1
|
Shuli Z, Weitao C, Zhi W, Yuefei L, Jie L, Xinhui L, Jiping Y. Mitochondrial diversity and genetic structure of common carp (Cyprinus carpio) in Pearl River and Nandujiang River. JOURNAL OF FISH BIOLOGY 2023; 102:1109-1120. [PMID: 36744763 DOI: 10.1111/jfb.15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/01/2023] [Indexed: 05/13/2023]
Abstract
Common carp (Cyprinus carpio) is an important valuable cyprinid in China and has been a popular cultured aquaculture species around the globe. Understanding the genetic diversity of wild native common carp not only provides basic data for the protection and utilisation of common carp resources but also assesses the effect of human activities on the genetic diversity of this species. In this study, genetic diversity and population structure of the common carp from 15 sampling populations in the Pearl River and Nandujiang River were determined using a coalescent mitochondrial locus (MLS), including mitochondrial cytochrome b gene (Cytb) and a control region (D-loop) segment. The haplotype diversity and nucleotide diversity were 0.962 and 0.00628 in the Pearl River and 0.808 and 0.00376 in the Nandujiang River, respectively. Phylogenetic and haplotype network analyses indicated that three sub-species (a) C. c. rubrofuscus, (b) C. c. haematopterus and (c) C. c. carpio all occur in both rivers. AMOVA revealed that the variation within populations (86.2%) was the main source of the total variation. Statistically significant genetic differentiation among different Pearl River populations of C. c. rubrofuscus (Fst = 0.05-0.25) and relatively high genetic differentiation between the Nandujiang River population and the Pearl River populations (Fst > 0.238) are apparent. Bayesian clustering analyses detected that global populations consisted of eight genetic clusters and examined that Nandujiang River population included relatively pure genetic clusters. Neutrality tests suggested that native populations experienced recent population expansion, and Extended Bayesian Skyline Plot indicated that the common carp populations likely experienced a historical expansion during 0.125-0.250 MYA. Artificial fish propagation and release, escape from fish farms and Fang Sheng may explain the invasion of non-native sub-species in many river sections, such as Laibin, Rongjiang, Huizhou, Heyuan and Zhaoqing. To conserve the native common carp populations, release station should be established to culture native common carp fry. Overall, the findings can be contributed to complementing scientific knowledge for conservation and management of the wild native common carp.
Collapse
Affiliation(s)
- Zhu Shuli
- The Laboratory of Fisheries Resources and Ecology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Middle and Lower Reaches of Pearl River, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Chen Weitao
- The Laboratory of Fisheries Resources and Ecology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Middle and Lower Reaches of Pearl River, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Wu Zhi
- The Laboratory of Fisheries Resources and Ecology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Middle and Lower Reaches of Pearl River, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Li Yuefei
- The Laboratory of Fisheries Resources and Ecology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Middle and Lower Reaches of Pearl River, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Li Jie
- The Laboratory of Fisheries Resources and Ecology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Middle and Lower Reaches of Pearl River, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Li Xinhui
- The Laboratory of Fisheries Resources and Ecology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Middle and Lower Reaches of Pearl River, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| | - Yang Jiping
- The Laboratory of Fisheries Resources and Ecology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, China
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Middle and Lower Reaches of Pearl River, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
2
|
Bouska KL, De Jager NR, Houser JN. Resisting-Accepting-Directing: Ecosystem Management Guided by an Ecological Resilience Assessment. ENVIRONMENTAL MANAGEMENT 2022; 70:381-400. [PMID: 35661235 DOI: 10.1007/s00267-022-01667-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
As anthropogenic influences push ecosystems past tipping points and into new regimes, complex management decisions are complicated by rapid ecosystem changes that may be difficult to reverse. For managers who grapple with how to manage ecosystems under novel conditions and heightened uncertainty, advancing our understanding of regime shifts is paramount. As part of an ecological resilience assessment, researchers and managers have collaborated to identify alternate regimes and build an understanding of the thresholds and factors that govern regime shifts in the Upper Mississippi River System. To describe the management implications of our assessment, we integrate our findings with the recently developed resist-accept-direct (RAD) framework that explicitly acknowledges ecosystem regime change and outlines management approaches of resisting change, accepting change, or directing change. More specifically, we developed guidance for using knowledge of desirability of current conditions, distance to thresholds, and general resilience (that is, an ecosystem's capacity to cope with uncertain disturbances) to navigate the RAD framework. We applied this guidance to outline strategies that resist, accept, or direct change in the context of management of aquatic vegetation, floodplain vegetation, and fish communities across nearly 2000 river kilometers. We provide a case study for how knowledge of ecological dynamics can aid in assessing which management approach(es) are likely to be most ecologically feasible in a changing world. Continued learning from management decisions will be critical to advance our understanding of how ecosystems respond and inform the management of ecosystems for desirable and resilient outcomes.
