1
|
Li M, Jin Z, Qi Y, Zhao H, Yang N, Guo J, Chen B, Xian X, Liu W. Risk Assessment of Spodoptera exempta against Food Security: Estimating the Potential Global Overlapping Areas of Wheat, Maize, and Rice under Climate Change. INSECTS 2024; 15:348. [PMID: 38786904 PMCID: PMC11121843 DOI: 10.3390/insects15050348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Spodoptera exempta, known as the black armyworm, has been extensively documented as an invasive agricultural pest prevalent across various crop planting regions globally. However, the potential geographical distribution and the threat it poses to host crops of remains unknown at present. Therefore, we used an optimized MaxEnt model based on 841 occurrence records and 19 bioclimatic variables to predict the potential suitable areas of S. exempta under current and future climatic conditions, and the overlap with wheat, rice, and maize planting areas was assessed. The optimized model was highly reliable in predicting potential suitable areas for this pest. The results showed that high-risk distribution areas for S. exempta were mainly in developing countries, including Latin America, central South America, central Africa, and southern Asia. Moreover, for the three major global food crops, S. exempta posed the greatest risk to maize planting areas (510.78 × 104 km2), followed by rice and wheat planting areas. Under future climate scenarios, global warming will limit the distribution of S. exempta. Overall, S. exempta had the strongest effect on global maize production areas and the least on global wheat planting areas. Our study offers a scientific basis for global prevention of S. exempta and protection of agricultural crops.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenan Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuhan Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baoxiong Chen
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Zhou Y, Tao J, Yang J, Zong S, Ge X. Niche shifts and range expansions after invasions of two major pests: the Asian longhorned beetle and the citrus longhorned beetle. PEST MANAGEMENT SCIENCE 2023; 79:3149-3158. [PMID: 37013934 DOI: 10.1002/ps.7490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND In recent years, the quarantine forestry pests the Asian longhorned beetle (ALB) Anoplophora glabripennis and the citrus longhorned beetle (CLB) Anoplophora chinensis have spread across the Northern Hemisphere, triggering concern about their potential distribution. However, little is known about the niche shifts of the pests during the invasion, making it difficult to assess their potential ranges. We thus employed two distinct approaches (i.e., ordination-based and reciprocal model-based) to compare the native and invaded niches of ALB and CLB after their spread to new continents based on global occurrence records. We further constructed models with pooled occurrences from both the native and invaded ranges to analyze the effects of occurrence partitioning on predicted ranges. RESULTS We detected expansions in the invaded niches of both pests, indicating that the niches shifted to varying extents after the invasion. Large shares of the native niches of ALB and CLB remained unfilled, revealing the potential for further invasion in new regions. The models calibrated with pooled occurrences clearly underestimated the potential ranges in invaded regions compared with the projections based on partitioned models considering native and invaded areas separately. CONCLUSIONS These results emphasize the importance of elucidating the niche dynamics of invasive species for obtaining accurately predicted ranges, which may help identify risk areas masked by the assumption of niche conservatism. Furthermore, prevention and quarantine measures for ALB and CLB are clearly needed to avoid future serious damage to forest ecosystems. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Zhou
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | | | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Xuezhen Ge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Qi Y, Xian X, Zhao H, Yang M, Zhang Y, Yu W, Liu W. World Spread of Tropical Soda Apple ( Solanum viarum) under Global Change: Historical Reconstruction, Niche Shift, and Potential Geographic Distribution. BIOLOGY 2023; 12:1179. [PMID: 37759579 PMCID: PMC10525411 DOI: 10.3390/biology12091179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980-2010), and equilibrium (2010-present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5-8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.
