee osteoarthritis, owing to its anti-inflammatory effect on, not only chondrocytes but also on ligament cells.
Collapse
Affiliation(s)
- Masaru Idota
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Shinya Ishizuka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan.
| | - Hideki Hiraiwa
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Satoshi Yamashita
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Hiroki Oba
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Yusuke Kawamura
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Takefumi Sakaguchi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Takahiro Haga
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Takafumi Mizuno
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Itaru Kawashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Kanae Kuriyama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho Shouwaku Nagoya, Aichi, 4668550, Japan
| |
Collapse
|
5
|
Xu C, Chi Q, Yang L, Paul Sung KL, Wang C. Effect of mechanical injury and IL-1β on the expression of LOXs and MMP-1, 2, 3 in PCL fibroblasts after co-culture with synoviocytes. Gene 2020; 766:145149. [PMID: 32971185 DOI: 10.1016/j.gene.2020.145149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Crosstalk between posterior cruciate ligament fibroblasts (PCLfs) and synoviocytes (SCs) significantly modifies the homeostatic balance of the extracellular matrix (ECM) and appears to post a prominent affection for wound healing of PCL. Interleukin-1β (IL-1β) is regarded as a critical factor in acute inflammatory events during ligament injury. METHODS In order to confirm the capability of SCs the response of lysyl oxidases (LOXs) and matrix metalloproteinases (MMPs) to IL-1β, the complex cues of the joint cavity following PCL injury were simulated and the effect of IL-1β on the expression of LOXs and MMPs in PCLfs were investigated. PCLfs in both the mono- and co-culture conditions were treated with IL-1β. Cell lysates were collected from the PCLfs and LOXs and MMP-1, 2, 3 expression quantified using quantitative real-time PCR and western bolting. RESULTS The results indicated that injury alone elevated the expression of LOXs and MMP-1, 2 and 3. But IL-1β significantly decreased the LOX, LOXL1, and LOXL3 expression, and simultaneously increased MMP-1, 2 and 3 expressions in injured PCLfs. Furthermore, co-culture further suppressed LOXs, but stimulated MMP-1, 2 and 3 expressions when subjected to both mechanical injury and IL-1β treatment. This possibly suggests that a number of soluble factors are secreted that act as mediators that amplify the response of SCs. CONCLUSION The results indicated that the SCs could affect the IL-1β-induction of LOXs inhibition and MMPs accumulation, which may be the underlying mechanism of the the poor healing response following PCL injury.
Collapse
Affiliation(s)
- Chunming Xu
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China
| | - Qingjia Chi
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China; Department of Mechanics and Engineering Structure, Wuhan University of Technology, China
| | - Li Yang
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China
| | - K L Paul Sung
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China; Departments of Bioengineering and Orthopedics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, United States.
| | - Chunli Wang
- "111" Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|