1
|
López A, Carreras C, Pascual M, Pegueroles C. Evaluating restriction enzyme selection for reduced representation sequencing in conservation genomics. Mol Ecol Resour 2023. [PMID: 37706675 DOI: 10.1111/1755-0998.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023]
Abstract
Conservation genomic studies in non-model organisms generally rely on reduced representation sequencing techniques based on restriction enzymes to identify population structure as well as candidate loci for local adaptation. While the expectation is that the reduced representation of the genome is randomly distributed, the proportion of the genome sampled might depend on the GC content of the recognition site of the restriction enzyme used. Here, we evaluated the distribution and functional composition of loci obtained after a reduced representation approach using Genotyping-by-Sequencing (GBS). To do so, we compared experimental data from two endemic fish species (Symphodus ocellatus and Symphodus tinca, EcoT22I enzyme) and two ecosystem engineer sea urchins (Paracentrotus lividus and Arbacia lixula, ApeKI enzyme). In brief, we mapped the sequenced loci to the phylogenetically closest reference genome available (Labrus bergylta in the fish and Strongylocentrotus purpuratus in the sea urchin datasets), classified them as exonic, intronic and intergenic, and studied their function by using Gene Ontology (GO) terms. We also simulated the effect of using both enzymes in the two reference genomes. In both simulated and experimental data, we detected an enrichment towards exonic or intergenic regions depending on the restriction enzyme used and failed to detect differences between total loci and candidate loci for adaptation in the empirical dataset. Most of the functions assigned to the mapped loci were shared between the four species and involved a myriad of general functions. Our results highlight the importance of restriction enzyme selection and the need for high-quality annotated genomes in conservation genomic studies.
Collapse
Affiliation(s)
- Ainhoa López
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cinta Pegueroles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
Moreno-Dávila B, Huato-Soberanis L, Gómez-Gutiérrez J, Galván-Tirado C, Sánchez C, Alcoverro T, Balart EF, Turon X. Taxonomic identity of Distapliastylifera (Tunicata, Ascidiacea), a new arrival to the eastern Pacific displaying invasive behavior in the Gulf of California, Mexico. Zookeys 2023; 1157:109-125. [PMID: 37234953 PMCID: PMC10208407 DOI: 10.3897/zookeys.1157.95986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 05/28/2023] Open
Abstract
A colonial ascidian of the genus Distaplia caused a mass mortality of the pen shell Atrinamaura (Sowerby, 1835) during June 2016 in the southwest of the Gulf of California (Mexico), with a significant socio-economic cost. Tentatively identified in previous works as Distapliacf.stylifera, a precise taxonomic determination was still lacking. In the present work, based on a detailed morphological study, it is confirmed that this aggressive species is Distapliastylifera (Kowalevsky, 1874). Originally described from the Red Sea, the species currently has a wide circumtropical distribution (with the exception of the Eastern Pacific to date) and is reported as introduced in parts of its range. The present account thus represents an important range extension of this species. However, when revising the original description and later observations, the reported variability of several characters makes it likely that the binomen is in fact a complex of species, as is common in other ascidians with wide distributions. A complete morphological and genetic study including populations from the entire range of distribution would be necessary to settle the status of D.stylifera. Taxonomic uncertainties hinder a correct interpretation of biogeographical patterns and inference on the origin of the studied population. Nevertheless, the known introduction potential of the species, coupled with an explosive growth in an anthropized environment, and the lack of any previous reports in the Eastern Pacific, strongly suggest that the investigated population represents yet another instance of ascidian introduction. From the point of view of management, its invasive behavior is cause for great concern and warrants mitigation measures.
