1
|
Thompson JB, Hernández-Hernández T, Keeling G, Vásquez-Cruz M, Priest NK. Identifying the multiple drivers of cactus diversification. Nat Commun 2024; 15:7282. [PMID: 39179557 PMCID: PMC11343764 DOI: 10.1038/s41467-024-51666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Our understanding of the complexity of forces at play in the rise of major angiosperm lineages remains incomplete. The diversity and heterogeneous distribution of most angiosperm lineages is so extraordinary that it confounds our ability to identify simple drivers of diversification. Using machine learning in combination with phylogenetic modelling, we show that five separate abiotic and biotic variables significantly contribute to the diversification of Cactaceae. We reconstruct a comprehensive phylogeny, build a dataset of 39 abiotic and biotic variables, and predict the variables of central importance, while accounting for potential interactions between those variables. We use state-dependent diversification models to confirm that five abiotic and biotic variables shape diversification in the cactus family. Of highest importance are diurnal air temperature range, soil sand content and plant size, with lesser importance identified in isothermality and geographic range size. Interestingly, each of the estimated optimal conditions for abiotic variables were intermediate, indicating that cactus diversification is promoted by moderate, not extreme, climates. Our results reveal the potential primary drivers of cactus diversification, and the need to account for the complexity underlying the evolution of angiosperm lineages.
Collapse
Affiliation(s)
- Jamie B Thompson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, UK.
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom.
| | | | - Georgia Keeling
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Marilyn Vásquez-Cruz
- Instituto Tecnológico Superior de Irapuato, Tecnológico Nacional de México, Irapuato, Guanajuato, México
| | - Nicholas K Priest
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
2
|
Guo K, Pyšek P, van Kleunen M, Kinlock NL, Lučanová M, Leitch IJ, Pierce S, Dawson W, Essl F, Kreft H, Lenzner B, Pergl J, Weigelt P, Guo WY. Plant invasion and naturalization are influenced by genome size, ecology and economic use globally. Nat Commun 2024; 15:1330. [PMID: 38351066 PMCID: PMC10864296 DOI: 10.1038/s41467-024-45667-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.
Collapse
Affiliation(s)
- Kun Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China
| | - Petr Pyšek
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-25243, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-12844, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, P. R. China
| | - Nicole L Kinlock
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457, Konstanz, Germany
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Department of Evolutionary Plant Biology, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-370 05, Czech Republic
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, I-20133, Milan, Italy
| | - Wayne Dawson
- Department of Biosciences, Durham University, Durham, UK
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
- Campus-Institute Data Science, Göttingen, Germany
| | - Bernd Lenzner
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jan Pergl
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-25243, Czech Republic
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
- Campus-Institute Data Science, Göttingen, Germany
| | - Wen-Yong Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
| |
Collapse
|
3
|
Bhadra S, Leitch IJ, Onstein RE. From genome size to trait evolution during angiosperm radiation. Trends Genet 2023; 39:728-735. [PMID: 37582671 DOI: 10.1016/j.tig.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
Angiosperm diversity arises from trait flexibility and repeated evolutionary radiations, but the role of genomic characters in these radiations remains unclear. In this opinion article, we discuss how genome size can influence angiosperm diversification via its intricate link with cell size, tissue packing, and physiological processes which, in turn, influence the macroevolution of functional traits. We propose that integrating genome size, functional traits, and phylogenetic data across a wide range of lineages allows us to test whether genome size decrease consistently leads to increased trait flexibility, while genome size increase constrains trait evolution. Combining theories from molecular biology, functional ecology and macroevolution, we provide a framework to better understand the role of genome size in trait evolution, evolutionary radiations, and the global distribution of angiosperms.
Collapse
Affiliation(s)
- Sreetama Bhadra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, D-04103, Leipzig, Germany; Leipzig University, Ritterstraße 26, 04109 Leipzig, Germany.
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, UK
| | - Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, D-04103, Leipzig, Germany; Leipzig University, Ritterstraße 26, 04109 Leipzig, Germany; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| |
Collapse
|
4
|
Roxo G, Moura M, Talhinhas P, Costa JC, Silva L, Vasconcelos R, de Sequeira MM, Romeiras MM. Diversity and Cytogenomic Characterization of Wild Carrots in the Macaronesian Islands. PLANTS 2021; 10:plants10091954. [PMID: 34579486 PMCID: PMC8473144 DOI: 10.3390/plants10091954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The Macaronesian islands constitute an enormous reservoir of genetic variation of wild carrots (subtribe Daucinae; Apiaceae), including 10 endemic species, but an accurate understanding of the diversification processes within these islands is still lacking. We conducted a review of the morphology, ecology, and conservation status of the Daucinae species and, on the basis of a comprehensive dataset, we estimated the genome size variation for 16 taxa (around 320 samples) occurring in different habitats across the Macaronesian islands in comparison to mainland specimens. Results showed that taxa with larger genomes (e.g., Daucus crinitus: 2.544 pg) were generally found in mainland regions, while the insular endemic taxa from Azores and Cabo Verde have smaller genomes. Melanoselinum decipiens and Monizia edulis, both endemic to Madeira Island, showed intermediate values. Positive correlations were found between mean genome size and some morphological traits (e.g., spiny or winged fruits) and also with habit (herbaceous or woody). Despite the great morphological variation found within the Cabo Verde endemic species, the 2C-values obtained were quite homogeneous between these taxa and the subspecies of Daucus carota, supporting the close relationship among these taxa. Overall, this study improved the global knowledge of DNA content for Macaronesian endemics and shed light into the mechanisms underpinning diversity patterns of wild carrots in the western Mediterranean region.
Collapse
Affiliation(s)
- Guilherme Roxo
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal;
| | - Mónica Moura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
| | - Pedro Talhinhas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
| | - José Carlos Costa
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
| | - Luís Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
| | - Raquel Vasconcelos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal;
| | - Miguel Menezes de Sequeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
- Madeira Botanical Group, Faculty of Life Sciences, University of Madeira, 9020-105 Funchal, Portugal
| | - Maria Manuel Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|