1
|
Kim KR, Kim SK, Sung MS, Yu JN. Genetic Structure and Genetic Diversity of the Endemic Korean Aucha Perch, Coreoperca herzi (Centropomidae), in Korea. Animals (Basel) 2023; 13:2614. [PMID: 37627405 PMCID: PMC10451468 DOI: 10.3390/ani13162614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The Korean endemic aucha perch, Coreoperca herzi, belongs to the family Centropomidae. Thus far, studies on C. herzi have focused on mitochondrial genomes, egg development, and early life history, while studies on their genetic diversity or genetic structure are lacking. We investigated these aspects in this study using mitochondrial DNA data. Haplotypes were divided into the Hangang River, Nakdonggang River, Geumgang River, and southwest region water system populations. A translocated population, the Yangyang Namdaechun Stream, was confirmed to have originated from the Hangang River water system population based on haplotype distribution and genetic structure results. The FST of the mitochondrial DNA indicated distinct genetic differentiation in the Hangang, Nakdonggang, Geumgang, and southwest regions. According to COI and analyses, the analysis of molecular variance revealed a higher variance in the four water system groups (98.41%) than in the southwest region water system versus the Hangang River water system (80.27%) groups. This study presents basic data for conservation by providing extensive information on the genetic diversity, genetic structure, and translocation population of C. herzi.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (S.K.K.)
| | - Sang Ki Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (S.K.K.)
| | - Mu-Sung Sung
- Muldeuli Research, Icheon 12607, Republic of Korea;
| | - Jeong-Nam Yu
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (S.K.K.)
| |
Collapse
|
2
|
Wenne R. Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations. Genes (Basel) 2023; 14:genes14040808. [PMID: 37107566 PMCID: PMC10138012 DOI: 10.3390/genes14040808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
A large number of species and taxa has been studied for genetic polymorphism. Microsatellites have been known as hypervariable neutral molecular markers with the highest resolution power in comparison with any other markers. However, the discovery of a new type of molecular marker—single nucleotide polymorphism (SNP) has put the existing applications of microsatellites to the test. To ensure good resolution power in studies of populations and individuals, a number of microsatellite loci from 14 to 20 was often used, which corresponds to about 200 independent alleles. Recently, these numbers have tended to be increased by the application of genomic sequencing of expressed sequence tags (ESTs), and the choice of the most informative loci for genotyping depends on the aims of research. Examples of successful applications of microsatellite molecular markers in aquaculture, fisheries, and conservation genetics in comparison with SNPs have been summarized in this review. Microsatellites can be considered superior markers in such topics as kinship and parentage analysis in cultured and natural populations, the assessment of gynogenesis, androgenesis and ploidization. Microsatellites can be coupled with SNPs for mapping QTL. Microsatellites will continue to be used in research on genetic diversity in cultured stocks, and also in natural populations as an economically advantageous genotyping technique.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
3
|
Vera M, Aparicio E, Heras S, Abras A, Casanova A, Roldán MI, García-Marin JL. Regional environmental and climatic concerns on preserving native gene pools of a least concern species: Brown trout lineages in Mediterranean streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160739. [PMID: 36502686 DOI: 10.1016/j.scitotenv.2022.160739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The European brown trout, Salmo trutta, is a cold-adapted fish reported as a Least Concern species in the IUCN Red List. This species colonized new territories from southern refuges during the last glacial melting, but during the 20th century suffered from anthropic impacts on its habitats. The long-time survival of the species relies on the genetic diversity within and among populations. Brown trout is among the genetically most diverse vertebrate species; however, native populations in Mediterranean rivers have dramatically suffered of introgressive hybridization from extensive releases of evolutionary distant non-native Atlantic stocks. In addition, in Mediterranean rivers climate change will result in unsuitable conditions for the species during the 21st century. Using brown trout populations at the headstreams of a Pyrenean river as a model, this paper revised how hatchery releases have affected the native gene pools and how environmental and climatic variables controlled the amount of local introgression at intra-basin level. Introgressive hybridization was detected in all studied sites. Ten times larger divergence was observed among populations at tributaries than among populations along the main stem. A highly impacted population distributed in a long transect in the main stem suggested that hatchery fish move towards the main stem wherever released. From already highly impacted populations and despite the cessation of hatchery releases, warmer temperatures and lower precipitation expected from climate change will extend the introgressive hybridization along the basin, contributing to the extinction of the native gene pools. Based on available morphological distinction of native, hatchery and hybrid brown trout, we advocate the involvement of regional social groups (e.g. riverside dwellers, anglers, conservationists, hikers) in citizen science programs to detect the spread of non-native phenotypes along the rivers. These are cheap and fast methods to collaborate with fishery managers in the preservation and recovery of the regional native populations.