Collapse
Affiliation(s)
- Yuhan Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Ming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Yu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Wentao Yu
- Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Centre of Fuzhou Customs, Fuzhou 350001, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| |
Collapse
|
4
|
Another Chapter in the History of the European Invasion by the Western Conifer Seed Bug, Leptoglossus occidentalis: The Iberian Peninsula. DIVERSITY 2023. [DOI: 10.3390/d15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Western conifer seed bug, Leptoglossus occidentalis, is native to North America and has already been considered a significant pest in several European countries since its first observation in Italy in 1999. In Spain and Portugal, it was recorded for the first time in 2003 and 2010, respectively, and its impact on Stone Pine (Pinus pinea) is of major concern. Before developing control measures for this insect pest, it is paramount to clarify its spatiotemporal dynamics of invasion. Therefore, in this study, we aimed to (a) characterise the genetic structure and diversity and (b) invasion pathways of L. occidentalis populations in the Iberian Peninsula. To do so, specimens of L. occidentalis were collected at fourteen sites widely distributed within the Iberian Peninsula. We used mtDNA sequences of Cytochrome b and eleven microsatellite markers to characterise the genetic diversity and the population structure in the Iberian Peninsula. Our genetic results combined with the observational dates strongly support a stratified expansion of L. occidentalis invasion in the Iberian Peninsula proceeding from multiple introductions, including at least one in Barcelona, one in Valencia, and one in the west coast or in the Southeastern region.
Collapse
|
5
|
Luo Z, Mowery MA, Cheng X, Yang Q, Hu J, Andrade MCB. Realized niche shift of an invasive widow spider: drivers and impacts of human activities. Front Zool 2022; 19:25. [PMID: 36307847 PMCID: PMC9617396 DOI: 10.1186/s12983-022-00470-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background Predicting invasiveness requires an understanding of the propensity of a given species to thrive in areas with novel ecological challenges. Evaluation of realized niche shift of an invasive species in its invasive range, detecting the main drivers of the realized niche shift, and predicting the potential distribution of the species can provide important information for the management of populations of invasive species and the conservation of biodiversity. The Australian redback spider, Latrodectus hasselti, is a widow spider that is native to Australia and established in Japan, New Zealand, and Southeast Asia. We used ecological niche models and ordinal comparisons in an integrative method to compare the realized niches of native and invasive populations of this spider species. We also assessed the impact of several climatic predictor variables and human activity on this niche shift. We hypothesized that human impact is important for successful establishment of this anthropophilic species, and that climatic predictor variables may determine suitable habitat and thus predict invasive ranges. Results Our models showed that L. hasselti distributions are positively influenced by human impact in both of the native and invasive ranges. Maximum temperature was the most important climatic variable in predictions of the distribution of native populations, while precipitation seasonality was the most important in predictions of invasive populations. The realized niche of L. hasselti in its invasive range differed from that in its native range, indicating possible realized niche shift. Conclusions We infer that a preference for human-disturbed environments may underlie invasion and establishment in this spider species, as anthropogenic habitat modifications could provide shelters from unsuitable climatic conditions and extreme climatic stresses to the spiders. Because Australia and the countries in which the species is invasive have differing climates, differences in the availability of certain climatic conditions could have played a role in the realized niche shift of L. hasselti. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-022-00470-z.
Collapse
|
6
|
Olivera L, Minghetti E, Montemayor SI. Ecological niche modeling (ENM) of Leptoglossus clypealis a new potential global invader: following in the footsteps of Leptoglossus occidentalis? BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:289-300. [PMID: 33138880 DOI: 10.1017/s0007485320000656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The introduction of alien species is one of the main problems in conservation. Many successful invaders cause severe economic and ecological damage. Such is the case of Leptoglossus occidentalis, a phytophagous true bug native to North America, which has become a pest in Europe, Asia, Africa and South America. Within the genus, another species whose distributional range is expanding toward the east of North America is Leptoglossus clypealis. As climate determines the successful establishment of insects, the identification of climatically suitable areas for invasive species based on ecological niche models (ENMs) offers an excellent opportunity for preventing invasions. In this study, ENMs were built for both species and their native climatic niches were compared. Their niche breath was also measured. The climatic niches of both species are identical and the niche breadth of L. clypealis is broader than that of L. occidentalis. In view of the great ecological resemblance between these two species, we believe that L. clypealis could became a major pest thus it should be carefully monitored. The results of the present worldwide ENMs showed numerous regions with suitable conditions for the establishment of both species. The future ENMs exhibited a retraction in the suitable areas in North America, Europe and Asia.