Collapse
Affiliation(s)
- Kristen L Bouska
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA.
| | - Nathan R De Jager
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| | - Jeffrey N Houser
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| |
Collapse
|
3
|
Campbell LJ, Castillo NA, Dunn CD, Perez A, Schmitter-Soto JJ, Mejri SC, Boucek RE, Corujo RS, Adams AJ, Rehage JS, Goldberg TL. Viruses of Atlantic Bonefish ( Albula vulpes) in Florida and the Caribbean show geographic patterns consistent with population declines. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 106:303-317. [PMID: 35965638 PMCID: PMC9362051 DOI: 10.1007/s10641-022-01306-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Atlantic Bonefish (Albula vulpes) are economically important due to their popularity with recreational anglers. In the State of Florida, USA, bonefish population numbers declined by approximately 60% between the 1990s and 2015. Habitat loss, water quality impairment, chemical inputs, and other anthropogenic factors have been implicated as causes, but the role of pathogens has been largely overlooked, especially with respect to viruses. We used a metagenomic approach to identify and quantify viruses in the blood of 103 A. vulpes sampled throughout their Western Atlantic range, including populations in Florida that have experienced population declines and populations in Belize, Mexico, Puerto Rico, and The Bahamas that have remained apparently stable. We identified four viruses, all of which are members of families known to infect marine fishes (Flaviviridae, Iflaviridae, Narnaviridae, and Nodaviridae), but all of which were previously undescribed. Bonefish from Florida and Mexico had higher viral richness (numbers of distinct viruses per individual fish) than fish sampled from other areas, and bonefish from the Upper Florida Keys had the highest prevalence of viral infection (proportion of positive fish) than fish sampled from any other location. Bonefish from Florida also had markedly higher viral loads than fish sampled from any other area, both for a novel narnavirus and for all viruses combined. Bonefish viruses may be indicators of environmentally driven physiological and immunological compromise, causes of ill health, or both. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10641-022-01306-9.
Collapse
Affiliation(s)
- Lewis J. Campbell
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Nicholas A. Castillo
- Department of Earth and Environment, Florida International University, Miami, FL USA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | | | - Juan J. Schmitter-Soto
- Departamento de Sistemática y Ecología Acuática, El Colegio de la Frontera Sur, Q.R, Campeche, Mexico
| | - Sahar C. Mejri
- Department of Aquaculture and Stock Enhancement, Florida Atlantic University, Fort Pierce, FL USA
| | | | | | - Aaron J. Adams
- Bonefish & Tarpon Trust, Miami, FL USA
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL USA
| | - Jennifer S. Rehage
- Department of Earth and Environment, Florida International University, Miami, FL USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
4
|
Blossey B, Nuzzo V, Dávalos A, Mayer M, Dunbar R, Landis DA, Evans JA, Minter B. Residence time determines invasiveness and performance of garlic mustard (Alliaria petiolata) in North America. Ecol Lett 2021; 24:327-336. [PMID: 33295700 PMCID: PMC7839695 DOI: 10.1111/ele.13649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022]
Abstract
While biological invasions have the potential for large negative impacts on local communities and ecological interactions, increasing evidence suggests that species once considered major problems can decline over time. Declines often appear driven by natural enemies, diseases or evolutionary adaptations that selectively reduce populations of naturalised species and their impacts. Using permanent long-term monitoring locations, we document declines of Alliaria petiolata (garlic mustard) in eastern North America with distinct local and regional dynamics as a function of patch residence time. Projected site-specific population growth rates initially indicated expanding populations, but projected population growth rates significantly decreased over time and at the majority of sites fell below 1, indicating declining populations. Negative soil feedback provides a potential mechanism for the reported disappearance of ecological dominance of A. petiolata in eastern North America.