Collapse
Affiliation(s)
- Betzabé Moreno-Dávila
- Programa de Ecología Pesquera, Centro de Investigaciones Biológicas del Noroeste, C.P. 23096, La Paz, BCS, Mexico
| | - Leonardo Huato-Soberanis
- Programa de Ecología Pesquera, Centro de Investigaciones Biológicas del Noroeste, C.P. 23096, La Paz, BCS, Mexico
| | - Jaime Gómez-Gutiérrez
- Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, C.P. 23096, La Paz, BCS, Mexico
| | | | - Carlos Sánchez
- CONACYT, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico
| | - Teresa Alcoverro
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico
| | - Eduardo F. Balart
- Programa de Ecología Pesquera, Centro de Investigaciones Biológicas del Noroeste, C.P. 23096, La Paz, BCS, Mexico
| | - Xavier Turon
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico
| |
Collapse
|
3
|
Hudson J, Bourne SD, Seebens H, Chapman MA, Rius M. The reconstruction of invasion histories with genomic data in light of differing levels of anthropogenic transport. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210023. [PMID: 35067090 PMCID: PMC8784929 DOI: 10.1098/rstb.2021.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unravelling the history of range shifts is key for understanding past, current and future species distributions. Anthropogenic transport of species alters natural dispersal patterns and directly affects population connectivity. Studies have suggested that high levels of anthropogenic transport homogenize patterns of genetic differentiation and blur colonization pathways. However, empirical evidence of these effects remains elusive. We compared two range-shifting species (Microcosmus squamiger and Ciona robusta) to examine how anthropogenic transport affects our ability to reconstruct colonization pathways using genomic data. We first investigated shipping networks from the 18th century onwards, cross-referencing these with regions where the species have records to infer how each species has potentially been affected by different levels of anthropogenic transport. We then genotyped thousands of single-nucleotide polymorphisms from 280 M. squamiger and 190 C. robusta individuals collected across their extensive species' ranges and reconstructed colonization pathways. Differing levels of anthropogenic transport did not preclude the elucidation of population structure, though specific inferences of colonization pathways were difficult to discern in some of the considered scenario sets. We conclude that genomic data in combination with information of underlying introduction drivers provide key insights into the historic spread of range-shifting species. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (part I)’.
Collapse
Affiliation(s)
- J Hudson
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
| | - S D Bourne
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
| | - H Seebens
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - M A Chapman
- Department of Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - M Rius
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK.,Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park 2006, South Africa.,Centre for Advanced Studies of Blanes (CEAB, CSIC), Accés a la Cala Sant Francesc 14, Blanes 17300, Spain
| |
Collapse
|
4
|
Van der Heyden H, Dutilleul P, Duceppe M, Bilodeau GJ, Charron J, Carisse O. Genotyping by sequencing suggests overwintering of Peronospora destructor in southwestern Québec, Canada. MOLECULAR PLANT PATHOLOGY 2022; 23:339-354. [PMID: 34921486 PMCID: PMC8828460 DOI: 10.1111/mpp.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/19/2023]
Abstract
Several Peronospora species are carried by wind over short and long distances, from warmer climates where they survive on living plants to cooler climates. In eastern Canada, this annual flow of sporangia was thought to be the main source of Peronospora destructor responsible for onion downy mildew. However, the results of a recent study showed that the increasing frequency of onion downy mildew epidemics in eastern Canada is associated with warmer autumns, milder winters, and previous year disease severity, suggesting overwintering of the inoculum in an area where the pathogen is not known to be endogenous. In this study, genotyping by sequencing was used to investigate the population structure of P. destructor at the landscape scale. The study focused on a particular region of southwestern Québec-Les Jardins de Napierville-to determine if the populations were clonal and regionally differentiated. The data were characterized by a high level of linkage disequilibrium, characteristic of clonal organisms. Consequently, the null hypothesis of random mating was rejected when tested on predefined or nonpredefined populations, indicating that linkage disequilibrium was not a function of population structure and suggesting a mixed reproduction mode. Discriminant analysis of principal components performed with predefined population assignment allowed grouping P. destructor isolates by geographical regions, while analysis of molecular variance confirmed that this genetic differentiation was significant at the regional level. Without using a priori population assignment, isolates were clustered into four genetic clusters. These results represent a baseline estimate of the genetic diversity and population structure of P. destructor.
Collapse
Affiliation(s)
- Hervé Van der Heyden
- Cie de Recherche PhytodataSherringtonQuébecCanada
- Department of Plant ScienceMcGill UniversityMontrealQuébecCanada
| | - Pierre Dutilleul
- Department of Plant ScienceMcGill UniversityMontrealQuébecCanada
| | | | | | | | - Odile Carisse
- Agriculture and Agri‐Food CanadaSt‐Jean‐sur‐RichelieuQuébecCanada
| |
Collapse
|
5
|
Rocha RM, Teixeira JA, Barros RCD. Genetic diversity in the Diplosoma listerianum complex (Ascidiacea: Didemnidae) from the Western Atlantic. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1988003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rosana M. Rocha
- Zoology Department, Universidade Federal do Paraná, CP 19020, Curitiba 81531-980, Brazil
| | - Joyce Ana Teixeira
- Zoology Department, Universidade Federal do Paraná, CP 19020, Curitiba 81531-980, Brazil
| | - Rodolfo Corrêa de Barros
- Parasitology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Rua Padre Camargo, 280, Curitiba 80060-240, Brazil
| |
Collapse
|
6
|
Prentice MB, Vye SR, Jenkins SR, Shaw PW, Ironside JE. Genetic diversity and relatedness in aquaculture and marina populations of the invasive tunicate Didemnum vexillum in the British Isles. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractIntroductions of invasive, non-native species in the marine environment are increasing as human activity within coastal areas rises. Genetic datasets are useful tools to identify source populations, track routes of invasions, and illuminate the role of genetic variation in the establishment and subsequent spread of novel introductions. Here, a microsatellite dataset is used to estimate the genetic diversity and population structure of 7 introduced Didemnum vexillum populations in Britain and Ireland, 4 of which are associated with aquaculture and 3 with marinas. Genetic differentiation observed between these populations indicates human-mediated transport as the main mechanism underlying the population structure of D. vexillum in Britain and Ireland. In addition to elucidating patterns of population structure we found that aquaculture sites showed significantly higher genetic diversity (measured as allelic richness) in comparison to the marina sites. We discuss these findings in relation to the history of each invasion, the complex life history of D. vexillum, and available evidence of the relative invasiveness of these populations. Our results show numerous interesting patterns which highlight further research avenues to elucidate the complex factors underlying the global spread of this successful invader.