Collapse
Affiliation(s)
- Manuel Vera
- Departamento de Zoología, Xenética e Antropología Física, Campus Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - Enric Aparicio
- GRECO, Institute of Aquatic Ecology, University of Girona, 17071 Girona, Spain
| | - Sandra Heras
- Laboratori d'Ictiologia Genètica, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain.
| | - Alba Abras
- Laboratori d'Ictiologia Genètica, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain.
| | - Adrián Casanova
- Laboratori d'Ictiologia Genètica, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain
| | - Maria-Inés Roldán
- Laboratori d'Ictiologia Genètica, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain.
| | - Jose-Luis García-Marin
- Laboratori d'Ictiologia Genètica, Campus Montilivi, Universitat de Girona, 17003 Girona, Spain.
| |
Collapse
|
4
|
Conservation Genetics of Mediterranean Brown Trout in Central Italy (Latium): A Multi-Marker Approach. WATER 2022. [DOI: 10.3390/w14060937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brown trout is considered a complex of incipient species, including several phylogenetic lineages, whose natural distribution in the Mediterranean area has been altered, since the beginning of the 1900s, by massive introductions of domestic strains of Atlantic origin to support fisheries. Introduced trout naturalize in new suitable environments and extensively hybridize with native populations. Here, we characterized putatively neutral and adaptive genetic variability and population structure of Mediterranean brown trout from six river catchments in central peninsular Italy, as revealed by both mitochondrial (Control Region) and nuclear (microsatellites, LDH-C1, major histocompatibility complex) markers. We quantified the admixture of wild populations with hatchery strains and evaluated the effects of domestic trout introductions on shaping population genetics. Our analyses indicated: (1) a composite picture of genetic variability in the area, with the presence of all native Mediterranean trout mitochondrial lineages (“Adriatic”, “Mediterranean”, “marmoratus”), various frequencies of allochthonous genotypes and different rates of introgression among sampling sites; (2) asymmetric mito-nuclear introgression; (3) increasing nuclear marker diversity with increasing levels of admixture across populations; (4) strong population structure coupled with relatively low effective population size. Data allowed the identification of five management units and we propose specific actions to support ongoing and future conservation strategies within the examined area.