Collapse
Affiliation(s)
- Bernd Blossey
- Department of Natural ResourcesFernow HallCornell UniversityIthacaNY14853USA
| | - Victoria Nuzzo
- Natural Area Consultants1 West Hill School RoadRichfordNY13835USA
| | - Andrea Dávalos
- Biological Sciences DepartmentSUNY CortlandCortlandNY13045USA
| | - Mark Mayer
- New Jersey Department of AgricultureDivision of Plant IndustryPO Box 330TrentonNJ08625USA
| | - Richard Dunbar
- Division of Nature PreservesIndiana Department of Natural Resources1040 E 700 N Columbia CityIN46725‐8948USA
| | - Douglas A. Landis
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
| | - Jeffrey A. Evans
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Farmscape Analytics16 Merrimack StConcordNH03301USA
| | - Bill Minter
- Institute for Ecological RegenerationGoshen College1700 South Main StreetGoshenIN46526USA
| |
Collapse
|
5
|
Ramírez-García A, Moncayo-Estrada R, González-Cárdenas JJ, Domínguez-Domínguez O. Reproductive cycle of native viviparous fish species (Actinopterygii: Cyprinodontiformes: Goodeidae) in a subtropical Mexican lake. NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2021-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Reproductive tactics and strategies contribute to the persistence and maintenance of long-term populations in fish species. Members of the subfamily Goodeinae are a group of small-bodied freshwater fish with specialized reproduction (viviparity-matrotrophy). They are found in the highlands of central Mexico, most of them endemic. The aim of this study was to conduct a comprehensive investigation to evaluate the annual reproductive cycle of seven species of goodeines (splitfins). We carried out our study in the subtropical Lake Zacapu, Mexico, with bi-monthly sampling from May 2019 to March 2020. We obtain the fertility, size at first maturity (L50), sex ratio, and gonadosomatic index. Our result shows that populations of goodeines have high fertility compared to other populations of the same species in other aquatic systems and also to other species of goodein. We found that males mature at smaller sizes than females, the observed proportion of females was greater than males in all the goodeines. Lake Zacapu goodeines have two reproductive peaks, one in spring (April to June) and another in fall (September to November). These tactics (fertility rates, sex ratio, reproductive period) and strategies (viviparity-matrotrophy) favor reproductive success in this environmentally stable subtropical lake in the highlands of Mexico.
