1
|
Giacoletti A, Bosch-Belmar M, Mangano MC, Tantillo MF, Sarà G, Milisenda G. Predicting the effect of fouling organisms and climate change on integrated shellfish aquaculture. MARINE POLLUTION BULLETIN 2024; 201:116167. [PMID: 38394793 DOI: 10.1016/j.marpolbul.2024.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Aquaculture industry represents a continuously growing sector playing a fundamental role in pursuing United Nation's goals. Increasing sea-surface temperatures, the growth of encrusting species and current cage cleaning practices proved to affect the productivity of commercial species. Here, through a Dynamic Energy Budget application under two different IPCC scenarios, we investigate the long-term effects of Pennaria disticha fragments' on Mytilus galloprovincialis' functional traits as a result of cage cleaning practices. While Climate-Change did not exert a marked effect on mussels' Life-History traits, the simulated effect of cage cleanings highlighted a positive effect on total weight, fecundity and time to commercial size. West-Mediterranean emerged as the most affected sector, with Malta, Montenegro, Morocco, Syria, Tunisia and Turkey between the top-affected countries. These outcomes confirm the reliability of a DEB-approach in projecting at different spatial and temporal scale eco-physiological results, avoiding the limitation of short-term studies and the difficulties of long-term ones.
Collapse
Affiliation(s)
- A Giacoletti
- Dept. of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy; Stazione Zoologica Anton Dohrn, Dipartimento di Ecologia Marina Integrata (EMI), Lungomare Cristoforo Colombo (Complesso Roosevelt), 90142 Palermo, Italy.
| | - M Bosch-Belmar
- Dept. of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - M C Mangano
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy; Stazione Zoologica Anton Dohrn, Dipartimento di Ecologia Marina Integrata (EMI), Lungomare Cristoforo Colombo (Complesso Roosevelt), 90142 Palermo, Italy
| | - M F Tantillo
- Dept. of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - G Sarà
- Dept. of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - G Milisenda
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy; Stazione Zoologica Anton Dohrn, Dipartimento di Ecologia Marina Integrata (EMI), Lungomare Cristoforo Colombo (Complesso Roosevelt), 90142 Palermo, Italy
| |
Collapse
|
2
|
Ma KCK, Monsinjon JR, Froneman PW, McQuaid CD. Thermal stress gradient causes increasingly negative effects towards the range limit of an invasive mussel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161184. [PMID: 36581263 DOI: 10.1016/j.scitotenv.2022.161184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Environmental filtering (EF), the abiotic exclusion of species, can have first order, direct effects with cascading consequences for population dynamics, especially at range edges where abiotic conditions are suboptimal. Abiotic stress gradients associated with EF may also drive indirect second order effects, including exacerbating the effects of competitors, disease, and parasites on marginal populations because of suboptimal physiological performance. We predicted a cascade of first and second order EF-associated effects on marginal populations of the invasive mussel Mytilus galloprovincialis, plus a third order effect of EF of increased epibiont load due to second order shell degradation by endoliths. Mussel populations on rocky shores were surveyed across 850 km of the south-southeast coast of South Africa, from the species' warm-edge range limit to sites in the centre of their distribution, to quantify second order (endolithic shell degradation) and third order (number of barnacle epibionts) EF-associated effects as a function of along-shore distance from the range edge. Inshore temperature data were interpolated from the literature. Using in situ temperature logger data, we calculated the effective shore level for several sites by determining the duration of immersion and emersion. Summer and winter inshore water temperatures were linked to distance from the mussel's warm range edge (our proxy for an EF-associated stress gradient), suggesting that seasonality in temperature contributes to first order effects. The gradient in thermal stress clearly affected densities, but its influence on mussel size, shell degradation, and epibiosis was weaker. Relationships among mussel size, shell degradation, and epibiosis were more robust. Larger, older mussels had more degraded shells and more epibionts, with endolithic damage facilitating epibiosis. EF associated with a gradient in thermal stress directly limits the distribution, abundance, and size structure of mussel populations, with important indirect second and third order effects of parasitic disease and epibiont load, respectively.