Collapse
|
5
|
Marić S, Stanković D, Sušnik Bajec S, Vukić J, Šanda R, Stefanov T, Nikolić D, Snoj A. Perils of brown trout (Salmo spp.) mitigation-driven translocations: a case study from the Vlasina Plateau, Southeast Serbia. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02688-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
White SL, Miller WL, Dowell SA, Bartron ML, Wagner T. Limited hatchery introgression into wild brook trout ( Salvelinus fontinalis) populations despite reoccurring stocking. Evol Appl 2018; 11:1567-1581. [PMID: 30344628 PMCID: PMC6183464 DOI: 10.1111/eva.12646] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/17/2023] Open
Abstract
Due to increased anthropogenic pressures on many fish populations, supplementing wild populations with captive-raised individuals has become an increasingly common management practice. Stocking programs can be controversial due to uncertainty about the long-term fitness effects of genetic introgression on wild populations. In particular, introgression between hatchery and wild individuals can cause declines in wild population fitness, resiliency, and adaptive potential and contribute to local population extirpation. However, low survival and fitness of captive-raised individuals can minimize the long-term genetic consequences of stocking in wild populations, and to date the prevalence of introgression in actively stocked ecosystems has not been rigorously evaluated. We quantified the extent of introgression in 30 populations of wild brook trout (Salvelinus fontinalis) in a Pennsylvania watershed and examined the correlation between introgression and 11 environmental covariates. Genetic assignment tests were used to determine the origin (wild vs. captive-raised) for 1,742 wild-caught and 300 hatchery brook trout. To avoid assignment biases, individuals were assigned to two simulated populations that represented the average allele frequencies in wild and hatchery groups. Fish with intermediate probabilities of wild ancestry were classified as introgressed, with threshold values determined through simulation. Even with reoccurring stocking at most sites, over 93% of wild-caught individuals probabilistically assigned to wild origin, and only 5.6% of wild-caught fish assigned to introgressed. Models examining environmental drivers of introgression explained <3% of the among-population variability, and all estimated effects were highly uncertain. This was not surprising given overall low introgression observed in this study. Our results suggest that introgression of hatchery-derived genotypes can occur at low rates, even in actively stocked ecosystems and across a range of habitats. However, a cautious approach to stocking may still be warranted, as the potential effects of stocking on wild population fitness and the mechanisms limiting introgression are not known.
Collapse
Affiliation(s)
- Shannon L. White
- Pennsylvania Cooperative Fish and Wildlife Research UnitPennsylvania State UniversityUniversity ParkPennsylvania
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPennsylvania
| | - William L. Miller
- Pennsylvania Cooperative Fish and Wildlife Research UnitPennsylvania State UniversityUniversity ParkPennsylvania
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPennsylvania
| | | | | | - Tyler Wagner
- U.S. Geological SurveyPennsylvania Cooperative Fish and Wildlife Research UnitPennsylvania State UniversityUniversity ParkPennsylvania
| |
Collapse
|
7
|
Population genetic diversity of Chinese sea bass ( Lateolabrax maculatus ) from southeast coastal regions of China based on mitochondrial COI gene sequences. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Cryptic invasion of Italian pool frogs (Pelophylax bergeri) across Western Europe unraveled by multilocus phylogeography. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1359-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Splendiani A, Ruggeri P, Giovannotti M, Pesaresi S, Occhipinti G, Fioravanti T, Lorenzoni M, Nisi Cerioni P, Caputo Barucchi V. Alien brown trout invasion of the Italian peninsula: the role of geological, climate and anthropogenic factors. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1149-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Larios-López JE, Tierno de Figueroa JM, Alonso-González C, Nebot Sanz B. Distribution of brown trout (Salmo truttaLinnaeus, 1758) (Teleostei: Salmonidae) in its southwesternmost European limit: possible causes. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/11250003.2015.1018351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Rourke ML, Gilligan DM. Complex biogeography and historic translocations lead to complicated phylogeographic structure of freshwater eel-tailed catfish (Tandanus spp.) in south-eastern Australia. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0699-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Fruciano C, Pappalardo AM, Tigano C, Ferrito V. Phylogeographical relationships of Sicilian brown trout and the effects of genetic introgression on morphospace occupation. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12279] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Carmelo Fruciano
- Department of Biological, Geological and Environmental Sciences; University of Catania; via Androne 81 95124 Catania Italy
| | - Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences; University of Catania; via Androne 81 95124 Catania Italy