Collapse
|
6
|
Regime change in a large-floodplain river ecosystem: patterns in body-size and functional biomass indicate a shift in fish communities. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02330-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Happel A, Gallagher D. Chicago’s fish assemblage over ~30 years – more fish and more native species. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01020-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Bouska KL, Houser JN, De Jager NR, Drake DC, Collins SF, Gibson-Reinemer DK, Thomsen MA. Conceptualizing alternate regimes in a large floodplain-river ecosystem: Water clarity, invasive fish, and floodplain vegetation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 264:110516. [PMID: 32250922 DOI: 10.1016/j.jenvman.2020.110516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/10/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Regime shifts - persistent changes in the structure and function of an ecosystem - are well-documented for some ecosystems and have informed research and management of these ecosystems. In floodplain-river ecosystems, there is growing interest from restoration practitioners in ecological resilience, yet regime shifts remain poorly understood in these ecosystems. To understand how regime shifts may apply to floodplain-river ecosystems, we synthesize our understanding of ecosystem dynamics using an alternate regimes conceptual framework. We present three plausible sets of alternate regimes relevant to natural resource management interests within the Upper Mississippi River and Illinois River. These alternate regimes include: 1) a clear water and abundant vegetation regime vs. a turbid water and sparse vegetation regime in lentic, off-channel areas, 2) a diverse native fish community regime vs. an invasive-dominated fish community regime, and 3) a regime characterized by a diverse and dynamic mosaic of floodplain vegetation types vs. one characterized as a persistent invasive wet meadow monoculture. For each set of potential alternate regimes, we review available literature to synthesize known or hypothesized feedback mechanisms that reinforce regimes, controlling variables that drive regime transitions, and current restoration pathways. Our conceptual models provide preliminary support for the existence of alternate regimes in floodplain-river ecosystems. Quantitatively testing hypotheses contained within the conceptual model are important next steps in evaluating the model. Ultimately, the synthesis and evaluation of alternate regimes can inform the utility of resilience concepts in restoration and management on the Upper Mississippi River and Illinois River and improve our understanding of ecosystem dynamics in other large, heavily managed floodplain-river ecosystems.
Collapse
Affiliation(s)
- Kristen L Bouska
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA.
| | - Jeffrey N Houser
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| | - Nathan R De Jager
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| | - Deanne C Drake
- Wisconsin Department of Natural Resources, La Crosse Field Station, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| | - Scott F Collins
- Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA; Illinois Natural History Survey, Kaskaskia Biological Station, 1235 CR 1000N, Sullivan, IL, 61951, USA
| | - Daniel K Gibson-Reinemer
- Adams State University, 208 Edgemont Boulevard, Alamosa, CO, 81101, USA; Illinois Natural History Survey, Illinois River Biological Station, 704 N. Schrader Avenue, Havana, IL, 62644, USA
| | - Meredith A Thomsen
- University of Wisconsin - La Crosse, 1725 State Street, La Crosse, WI, 54601, USA
| |
Collapse
|
9
|
Padhi SK, Tolo I, McEachran M, Primus A, Mor SK, Phelps NBD. Koi herpesvirus and carp oedema virus: Infections and coinfections during mortality events of wild common carp in the United States. JOURNAL OF FISH DISEASES 2019; 42:1609-1621. [PMID: 31637761 DOI: 10.1111/jfd.13082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Koi herpesvirus (KHV; cyprinid herpesvirus-3) and carp oedema virus (CEV) are important viruses of common and koi carp (Cyprinus carpio); however, the distribution of these viruses in wild common carp in North America is largely unknown. During the summers of 2017 and 2018, 27 mass mortalities of common carp were reported from four states in the USA (Minnesota, Iowa, Pennsylvania and Wisconsin), the majority of which were distributed across eight major watersheds in southern Minnesota. Samples from 22 of these mortality events and from five clinically healthy nearby carp populations were screened for KHV, CEV and SVCV using real-time polymerase chain reaction (qPCR). KHV was confirmed in 13 mortality events, CEV in two mortality events and coinfections of KHV/CEV in four mortality events. Nucleotide sequence analysis revealed that the KHV and CEV detected here are closely related to European lineages of these viruses. While molecular detection alone cannot conclusively link either virus with disease, the cases described here expand the known range of two important viruses. This is also the first reported detection of KHV and CEV coinfections in wild carp populations.