Collapse
Affiliation(s)
- Kevin C K Ma
- Department of Zoology and Entomology, Rhodes University, Grahamstown, Eastern Cape, South Africa; Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Jonathan R Monsinjon
- Department of Zoology and Entomology, Rhodes University, Grahamstown, Eastern Cape, South Africa; Ifremer, Indian Ocean Delegation, Le Port, La Réunion, France
| | - P William Froneman
- Department of Zoology and Entomology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| |
Collapse
|
3
|
Climate Change in Africa and Vegetation Response: A Bibliometric and Spatially Based Information Assessment. SUSTAINABILITY 2022. [DOI: 10.3390/su14094974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The impact of climate change over the coming decades will increase the likelihood of many species undergoing genetic alterations or even becoming extinct. Vegetation and belowground organisms are more vulnerable to the intensified impact of climate change due to a possible lack of genetic plasticity and limited mobility. Organisms are inter-dependable in ecosystems; hence, this study focused on the impact of climate change, examining the soil condition in Africa, vegetation responses and the overview of species’ responses to climate change through a bibliometric study and an analysis of remote sensing information. The bibliometric study examines climate change-related literature published from 1999 to 2019, collected from the Web of Science and Scopus database platforms, and this reveals an overall rapid increase in the number of climate change publications in Africa, with South Africa occupying a leading position in all the studied parameters. The spatially based information on soil moisture, temperature and the photosynthetic activities of vegetation affirmed that there is increasing amount of drought in Africa with more impact in northern, southern and eastern Africa. African countries, especially in the above-mentioned regions, need to urgently invest in support programs that will ease the impact of climate change, particularly on food security.
Collapse
|
4
|
Boutet I, Lacroix C, Devin S, Tanguy A, Moraga D, Auffret M. Does the environmental history of mussels have an effect on the physiological response to additional stress under experimental conditions? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:149925. [PMID: 34555605 DOI: 10.1016/j.scitotenv.2021.149925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Expected effects on marine biota of the ongoing elevation of water temperature and high latitudes is of major concern when considering the reliability of coastal ecosystem production. To compare the capacity of coastal organisms to cope with a temperature increase depending on their environmental history, responses of adult blue mussels (Mytilus spp.) taken from two sites differentially exposed to chemical pollution were investigated during an experimental exposure to a thermal stress. Immune parameters were notably altered by extreme warming and transcriptional changes for a broad selection of genes were associated to the temperature increase following a two-step response pattern. Site-specific responses suggested an influence of environmental history and support the possibility of a genetic basis in the physiological response. However no meaningful difference was detected between the response of hybrids and M galloprovincialis. This study brings new information about the capacity of mussels to cope with the ongoing elevation of water temperature in these coastal ecosystems.
Collapse
Affiliation(s)
- Isabelle Boutet
- Station Biologique de Roscoff, Laboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS-Sorbonne Université), Place Georges Tessier, 29680 Roscoff, France
| | - Camille Lacroix
- Institut Universitaire Européen de la Mer, Laboratoire de Sciences de l'Environnement Marin (UMR 6539 LEMAR CNRS-UBO-IFREMER-IRD), Technopôle Brest-Iroise, 29280 Plouzané, France; CEDRE Conseil et Expertise en Pollutions Accidentelles des Eaux, 715 Rue Alain Colas, CS 41836, 29218 Brest Cedex 2, France
| | - Simon Devin
- Laboratoire Interdisciplinaire des Environnements Continentaux (UMR 7360 LIEC CNRS-Université de Lorraine), 8 rue du Général Delestraint, 57070 Metz. France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, Laboratoire Adaptation et Diversité en Milieu Marin (UMR 7144 AD2M CNRS-Sorbonne Université), Place Georges Tessier, 29680 Roscoff, France
| | - Dario Moraga
- Institut Universitaire Européen de la Mer, Laboratoire de Sciences de l'Environnement Marin (UMR 6539 LEMAR CNRS-UBO-IFREMER-IRD), Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Michel Auffret
- Institut Universitaire Européen de la Mer, Laboratoire de Sciences de l'Environnement Marin (UMR 6539 LEMAR CNRS-UBO-IFREMER-IRD), Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
5
|
Maynou F, Costa S, Freitas R, Solé M. Effects of triclosan exposure on the energy budget of Ruditapes philippinarum and R. decussatus under climate change scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146068. [PMID: 33676217 DOI: 10.1016/j.scitotenv.2021.146068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
We built a simulation model based on Dynamic Energy Budget theory (DEB) to assess the growth and reproductive potential of the native European clam Ruditapes decussatus and the introduced Manila clam Ruditapes philippinarum under current temperature and pH conditions in a Portuguese estuary and under those forecasted for the end of the 21st c. The climate change scenario RCP8.5 predicts temperature increase of 3 °C and a pH decrease of 0.4 units. The model was run under additional conditions of exposure to the emerging contaminant triclosan (TCS) and in the absence of this compound. The parameters of the DEB model were calibrated with the results of laboratory experiments complemented with data from the literature available for these two important commercial shellfish resources. For each species and experimental condition (eight combinations), we used data from the experiments to produce estimates for the key parameters controlling food intake flux, assimilation flux, somatic maintenance flux and energy at the initial simulation time. The results showed that the growth and reproductive potential of both species would be compromised under future climate conditions, but the effect of TCS exposure had a higher impact on the energy budget than forecasted temperature and pH variations. The egg production of R. philippinarum was projected to suffer a more marked reduction with exposure to TCS, regardless of the climatic factor, while the native R. decussatus appeared more resilient to environmental causes of stress. The results suggest a likely decrease in the rates of expansion of the introduced R. philippinarum in European waters, and negative effects on fisheries and aquaculture production of exposure to emerging contaminants (e.g., TCS) and climate change.