Collapse
|
7
|
Flanagan BA, Krueger-Hadfield SA, Murren CJ, Nice CC, Strand AE, Sotka EE. Founder effects shape linkage disequilibrium and genomic diversity of a partially clonal invader. Mol Ecol 2021; 30:1962-1978. [PMID: 33604965 DOI: 10.1111/mec.15854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
The genomic variation of an invasive species may be affected by complex demographic histories and evolutionary changes during the invasion. Here, we describe the relative influence of bottlenecks, clonality, and population expansion in determining genomic variability of the widespread red macroalga Agarophyton vermiculophyllum. Its introduction from mainland Japan to the estuaries of North America and Europe coincided with shifts from predominantly sexual to partially clonal reproduction and rapid adaptive evolution. A survey of 62,285 SNPs for 351 individuals from 35 populations, aligned to 24 chromosome-length scaffolds indicate that linkage disequilibrium (LD), observed heterozygosity (Ho ), Tajima's D, and nucleotide diversity (Pi) were greater among non-native than native populations. Evolutionary simulations indicate LD and Tajima's D were consistent with a severe population bottleneck. Also, the increased rate of clonal reproduction in the non-native range could not have produced the observed patterns by itself but may have magnified the bottleneck effect on LD. Elevated marker diversity in the genetic source populations could have contributed to the increased Ho and Pi observed in the non-native range. We refined the previous invasion source region to a ~50 km section of northeastern Honshu Island. Outlier detection methods failed to reveal any consistently differentiated loci shared among invaded regions, probably because of the complex A. vermiculophyllum demographic history. Our results reinforce the importance of demographic history, specifically founder effects, in driving genomic variation of invasive populations, even when localized adaptive evolution and reproductive system shifts are observed.
Collapse
Affiliation(s)
- Ben A Flanagan
- Department of Biology, College of Charleston, Charleston, SC, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stacy A Krueger-Hadfield
- Department of Biology, College of Charleston, Charleston, SC, USA.,Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Chris C Nice
- Department of Biology, Population and Conservation Biology Program, Texas State University, San Marcos, TX, USA
| | - Allan E Strand
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Erik E Sotka
- Department of Biology, College of Charleston, Charleston, SC, USA
| |
Collapse
|
8
|
Resh CA, Galaska MP, Benesh KC, Gardner JPA, Wei KJ, Yan RJ, Mahon AR. Using Genomics to Link Populations of an Invasive Species to Its Potential Sources. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.575599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The introduction and subsequent range expansion of the Northern snakehead (Channa argus: Channidae, Anabantiformes) is one of a growing number of problematic biological invasions in the United States. This harmful aquatic invasive species is a predatory freshwater fish native to northeastern Asia that, following deliberate introduction, has established itself in multiple water basins in the eastern United States, as well as expanding its range into the Midwest. Previous work assessed the population structure and estimated the long-term effective population sizes of the populations present in the United States, but the source of the initial introduction(s) to the U.S. remains unidentified. Building on earlier work, we used whole genome scans (2b-RAD genomic sequencing) to analyze single nucleotide polymorphisms (SNPs) from C. argus to screen the genomes of these invasive fish from United States waters and from three sites in their native range in China. We recovered 2,822 SNP loci from genomic DNA extracted from 164 fish sampled from the eastern United States and Arkansas (Mississippi River basin), plus 30 fish sampled from three regions of the Yangtze River basin in China (n = 10 individuals per basin). Our results provide evidence supporting the Yangtze River basin in China, specifically the Bohu and/or Liangzi lakes, is a likely source of the C. argus introductions in multiple regions of the U.S., including the Lower Hudson River basin, Upper Hudson River basin and Philadelphia (Lower Delaware River basin). This information, in conjunction with additional sampling from the native range, will help to determine the source(s) of introduction for the other U.S. populations. Additionally, this work will provide valuable information for management to help prevent and manage future introductions into United States waterways, as well as aid in the development of more targeted strategies to regulate established populations and inhibit further spread.