| | - Concetta Tigano
- Department of Biological, Geological and Environmental Sciences; University of Catania; via Androne 81 95124 Catania Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences; University of Catania; via Androne 81 95124 Catania Italy
| |
Collapse
|
13
|
Genetic differences between wild and hatchery populations of Korean spotted sea bass (Lateolabrax maculatus) inferred from microsatellite markers. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0135-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Frank BM, Baret PV. Simulating brown trout demogenetics in a river/nursery brook system: The individual-based model DemGenTrout. Ecol Modell 2013. [DOI: 10.1016/j.ecolmodel.2012.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Barroca TM, Santos GB, Duarte NVR, Kalapothakis E. Evaluation of genetic diversity and population structure in a commercially important freshwater fish Prochilodus costatus (Characiformes, Prochilodontidae) using complex hypervariable repeats. GENETICS AND MOLECULAR RESEARCH 2012; 11:4456-67. [PMID: 23079996 DOI: 10.4238/2012.september.27.4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We used complex hypervariable repeats to evaluate the genetic diversity and structure of Prochilodus costatus (Characiformes), an ecologically and economically important species endemic to the São Francisco River basin. Hydroelectric dams along the river have led to population fragmentation, which can limit gene flow. Restocking from hatcheries has been used to repopulate declining populations. To determine how fragmentation and hatchery supplementation affect P. costatus population structure, we studied populations from three sites up and downstream of the Gafanhoto Dam (Pará River, State of Minas Gerais). High levels of genetic diversity were found within populations (0.926 to 0.873); the three populations showed significant differentiation (F(ST) = 0.16), suggesting that populations from the three sites were affected by fragmentation of the river and by hatchery contributions. These results will be useful for developing a management and conservation plan for fish species in this area.
Collapse
Affiliation(s)
- T M Barroca
- Laboratório de Biotecnologia e Marcadores Moleculares, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | |
Collapse
|
16
|
Rourke ML, McPartlan HC, Ingram BA, Taylor AC. Variable stocking effect and endemic population genetic structure in Murray cod Maccullochella peelii. JOURNAL OF FISH BIOLOGY 2011; 79:155-177. [PMID: 21722117 DOI: 10.1111/j.1095-8649.2011.03006.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Microsatellite markers were utilized to examine the genetic structure of Murray cod Maccullochella peelii throughout its distribution in the Murray--Darling Basin (MDB) of eastern Australia, and to assess the genetic effects of over three decades of stocking hatchery-reared fingerlings. Bayesian analysis using the programme Structure indicated that the species is largely genetically panmictic throughout much of its extensive range, most probably due to the high level of connectivity between catchments. Three catchments with terminal wetlands (the Lachlan, Macquarie and Gwydir), however, contained genetically distinct populations. No stocking effects were detected in the catchments that were genetically panmictic (either because of low genetic power or lack of effects), but the genetically differentiated Gwydir and Macquarie catchment populations were clearly affected by stocking. Conversely, there was no genetic evidence for survival and reproduction of stocked fish in the Lachlan catchment. Therefore, stocking of M. peelii throughout the MDB has resulted in a range of genetic effects ranging from minimal detectable effect, to substantial change in wild population genetic structure.
Collapse
Affiliation(s)
- M L Rourke
- Australian Centre for Biodiversity, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | | | | | | |
Collapse
|
17
|
Abstract
For several years, measures to insure healthy river functions and to protect biodiversity have focused on management at the scale of drainage basins. Indeed, rivers bear witness to the health of their drainage basins, which justifies integrated basin management. However, this vision should not mask two other aspects of the protection of aquatic and riparian biodiversity as well as services provided by rivers. First, although largely depending on the ecological properties of the surrounding terrestrial environment, rivers are ecological systems by themselves, characterized by their linearity: they are organized in connected networks, complex and ever changing, open to the sea. Second, the structure and functions of river networks respond to manipulations of their hydrology, and are particularly vulnerable to climatic variations. Whatever the scale considered, river networks represent "hotlines" for sharing water between ecological and societal systems, as well as for preserving both systems in the face of global change. River hotlines are characterized by spatial as well as temporal legacies: every human impact to a river network may be transmitted far downstream from its point of origin, and may produce effects only after a more or less prolonged latency period. Here, I review some of the current issues of river ecology in light of the linear character of river networks.