Collapse
Affiliation(s)
- Leonela Olivera
- Universidad Nacional de La Plata, CONICET, División Entomología, Museo de La Plata, Paseo del Bosque, s/n B1900FWA, La Plata, Buenos Aires, Argentina
| | - Eugenia Minghetti
- Universidad Nacional de La Plata, CONICET, División Entomología, Museo de La Plata, Paseo del Bosque, s/n B1900FWA, La Plata, Buenos Aires, Argentina
| | - Sara I Montemayor
- Universidad Nacional de La Plata, CONICET, División Entomología, Museo de La Plata, Paseo del Bosque, s/n B1900FWA, La Plata, Buenos Aires, Argentina
| |
Collapse
|
7
|
Leal-Sáenz A, Waring KM, Álvarez-Zagoya R, Hernández-Díaz JC, López-Sánchez CA, Martínez-Guerrero JH, Wehenkel C. Assessment and Models of Insect Damage to Cones and Seeds of Pinus strobiformis in the Sierra Madre Occidental, Mexico. FRONTIERS IN PLANT SCIENCE 2021; 12:628795. [PMID: 33995433 PMCID: PMC8116514 DOI: 10.3389/fpls.2021.628795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 05/31/2023]
Abstract
Insect damage to cones and seeds has a strong impact on the regeneration of conifer forest ecosystems, with broader implications for ecological and economic services. Lack of control of insect populations can lead to important economic and environmental losses. Pinus strobiformis is the most widespread of the white pines in Mexico and is widely distributed throughout the mountains of northern Mexico. Relatively few studies have examined insect damage to the cones and seeds of these pines, especially in Mexico. In this study, we therefore analyzed insect damage to cones and seeds of P. strobiformis in Mexico by using X-ray and stereomicroscopic analysis. The specific objectives of the study were (a) to characterize insect damage by measuring external and internal cone traits, (b) to assess the health of seeds and cones of P. strobiformis in the Sierra Madre Occidental, Mexico, and (c) to estimate the relative importance of the effects of different environmental variables on cone and seed damage caused by insects. We found that 80% of P. strobiformis seeds and 100% of the tree populations studied had damage caused by insects. Most seeds were affected by Leptoglossus occidentalis, Tetyra bipunctata, Megastigmus albifrons, and the Lepidoptera complex (which includes Apolychrosis synchysis, Cydia latisigna, Eucosma bobana, and Dioryctria abietivorella). The cones of all tree populations were affected by some type of insect damage, with Lepidoptera causing most of the damage (72%), followed by Conophthorus ponderosae (15%), the hemipteran L. occidentalis (7%), and the wasp M. albifrons (6%). The proportion of incomplete seeds in P. strobiformis at the tree level, cone damage by M. albifrons and seed damage in L. occidentalis were associated with various climate and soil variables and with crown dieback. Thus, cone and seed insect damage can be severe and potentially impact seed production in P. strobiformis and the reforestation potential of the species. The study findings will enable managers to better identify insects that cause damage to cone and seeds. In addition, identification of factors associated with damage may be useful for predicting the levels of insect predation on seeds and cones.
Collapse
Affiliation(s)
- Alejandro Leal-Sáenz
- Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Kristen M. Waring
- School of Forestry, Northern Arizona University, Flagstaff, AZ, United States
| | | | - José Ciro Hernández-Díaz
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Carlos A. López-Sánchez
- SMartForest Group, Department of Biology of Organisms and Systems, Mieres Polytechnic School, University of Oviedo, Mieres, Spain
| | | | - Christian Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
| |
Collapse
|
8
|
Faúndez EI, Carvajal MA, Villablanca J. Alien Invasion: The Case of the Western Conifer-Seed Bug (Heteroptera: Coreidae) in Chile, Overreaction, and Misidentifications. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:297-303. [PMID: 31380562 DOI: 10.1093/jme/tjz127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Leptoglossus occidentalis (Heidemann) is an invasive species introduced in Europe, Asia, and most recently South America. In the present study, we report the overreaction situation caused by this bug in Chile, as it has been confused with kissing bugs (Reduviidae: Triatominae), Chagas' disease vectors. During 2018 and first months of 2019, we received 74 alleged cases of kissing bugs to confirm identification. From these, a total of 63 were identified as L. occidentalis, representing a 85% of the total denounces. Additionally, the first bite case in a human is described. The situation caused by L. occidentalis in Chile is discussed, and an illustrated table is provided to correctly identify this species and tell it apart from Triatomines. It is concluded that L. occidentalis is well established in Chile, and it is necessary to educate the population on recognition of the bug and to avoid overreaction as the species can inflict painful bites, but not transmit any disease.
