1
|
Salgado AL, Glassmire AE, Sedio BE, Diaz R, Stout MJ, Čuda J, Pyšek P, Meyerson LA, Cronin JT. Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass. J Chem Ecol 2023; 49:437-450. [PMID: 37099216 DOI: 10.1007/s10886-023-01425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023]
Abstract
The metabolome represents an important functional trait likely important to plant invasion success, but we have a limited understanding of whether the entire metabolome or targeted groups of compounds confer an advantage to invasive as compared to native taxa. We conducted a lipidomic and metabolomic analysis of the cosmopolitan wetland grass Phragmites australis. We classified features into metabolic pathways, subclasses, and classes. Subsequently, we used Random Forests to identify informative features to differentiate five phylogeographic and ecologically distinct lineages: European native, North American invasive, North American native, Gulf, and Delta. We found that lineages had unique phytochemical fingerprints, although there was overlap between the North American invasive and North American native lineages. Furthermore, we found that divergence in phytochemical diversity was driven by compound evenness rather than metabolite richness. Interestingly, the North American invasive lineage had greater chemical evenness than the Delta and Gulf lineages but lower evenness than the North American native lineage. Our results suggest that metabolomic evenness may represent a critical functional trait within a plant species. Its role in invasion success, resistance to herbivory, and large-scale die-off events common to this and other plant species remain to be investigated.
Collapse
Affiliation(s)
- Ana L Salgado
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Andrea E Glassmire
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Apartado, 0843-03092, Republic of Panama
| | - Rodrigo Diaz
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michael J Stout
- Department of Entomology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jan Čuda
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Petr Pyšek
- Department of Invasion Ecology, Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, CZ -128 44, Czech Republic
| | - Laura A Meyerson
- Department of Natural Resource Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - James T Cronin
- Department of Biological Sciences, Louisiana State University, Life Sciences Building, Baton Rouge, LA, 70803, USA
| |
Collapse
|
2
|
Ramula S, Kalske A, Saikkonen K, Helander M. Glyphosate residues in soil can modify plant resistance to herbivores through changes in leaf quality. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:979-986. [PMID: 35793169 PMCID: PMC9796381 DOI: 10.1111/plb.13453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 05/28/2023]
Abstract
Glyphosate is the most widely used non-selective herbicide in the world. Glyphosate residues in soil can affect plant quality by modifying plant physiology, hormonal pathways and traits, with potential consequences for plants' interactions with herbivores. We explored these indirect effects in the context of plant-herbivore interactions in a perennial, nitrogen-fixing herb. We quantified leaf herbivory for glyphosate-exposed and control plants grown in phosphorus-fertilized and non-fertilized soils, and assessed the impacts of glyphosate treatment on traits related to plant resistance against herbivores (leaf trichome density, leaf mass per area) and performance (aboveground biomass, root:shoot ratio, nodule number, nodule activity). Moreover, we conducted a laboratory feeding experiment to compare the palatability of leaves from glyphosate-exposed and control plants to a generalist mollusc herbivore. Herbivore damage and intensity in situ increased during the growing season regardless of glyphosate or phosphorus treatment. Glyphosate treatment reduced leaf trichome density but had no effect on the other plant traits considered. Herbivore damage was negatively associated with leaf trichome density. The feeding experiment revealed no difference in the feeding probability of mollusc herbivores between glyphosate-exposed and control plants. However, there was an interaction between glyphosate treatment and initial leaf area for leaf consumption by herbivores: leaf consumption increased with increasing leaf area in both groups, but at a lower rate for glyphosate-exposed plants than for control plants. Our results show that glyphosate residues in soil have the potential to indirectly affect aboveground herbivores through changes in leaf quality, which may have mixed consequences for folivore damage.
Collapse
Affiliation(s)
- S. Ramula
- Department of BiologyUniversity of TurkuTurkuFinland
| | - A. Kalske
- Department of BiologyUniversity of TurkuTurkuFinland
| | - K. Saikkonen
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - M. Helander
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
3
|
Oduor AMO. Invasive plant species that experience lower herbivory pressure may evolve lower diversities of chemical defense compounds in the exotic range. AMERICAN JOURNAL OF BOTANY 2022; 109:1382-1393. [PMID: 36000500 DOI: 10.1002/ajb2.16053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Invasive plant species often escape from specialist herbivores and are more likely to be attacked by generalist herbivores in the exotic range. Consequently, the shifting defense hypothesis predicts that invasive plants will produce higher concentrations of qualitative defense compounds to deter dominant generalist herbivores in the exotic range. Here, I additionally propose a reduced chemical diversity hypothesis (RCDH), which predicts that reduced herbivory pressure will select for invasive plant genotypes that produce lower diversities of chemical defense compounds in the exotic range. METHODS I tested whether (1) invasive Brassica nigra populations express a lower diversity and an overall higher concentration of glucosinolate compounds than native-range B. nigra; (2) Brassica nigra individuals that express high diversities and concentrations of glucosinolate compounds are more attractive to specialist and deterrent to generalist herbivores; and (3) tissues of invasive B. nigra are less palatable than tissues of native-range B. nigra to the generalist herbivores Theba pisana and Helix aspersa. RESULTS Invasive B. nigra populations produced a significantly lower diversity of glucosinolate compounds, a marginally higher concentration of total glucosinolates, and a significantly higher concentration of sinigrin (the dominant glucosinolate). Leaf tissues of invasive B. nigra were significantly less palatable to T. pisana and marginally less so to H. aspersa. Brassica nigra individuals that expressed high concentrations of total glucosinolate compounds were visited by a low diversity of generalist herbivore species in the field. CONCLUSIONS In line with the RCDH, the lower diversity of glucosinolate compounds produced by invasive B. nigra populations likely resulted from selection imposed by reduced herbivory pressure in the exotic range.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Department of Applied Biology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|