Collapse
Affiliation(s)
- Soumesh K Padhi
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Food, Agriculture and Natural Resource Sciences, Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Isaiah Tolo
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Food, Agriculture and Natural Resource Sciences, Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Margaret McEachran
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Food, Agriculture and Natural Resource Sciences, Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Alexander Primus
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Veterinary Medicine, Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA
| | - Sunil K Mor
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Veterinary Medicine, Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, USA
| | - Nicholas B D Phelps
- Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA
- College of Food, Agriculture and Natural Resource Sciences, Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
10
|
Murillo-Posada JC, Salas S, Velázquez-Abunader I. Factors affecting relative abundance of low-mobility fishing resources: spiny lobster in the Galapagos Marine Reserve. PeerJ 2019; 7:e7278. [PMID: 31328040 PMCID: PMC6622163 DOI: 10.7717/peerj.7278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/10/2019] [Indexed: 11/28/2022] Open
Abstract
Management of low-mobility or benthic fisheries is a difficult task because variation in the spatial distribution and population dynamics of the resources make the monitoring and assessment of these fisheries challenging. We assumed that environmental, spatial, and temporal factors can contribute to the variability of the relative abundance of such species; we used Generalized Additive Models for Location Scale and Shape (GAMLSS) to test this hypothesis using as a case study the lobster fishery (targeting two species) in the Galapagos Marine Reserve, Ecuador. We gathered data on each of the two species of lobster on a monthly basis over seven years, including: (a) onboard observers’ records of catch data, fishing effort, and ground location by trip, and (b) data from interviews undertaken with fishers at their arrival to port, recording the same type of information as obtained from onboard observers. We use this information to analyze the effect of the measured variables and to standardize the Catch per Unit Effort (CPUE) in each case, using the GAMLSS. For both species, the temperature, region, fishing schedule, month, distance, and the monitoring system were significant variables of the selected models associated with the variability of the catch rate. For Panulirus penicillatus, CPUE was higher at night than during the day, and for Panulirus gracilis it was higher during the day. Increased temperature resulted in a decrease of CPUE values. It was evident that temporal, spatial scales and monitoring system can influence the variability of this indicator. We contend that the identification of drivers of change of relative abundance in low-mobility species can help to support the development of monitoring and assessment programs for this type of fisheries.
Collapse
Affiliation(s)
- Juan Carlos Murillo-Posada
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México.,Pontificia Universidad Católica del Ecuador, Sede Manabí, Ecuador
| | - Silvia Salas
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México.,Universidad Marista, Mérida, Yucatán, Mexico
| | - Iván Velázquez-Abunader
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| |
Collapse
|
11
|
Kopf RK, Boutier M, Finlayson CM, Hodges K, Humphries P, King A, Kingsford RT, Marshall J, McGinness HM, Thresher R, Vanderplasschen A. Biocontrol in Australia: Can a carp herpesvirus (CyHV-3) deliver safe and effective ecological restoration? Biol Invasions 2019. [DOI: 10.1007/s10530-019-01967-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Twardek WM, Chapman JM, Miller KM, Beere MC, Li S, Kaukinen KH, Danylchuk AJ, Cooke SJ. Evidence of a hydraulically challenging reach serving as a barrier for the upstream migration of infection-burdened adult steelhead. CONSERVATION PHYSIOLOGY 2019; 7:coz023. [PMID: 31191906 PMCID: PMC6553125 DOI: 10.1093/conphys/coz023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 05/04/2023]
Abstract
Anadromous fishes such as steelhead trout, Oncorhynchus mykiss, are exposed to a suite of infectious agents and migratory challenges during their freshwater migrations. We assessed infectious agent load and richness and immune system gene expression in gill tissue of Bulkley River (British Columbia, CA) steelhead captured at and upstream of a migratory barrier to evaluate whether infectious burdens impacted migration success. We further considered the potential influences of water temperature, sex and fish size on host infectious agents and transcription profiles. There were eight infectious agents detected in steelhead gill tissue, with high prevalence of the bacteria Candidatus Branchiomonas cysticola (80%) and Flavobacterium psychrophilum (95%) and the microparasite Sphaerothecum destruens (53%). Fish sampled at the falls had significantly greater relative loads of Ca. B. cysticola and F. psychrophilum, higher infectious agent richness and differential gene expression compared to fish captured upstream. Flavobacterium psychrophilum was only associated with immune gene expression (particularly humoral immunity) of fish sampled at the falls, while water temperature was positively correlated with genes involved in the complement system, metabolic stress and oxidative stress for fish captured upstream. This work highlights interesting differences in agent-host interactions across fisheries and suggests that hydraulic barriers may reduce the passage of fish with the heaviest infectious agent burdens, emphasizing the selective role of areas of difficult passage. Further, this work expands our knowledge of infectious agent prevalence in wild salmonids and provides insight into the relationships between infectious agents and host physiology.