Collapse
Affiliation(s)
- Eduardo I Faúndez
- Laboratorio de Entomología, Instituto de la Patagonia, Universidad de Magallanes, Punta Arenas, Chile
| | - Mariom A Carvajal
- Laboratorio de Entomología, Instituto de la Patagonia, Universidad de Magallanes, Punta Arenas, Chile
| | | |
Collapse
|
9
|
Kun ME, Masciocchi M. First detection of the cosmopolitan invader Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae) in Argentina. AN ACAD BRAS CIENC 2019; 91:e20180493. [PMID: 31411257 DOI: 10.1590/0001-3765201920180493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 03/29/2019] [Indexed: 11/22/2022] Open
Abstract
Leptoglossus occidentalis Heidemann is a conifer seed bug, native to North America. This species is considered invasive and has reached several countries in the Northern Hemisphere and most recently Chile in South America. This work reports the first detection of this species in Argentina, with specimens from the Rio Negro province, in 2017. Ecological traits and its potential rapid spread were also discussed.
Collapse
Affiliation(s)
- Marcelo E Kun
- Laboratorio de Zoología, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Quintral 1250, Bariloche (8400), Argentina
| | - Maité Masciocchi
- Grupo de Ecología de Poblaciones de Insectos, IFAB-CONICET-INTA EEA Bariloche, Av. Modesta Victoria 4450, Bariloche (8400), Argentina
| |
Collapse
|
10
|
Liang W, Papeş M, Tran L, Grant J, Washington-Allen R, Stewart S, Wiggins G. The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Zhu GP, Peterson AT. Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1460-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Schatz AM, Kramer AM, Drake JM. Accuracy of climate-based forecasts of pathogen spread. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160975. [PMID: 28405387 DOI: 10.5061/dryad.3p121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/03/2017] [Indexed: 05/26/2023]
Abstract
Species distribution models (SDMs) are a tool for predicting the eventual geographical range of an emerging pathogen. Most SDMs, however, rely on an assumption of equilibrium with the environment, which an emerging pathogen, by definition, has not reached. To determine if some SDM approaches work better than others for modelling the spread of emerging, non-equilibrium pathogens, we studied time-sensitive predictive performance of SDMs for Batrachochytrium dendrobatidis, a devastating infectious fungus of amphibians, using multiple methods trained on time-incremented subsets of the available data. We split our data into timeline-based training and testing sets, and evaluated models on each set using standard performance criteria, including AUC, kappa, false negative rate and the Boyce index. Of eight models examined, we found that boosted regression trees and random forests performed best, closely followed by MaxEnt. As expected, predictive performance generally improved with the length of time series used for model training. These results provide information on how quickly the potential extent of an emerging disease may be determined, and identify which modelling frameworks are likely to provide useful information during the early phases of pathogen expansion.
Collapse
Affiliation(s)
- Annakate M Schatz
- Odum School of Ecology , University of Georgia , 140 East Green Street, Athens, GA 30602 , USA
| | - Andrew M Kramer
- Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602, USA; Center for the Ecology of Infectious Diseases, University of Georgia, 140 East Green Street, Athens, GA 30602, USA
| | - John M Drake
- Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602, USA; Center for the Ecology of Infectious Diseases, University of Georgia, 140 East Green Street, Athens, GA 30602, USA
| |
Collapse
|
13
|
Schatz AM, Kramer AM, Drake JM. Accuracy of climate-based forecasts of pathogen spread. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160975. [PMID: 28405387 PMCID: PMC5383844 DOI: 10.1098/rsos.160975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/03/2017] [Indexed: 05/13/2023]
Abstract
Species distribution models (SDMs) are a tool for predicting the eventual geographical range of an emerging pathogen. Most SDMs, however, rely on an assumption of equilibrium with the environment, which an emerging pathogen, by definition, has not reached. To determine if some SDM approaches work better than others for modelling the spread of emerging, non-equilibrium pathogens, we studied time-sensitive predictive performance of SDMs for Batrachochytrium dendrobatidis, a devastating infectious fungus of amphibians, using multiple methods trained on time-incremented subsets of the available data. We split our data into timeline-based training and testing sets, and evaluated models on each set using standard performance criteria, including AUC, kappa, false negative rate and the Boyce index. Of eight models examined, we found that boosted regression trees and random forests performed best, closely followed by MaxEnt. As expected, predictive performance generally improved with the length of time series used for model training. These results provide information on how quickly the potential extent of an emerging disease may be determined, and identify which modelling frameworks are likely to provide useful information during the early phases of pathogen expansion.