Collapse
|
9
|
Rius M, Turon X. Phylogeography and the Description of Geographic Patterns in Invasion Genomics. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.595711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
10
|
Barbanti A, Torrado H, Macpherson E, Bargelloni L, Franch R, Carreras C, Pascual M. Helping decision making for reliable and cost-effective 2b-RAD sequencing and genotyping analyses in non-model species. Mol Ecol Resour 2020; 20. [PMID: 32061018 DOI: 10.1111/1755-0998.13144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
High-throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b-RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b-RAD protocols on non-model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b-RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade-off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≥20 reads to acquire good genotyping results. Finally, we demonstrated that selective-base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b-RAD protocols on non-model organisms with different genome sizes, helping decision-making for a reliable and cost-effective genotyping.
Collapse
Affiliation(s)
- Anna Barbanti
- Department of Genetics, Microbiology and Statistics and IRBio, University of Barcelona, Barcelona, Spain
| | - Hector Torrado
- Department of Genetics, Microbiology and Statistics and IRBio, University of Barcelona, Barcelona, Spain.,Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Girona, Spain
| | - Enrique Macpherson
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Girona, Spain
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Carlos Carreras
- Department of Genetics, Microbiology and Statistics and IRBio, University of Barcelona, Barcelona, Spain
| | - Marta Pascual
- Department of Genetics, Microbiology and Statistics and IRBio, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Carreras C, García‐Cisneros A, Wangensteen OS, Ordóñez V, Palacín C, Pascual M, Turon X. East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species
Paracentrotus lividus
(Echinoidea). DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.13016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Carlos Carreras
- Department de Genètica Microbiologia i Estadística and IRBio Universitat de Barcelona Barcelona Spain
| | - Alex García‐Cisneros
- Centre d'Estudis Avançats de Blanes (CEAB, CSIC) Girona Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences and IRBIo University of Barcelona Barcelona Spain
| | - Owen S. Wangensteen
- Norwegian College of Fishery Science UiT The Arctic University of Norway Tromsø Norway
| | - Víctor Ordóñez
- Department de Genètica Microbiologia i Estadística and IRBio Universitat de Barcelona Barcelona Spain
| | - Creu Palacín
- Department of Evolutionary Biology, Ecology and Environmental Sciences and IRBIo University of Barcelona Barcelona Spain
| | - Marta Pascual
- Department de Genètica Microbiologia i Estadística and IRBio Universitat de Barcelona Barcelona Spain
| | - Xavier Turon
- Centre d'Estudis Avançats de Blanes (CEAB, CSIC) Girona Spain
| |
Collapse
|
12
|
Casso M, Tagliapietra D, Turon X, Pascual M. High fusibility and chimera prevalence in an invasive colonial ascidian. Sci Rep 2019; 9:15673. [PMID: 31666562 PMCID: PMC6821838 DOI: 10.1038/s41598-019-51950-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022] Open
Abstract
The formation of chimeric entities through colony fusion has been hypothesized to favour colonisation success and resilience in modular organisms. In particular, it can play an important role in promoting the invasiveness of introduced species. We studied prevalence of chimerism and performed fusion experiments in Mediterranean populations of the worldwide invasive colonial ascidian Didemnum vexillum. We analysed single zooids by whole genome amplification and genotyping-by-sequencing and obtained genotypic information for more than 2,000 loci per individual. In the prevalence study, we analysed nine colonies and identified that 44% of them were chimeric, composed of 2–3 different genotypes. In the fusion experiment 15 intra- and 30 intercolony pairs were assayed but one or both fragments regressed and died in ~45% of the pairs. Among those that survived for the length of the experiment (30 d), 100% isogeneic and 31% allogeneic pairs fused. Fusion was unlinked to global genetic relatedness since the genetic distance between fused or non-fused intercolony pairs did not differ significantly. We could not detect any locus directly involved in allorecognition, but we cannot preclude the existence of a histocompatibility mechanism. We conclude that chimerism occurs frequently in D. vexillum and may be an important factor to enhance genetic diversity and promote its successful expansion.
Collapse
Affiliation(s)
- Maria Casso
- Center for Advanced Studies of Blanes (CEAB, CSIC), Catalonia, Spain.,Department of Genetics, Microbiology and Statistics, and IRBio, University of Barcelona, Catalonia, Spain
| | - Davide Tagliapietra
- CNR - National Research Council of Italy, ISMAR - Institute of Marine Sciences, Venice, Italy
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB, CSIC), Catalonia, Spain
| | - Marta Pascual
- Department of Genetics, Microbiology and Statistics, and IRBio, University of Barcelona, Catalonia, Spain.
| |
Collapse
|