Collapse
|
18
|
Araguas RM, Sanz N, Fernández R, Utter FM, Pla C, García-Marín JL. Role of genetic refuges in the restoration of native gene pools of brown trout. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2009; 23:871-878. [PMID: 19183212 DOI: 10.1111/j.1523-1739.2008.01144.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Captive-bred animals derived from native, alien, or hybrid stocks are often released in large numbers in natural settings with the intention of augmenting harvests. In brown trout (Salmo trutta), stocking with hatchery-reared non-native fish has been the main management strategy used to maintain or improve depleted wild brown trout populations in Iberian and other Mediterranean regions. This measure has become a serious threat to the conservation of native genetic diversity, mainly due to introgressive hybridization. Aware of this risk, the agency responsible for management of brown trout in the eastern Pyrenees (Spain) created "brown trout genetic refuges" to preserve the integrity of brown trout gene pools in this region. Within refuge areas, the prerefuge status with respect to fishing activities has been maintained, but hatchery releases have been banned completely. We evaluated this management strategy through a comparison of the stocking impact on native populations that accounted for stocking histories before and after refuge designations and fishing activities. In particular we examined the relevant scientific, cultural, and political challenges encountered. Despite agency willingness to change fishery policies to balance exploitation and conservation, acceptance of these new policies by anglers and genetic monitoring of refuge populations should also be considered. To improve management supported by genetic refuges, we suggest focusing on areas where the public is more receptive, considering the situation of local native diversity, and monitoring of adjacent introgressed populations. We recommend the use of directional supportive breeding only when a population really needs to be enhanced. In any case, management strategies should be developed to allow for protection within the context of human use.
Collapse
Affiliation(s)
- Rosa M Araguas
- Laboratori d'Ictiologia Genètica, University of Girona, Campus Montilivi s/n, Girona, Spain
| | | | | | | | | | | |
Collapse
|
19
|
de Innocentiis S, Longobardi A, Marino G. Molecular Tools in a Marine Restocking Program for the Endangered Dusky Grouper,Epinephelus marginatus. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260701678348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Valosaari KR, Aikio S, Kaitala V. Male mating strategy and the introgression of a growth hormone transgene. Evol Appl 2008; 1:608-19. [PMID: 25567801 PMCID: PMC3352387 DOI: 10.1111/j.1752-4571.2008.00046.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 08/01/2008] [Indexed: 11/29/2022] Open
Abstract
Escaped transgenic organisms (GMO's) may threaten the populations of their wild relatives if able to hybridize with each other. The introgression of a growth enhancement transgene into a wild Atlantic salmon population may be affected by the transgene's effects not only on fitness parameters, but also on mating behaviour. Large anadromous GMO males are most preferred in mating, but a transgene can also give the large sneakers a reproductive advantage over the smaller wild individuals. With a simulation model, we studied whether the increase in the proportion and mating success of sneakers in transgenic and hybrid genotypes could facilitate the introgression of a transgene into wild population after the release of GMOs. The model combines population dynamics and Mendelian inheritance of a transgenic trait. We found that the introgression of the transgene is strongly affected by the greater mating preference of large GMO males. Furthermore, the difference in reproductive success between the anadromous versus sneaker strategy defines how much GMO's have to be preferred to be able to invade. These results emphasize the importance of detailed knowledge of reproductive systems and the effect of a transgene on the phenotype and behaviour of GMOs when assessing the consequences of their release or escape to the wild.
Collapse
Affiliation(s)
- Kata-Riina Valosaari
- Integrative Ecology Unit, Department of Biological and Environmental Sciences, University of Helsinki Helsinki, Finland
| | - Sami Aikio
- Integrative Ecology Unit, Department of Biological and Environmental Sciences, University of Helsinki Helsinki, Finland
| | - Veijo Kaitala
- Integrative Ecology Unit, Department of Biological and Environmental Sciences, University of Helsinki Helsinki, Finland
| |
Collapse
|