Collapse
Affiliation(s)
- W M Twardek
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Colonel By Dr., Ottawa, ON, Canada
- Corresponding author: Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada. Tel: +613 986 3786.
| | - J M Chapman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Colonel By Dr., Ottawa, ON, Canada
| | - K M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, Hammond Bay Rd, Nanaimo, BC, Canada
| | - M C Beere
- British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Fisheries Branch, Alfred Ave, Smithers, BC, Canada
| | - S Li
- Fisheries and Oceans Canada, Pacific Biological Station, Hammond Bay Rd, Nanaimo, BC, Canada
| | - K H Kaukinen
- Fisheries and Oceans Canada, Pacific Biological Station, Hammond Bay Rd, Nanaimo, BC, Canada
| | - A J Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, Holdsworth Way, Amherst, MA, USA
| | - S J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Colonel By Dr., Ottawa, ON, Canada
| |
Collapse
|
13
|
Gotesman M, Menanteau-Ledouble S, Saleh M, Bergmann SM, El-Matbouli M. A new age in AquaMedicine: unconventional approach in studying aquatic diseases. BMC Vet Res 2018; 14:178. [PMID: 29879957 PMCID: PMC5992843 DOI: 10.1186/s12917-018-1501-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Marine and aquaculture industries are important sectors of the food production and global trade. Unfortunately, the fish food industry is challenged with a plethora of infectious pathogens. The freshwater and marine fish communities are rapidly incorporating novel and most up to date techniques for detection, characterization and treatment strategies. Rapid detection of infectious diseases is important in preventing large disease outbreaks. MAIN TEXT One hundred forty-six articles including reviews papers were analyzed and their conclusions evaluated in the present paper. This allowed us to describe the most recent development research regarding the control of diseases in the aquatic environment as well as promising avenues that may result in beneficial developments. For the characterization of diseases, traditional sequencing and histological based methods have been augmented with transcriptional and proteomic studies. Recent studies have demonstrated that transcriptional based approaches using qPCR are often synergistic to expression based studies that rely on proteomic-based techniques to better understand pathogen-host interactions. Preventative therapies that rely on prophylactics such as vaccination with protein antigens or attenuated viruses are not always feasible and therefore, the development of therapies based on small nucleotide based medicine is on the horizon. Of those, RNAi or CRISPR/Cas- based therapies show great promise in combating various types of diseases caused by viral and parasitic agents that effect aquatic and fish medicine. CONCLUSIONS In our modern times, when the marine industry has become so vital for feed and economic stability, even the most extreme alternative treatment strategies such as the use of small molecules or even the use of disease to control invasive species populations should be considered.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, New York City College of Technology of the City University of New York, Brooklyn, New York, USA
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
14
|
Impacts of an invasive virus (CyHV-3) on established invasive populations of common carp (Cyprinus carpio) in North America. Biol Invasions 2018. [DOI: 10.1007/s10530-017-1655-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Gibson-Reinemer DK, Sparks RE, Parker JL, DeBoer JA, Fritts MW, McClelland MA, Chick JH, Casper AF. Ecological Recovery of a River Fish Assemblage following the Implementation of the Clean Water Act. Bioscience 2017. [DOI: 10.1093/biosci/bix110] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|