Collapse
Affiliation(s)
- Annakate M. Schatz
- Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602, USA
| | - Andrew M. Kramer
- Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, 140 East Green Street, Athens, GA 30602, USA
| | - John M. Drake
- Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, 140 East Green Street, Athens, GA 30602, USA
| |
Collapse
|
14
|
Range wide molecular data and niche modeling revealed the Pleistocene history of a global invader (Halyomorpha halys). Sci Rep 2016; 6:23192. [PMID: 26996353 PMCID: PMC4800403 DOI: 10.1038/srep23192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 02/29/2016] [Indexed: 11/18/2022] Open
Abstract
Invasive species’ Pleistocene history contains much information on its present population structure, dispersability and adaptability. In this study, the Pleistocene history of a global invasive pest (Brown Marmorated Stink Bug BMSB, Halyomorpha halys) was unveiled using the coupled approach of phylogeography and ecological niche modelling. Rangewide molecular data suggests that the Taiwan and other native populations had diverged in mid-Pleistocene. In mainland China, the native BMSB did not experience population contraction and divergence during last glacial, but persisted in interconnected populations. Combined Bayesian Skyline Plot (BSP) and niche modelling revealed a rapid expansion occurred during the transition of Last Inter Glacial (LIG) to Last Glacial Maximum (LGM). High genetic diversity and multi-reticular haplotypes network exist in the original sources populations of BMSB invasion in northern China. They were speculated to be colonized from the central China, with many derived haplotypes evolved to adapt the novel environment. The ENM future prediction suggest that BMSB may expand northward to higher latitudes in the US and Europe, because of its high invasive ability, together with the available suitable climate space there.
Collapse
|
15
|
Lauria V, Power AM, Lordan C, Weetman A, Johnson MP. Spatial transferability of habitat suitability models of Nephrops norvegicus among fished areas in the Northeast Atlantic: sufficiently stable for marine resource conservation? PLoS One 2015; 10:e0117006. [PMID: 25679507 PMCID: PMC4334503 DOI: 10.1371/journal.pone.0117006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/17/2014] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the spatial distribution and habitat associations of species in relation to the environment is essential for their management and conservation. Habitat suitability models are useful in quantifying species-environment relationships and predicting species distribution patterns. Little is known, however, about the stability and performance of habitat suitability models when projected into new areas (spatial transferability) and how this can inform resource management. The aims of this study were to model habitat suitability of Norway lobster (Nephrops norvegicus) in five fished areas of the Northeast Atlantic (Aran ground, Irish Sea, Celtic Sea, Scotland Inshore and Fladen ground), and to test for spatial transferability of habitat models among multiple regions. Nephrops burrow density was modelled using generalised additive models (GAMs) with predictors selected from four environmental variables (depth, slope, sediment and rugosity). Models were evaluated and tested for spatial transferability among areas. The optimum models (lowest AICc) for different areas always included depth and sediment as predictors. Burrow densities were generally greater at depth and in finer sediments, but relationships for individual areas were sometimes more complex. Aside from an inclusion of depth and sediment, the optimum models differed between fished areas. When it came to tests of spatial transferability, however, most of the models were able to predict Nephrops density in other areas. Furthermore, transferability was not dependent on use of the optimum models since competing models were also able to achieve a similar level of transferability to new areas. A degree of decoupling between model 'fitting' performance and spatial transferability supports the use of simpler models when extrapolating habitat suitability maps to different areas. Differences in the form and performance of models from different areas may supply further information on the processes shaping species' distributions. Spatial transferability of habitat models can be used to support fishery management when the information is scarce but caution needs to be applied when making inference and a multi-area transferability analysis is preferable to bilateral comparisons between areas.
Collapse
Affiliation(s)
- Valentina Lauria
- Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Anne Marie Power
- Department of Zoology, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Colm Lordan
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - Adrian Weetman
- Marine Scotland Science, Marine Laboratory, Aberdeen, Scotland
| | - Mark P. Johnson
- Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|