1
|
Liñán-Vigo F, Núñez-Farfán J. Plasticity in biomass allocation underlies tolerance to leaf damage in native and non-native populations of Datura stramonium. Oecologia 2024; 205:613-626. [PMID: 39048862 PMCID: PMC11358249 DOI: 10.1007/s00442-024-05585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
An introduction to a novel habitat represents a challenge to plants because they likely would face new interactions and possibly different physical context. When plant populations arrive to a new region free from herbivores, we can expect an evolutionary change in their defense level, although this may be contingent on the type of defense, resistance or tolerance, and cost of defense. Here, we addressed questions on the evolution of tolerance to damage in non-native Spanish populations of Datura stramonium by means of two comparative greenhouse experiments. We found differences in seed production, specific leaf area, and biomass allocation to stems and roots between ranges. Compared to the Mexican native populations of this species, non-native populations produced less seeds despite damage and allocate more biomass to roots and less to stems, and had higher specific leaf area values. Plasticity to leaf damage was similar between populations and no difference in tolerance to damage between native and non-native populations was detected. Costs for tolerance were detected in both regions. Two plasticity traits of leaves were associated with tolerance and were similar between regions. These results suggest that tolerance remains beneficial to plants in the non-native region despite it incurs in fitness costs and that damage by herbivores is low in the non-native region. The study of the underlying traits of tolerance can improve our understanding on the evolution of tolerance in novel environments, free from plants' specialist herbivores.
Collapse
Affiliation(s)
- Franco Liñán-Vigo
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510, Ciudad de Mexico, Mexico
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, 04510, Ciudad de Mexico, Mexico.
| |
Collapse
|
2
|
Yan J, Hu X, Qian L, Fu X, Wang L. Tidal organic input restricts CO 2 sequestration capacity of estuarine wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63580-63591. [PMID: 37055687 DOI: 10.1007/s11356-023-26642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
The inland and estuary wetlands that characterized by different natural environment perform distinctly in soil carbon (C) sink. It was deemed that estuary wetland has a higher organic C accumulation rate than inland wetland, due to its higher primary production and tidal organics input, thus having higher organic C sink capacity. While from CO2 budge in view, whether does the large organic input from tide restrict CO2 sequestration capacity of estuary wetland has not been discussed comparing with inland wetland. In this study, inland and estuary wetlands were selected to study the potential of CO2 sequestration capacity. It was found that inland wetland had most of soil organic carbon (SOC) derived from plant C, which brought remarkable organic C content and nourished higher microbial biomass, dehydrogenase, and β_glucosidase than estuary wetland. The estuary wetland instead accumulated less SOC, a considerable proportion of which came from tidal waters, therefore supporting lower microbial biomass and enzyme activities than that in inland wetland. However, estuary wetland was evaluated having higher capability in SOC mineralization than inland wetland in consideration of soil respiration (SR) and SR quotient. It was concluded that tidal organic C accelerated the SOC mineralization in estuarine wetland, thus weakening the CO2 sequestration. These results implied the importance of pollution control for reservation CO2 sink function in estuarine wetland.
Collapse
Affiliation(s)
- Jianfang Yan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Xin Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Liwei Qian
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohua Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Huang P, Hameed R, Abbas M, Balooch S, Alharthi B, Du Y, Abbas A, Younas A, Du D. Integrated omic techniques and their genomic features for invasive weeds. Funct Integr Genomics 2023; 23:44. [PMID: 36680630 DOI: 10.1007/s10142-023-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Many emerging invasive weeds display rapid adaptation against different stressful environments compared to their natives. Rapid adaptation and dispersal habits helped invasive populations have strong diversity within the population compared to their natives. Advances in molecular marker techniques may lead to an in-depth understanding of the genetic diversity of invasive weeds. The use of molecular techniques is rapidly growing, and their implications in invasive weed studies are considered powerful tools for genome purposes. Here, we review different approach used multi-omics by invasive weed studies to understand the functional structural and genomic changes in these species under different environmental fluctuations, particularly, to check the accessibility of advance-sequencing techniques used by researchers in genome sequence projects. In this review-based study, we also examine the importance and efficiency of different molecular techniques in identifying and characterizing different genes, associated markers, proteins, metabolites, and key metabolic pathways in invasive and native weeds. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding invasive weeds traits. Although these techniques can provide robust insights about the molecular functioning, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. We conclude that different multi-omic techniques will provide long-term benefits in launching new genome projects to enhance the understanding of invasive weeds' invasion process.