Collapse
Affiliation(s)
- Francesc Maynou
- Institut de Ciències del Mar, CSIC, Psg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Institut de Ciències del Mar, CSIC, Psg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| |
Collapse
|
6
|
Main Drivers of Fecundity Variability of Mussels along a Latitudinal Gradient: Lessons to Apply for Future Climate Change Scenarios. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9070759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bivalve relevance for ecosystem functioning and human food security emphasize the importance of predictions of mussel performance under different climate stressors. Here, we address the effect of a latitudinal gradient of temperature and food availability on the fecundity of the Mediterranean mussel to try to better parameterize environmental forcing over reproductive output. We show that temperature plays a major role, acting as a switching on–off mechanism for gametogenesis, while food availability has a lower influence but also modulates the number of gametes produced. Temperature and food availability also show different effects over fecundity depending on the temporal scale evaluated. Our results support the view that the gametogenesis responds non-linearly with temperature and chlorophyll concentration, an issue that is largely overlooked in growth, production and energy budgets of bivalve populations, leading to predictive models that can overestimate the capability of the mussel’s populations to deal with climate change future scenarios.
Collapse
|
7
|
Ndhlovu A, McQuaid CD, Monaco CJ. Ectoparasites reduce scope for growth in a rocky-shore mussel (Perna perna) by raising maintenance costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142020. [PMID: 32911171 DOI: 10.1016/j.scitotenv.2020.142020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Endolithic cyanobacteria are ubiquitous colonisers of organic and inorganic carbonate substrata that frequently attack the shells of mussels, eroding the shell to extract carbon, often with population infestation rates of >80%. This reduces host physiological condition and ultimately leads to shell collapse and mortality, compromising the services provided by these important ecosystem engineers. While the ecological implications of this and similar interactions have been examined, our understanding of the underlying mechanisms driving the physiological responses of infested hosts remains limited. Using field and laboratory experiments, we assessed the energetic costs of cyanobacterial infestation to the intertidal brown mussel (Perna perna). In the field we found that growth (measured as both increase in shell length and rate of biomineralization) and reproductive potential of clean mussels are greater than those of infested individuals. To explore the mechanisms behind these effects, we compared the energy allocation of parasite-free and infested mussels using the scope for growth (SFG) framework. This revealed a lower SFG in parasitized mussels attributed to an energetic imbalance caused by increased standard metabolic rates, without compensation through increased feeding or reduced excretion of ammonia. Separate laboratory assays showed no differences in calcium uptake rates, indicating that infested mussels do not compensate for shell erosion through increased mineralization. This suggests that the increased maintenance costs detected reflect repair of the organic component of the inner nacreous layer of the shell, an energetically more demanding process than mineralization. Thus, parasite-inflicted damage reduces SFG directly through the need for increased basal metabolic rate to drive shell repair without compensatory increases in energy intake. This study provides a first perspective of the physiological mechanisms underlying this parasite-host interaction, a critical step towards a comprehensive understanding of the ecological processes driving dynamics of this intertidal ecosystem engineer.
Collapse
Affiliation(s)
- Aldwin Ndhlovu
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa.
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Cristián J Monaco
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; IFREMER, IRD, Institut Louis-Malardé, Univ Polynésie française, EIO, Taravao, F-98719 Tahiti, Polynésie française, France
| |
Collapse
|
8
|
Collins CL, Burnett NP, Ramsey MJ, Wagner K, Zippay ML. Physiological responses to heat stress in an invasive mussel Mytilus galloprovincialis depend on tidal habitat. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104849. [PMID: 32056704 DOI: 10.1016/j.marenvres.2019.104849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Mussels are ecologically important organisms that can survive in subtidal and intertidal zones where they experience thermal stress. We know little about how mussels from different tidal habitats respond to thermal stress. We used the mussel Mytilus galloprovincialis from separate subtidal and intertidal populations to test whether heart rate and indicators of potential aerobic (citrate synthase activity) and anaerobic (cytosolic malate dehydrogenase activity) metabolic capacity are affected by increased temperatures while exposed to air or submerged in water. Subtidal mussels were affected by warming when submerged in water (decreased heart rate) but showed no effect in air. In contrast, intertidal mussels were affected by exposure to air (increased anaerobic capacity) but not by warming. Overall, physiological responses of mussels to thermal stress were dependent on their tidal habitat. These results highlight the importance of considering the natural habitat of mussels when assessing their responses to environmental challenges.
Collapse
Affiliation(s)
- Christina L Collins
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Nicholas P Burnett
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Matthew J Ramsey
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Kaitlyn Wagner
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA
| | - Mackenzie L Zippay
- Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA, 94928, USA.
| |
Collapse
|