Collapse
Affiliation(s)
- Ping Huang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Rashida Hameed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manzer Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan Province, People's Republic of China
| | - Sidra Balooch
- Institute of Botany, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, PO. Box 11099, Taif, 21944, Saudi Arabia
| | - Yizhou Du
- Faculty of Engineering, School of Computer Science, University of Sydney, Sydney, New South Wales, Australia
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
4
|
Liu W, Chen X, Wang J, Zhang Y. Does the effect of flowering time on biomass allocation across latitudes differ between invasive and native salt marsh grass Spartina alterniflora? Ecol Evol 2022; 12:e8681. [PMID: 35309742 PMCID: PMC8901870 DOI: 10.1002/ece3.8681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Parallel latitudinal clines in flowering time have been documented in both the invasive and native ranges of plants. Furthermore, flowering time has been found to affect biomass at maturity. Therefore, understanding how these flowering times affect biomass accumulation across latitudes is essential to understanding plant adaptations and distributions.We investigated and compared trends in first flowering day (FFD), aboveground biomass (AGB), belowground biomass (BGB), and BGB:AGB ratio of the salt marsh grass Spartina alterniflora along latitudinal gradients from the invasive (China, 19-40°N) and native range (United States, 27-43°N) in a greenhouse common garden experiment, and tested whether FFD would drive these divergences between invasive and native ranges.The invasive populations produced more (~20%, ~19%) AGB and BGB than native populations, but there were no significant differences in the FFD and BGB:AGB ratio. We found significant parallel latitudinal clines in FFD in both invasive and native ranges. In addition, the BGB:AGB ratio was negatively correlated with the FFD in both the invasive and native ranges but nonsignificant in invasive populations. In contrast, AGB and BGB increased with latitude in the invasive range, but declined with latitude in the native range. Most interestingly, we found AGB and BGB positively correlated with the FFD in the native range, but no significant relationships in the invasive range.Our results indirectly support the evolution of increased competitive ability hypothesis (EICA) that S. alterniflora has evolved to produce greater AGB and BGB in China, but the flowering and allocation pattern of native populations is maintained in the invasive range. Our results also suggest that invasive S. alterniflora in China is not constrained by the trade-off of earlier flowering with smaller size, and that flowering time has played an important role in biomass allocation across latitudes.
Collapse
Affiliation(s)
- Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| | - Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| | - Jiayu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityFujianChina
| |
Collapse
|
5
|
Spatial Distribution of Soil Organic Carbon and Total Nitrogen in a Ramsar Wetland, Dafeng Milu National Nature Reserve. WATER 2022. [DOI: 10.3390/w14020197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The invasion and expansion of Spartina alterniflora in coastal salt marsh wetlands have greatly affected the material cycle of the ecosystem. A total of 372 topsoil samples were collected from 124 sites representing two land-cover types by implementing an unprecedented high sampling density study in the Dafeng Milu National Nature Reserve. Classical statistics and geostatistics were used to quantify soil organic carbon (SOC) and total nitrogen (TN) spatial distribution. Redundancy analysis (RDA) was used to detect correlations between environmental factors, SOC, and TN. The results showed that SOC and TN have moderate variability. The spatial distributions of SOC and TN were similar, and the highest values were observed in the southwest of the study area. In different land cover types, the SOC and TN in the vegetation coverage areas with Spartina alterniflora as the dominant species were significantly higher than those in bare land. RDA showed that TN and aboveground biomass significantly affected the spatial distribution of SOC, while SOC and AGB dominated the spatial distribution of TN.
Collapse
|
6
|
Liu W, Zhang Y, Chen X, Maung-Douglass K, Strong DR, Pennings SC. Contrasting plant adaptation strategies to latitude in the native and invasive range of Spartina alterniflora. THE NEW PHYTOLOGIST 2020; 226:623-634. [PMID: 31834631 DOI: 10.1111/nph.16371] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Biological invasions offer model systems of contemporary evolution. We examined trait differences and evolution across geographic clines among continents of the intertidal grass Spartina alterniflora within its invasive and native ranges. We sampled vegetative and reproductive traits in the field at 20 sites over 20° latitude in China (invasive range) and 28 sites over 17° in the US (native range). We grew both Chinese and US plants in a glasshouse common garden for 3 yr. Chinese plants were c. 15% taller, c. 10% denser, and set up to four times more seed than US plants in both the field and common garden. The common garden experiments showed a striking genetic cline of seven-fold greater seed set at higher latitudes in the introduced but not the native range. By contrast, there was a slight genetic cline in some vegetative traits in the native but not the introduced range. Our results are consistent with others showing that introduced plants can evolve rapidly in the new range. S. alterniflora has evolved different trait clines in the native and introduced ranges, showing the importance of phenotypic plasticity and genetic control of change during the invasion process.
Collapse
Affiliation(s)
- Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Keith Maung-Douglass
- Coastal Sustainability Studio, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Donald R Strong
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
7
|
Luo X, Xu X, Zheng Y, Guo H, Hu S. The role of phenotypic plasticity and rapid adaptation in determining invasion success of Plantago virginica. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02004-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Liu W, Strong DR, Pennings SC, Zhang Y. Provenance-by-environment interaction of reproductive traits in the invasion of Spartina alterniflora
in China. Ecology 2017; 98:1591-1599. [DOI: 10.1002/ecy.1815] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems; College of the Environment and Ecology; Xiamen University; Fujian 361102 China
| | - Donald R. Strong
- Section of Evolution and Ecology; University of California; Davis California 95616 USA
| | - Steven C. Pennings
- Department of Biology and Biochemistry; University of Houston; Houston Texas 77204 USA
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems; College of the Environment and Ecology; Xiamen University; Fujian 361102 China
| |
Collapse
|