1
|
Sheard JK, Adriaens T, Bowler DE, Büermann A, Callaghan CT, Camprasse ECM, Chowdhury S, Engel T, Finch EA, von Gönner J, Hsing PY, Mikula P, Rachel Oh RY, Peters B, Phartyal SS, Pocock MJO, Wäldchen J, Bonn A. Emerging technologies in citizen science and potential for insect monitoring. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230106. [PMID: 38705194 PMCID: PMC11070260 DOI: 10.1098/rstb.2023.0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
Emerging technologies are increasingly employed in environmental citizen science projects. This integration offers benefits and opportunities for scientists and participants alike. Citizen science can support large-scale, long-term monitoring of species occurrences, behaviour and interactions. At the same time, technologies can foster participant engagement, regardless of pre-existing taxonomic expertise or experience, and permit new types of data to be collected. Yet, technologies may also create challenges by potentially increasing financial costs, necessitating technological expertise or demanding training of participants. Technology could also reduce people's direct involvement and engagement with nature. In this perspective, we discuss how current technologies have spurred an increase in citizen science projects and how the implementation of emerging technologies in citizen science may enhance scientific impact and public engagement. We show how technology can act as (i) a facilitator of current citizen science and monitoring efforts, (ii) an enabler of new research opportunities, and (iii) a transformer of science, policy and public participation, but could also become (iv) an inhibitor of participation, equity and scientific rigour. Technology is developing fast and promises to provide many exciting opportunities for citizen science and insect monitoring, but while we seize these opportunities, we must remain vigilant against potential risks. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Julie Koch Sheard
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO), Havenlaan 88 bus 73, 1000 Brussels, Belgium
| | - Diana E. Bowler
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Andrea Büermann
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Corey T. Callaghan
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, FL 33314, USA
| | - Elodie C. M. Camprasse
- School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Shawan Chowdhury
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Thore Engel
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Elizabeth A. Finch
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Julia von Gönner
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Pen-Yuan Hsing
- Faculty of Life Sciences, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK
| | - Peter Mikula
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748 Garching, Germany
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Rui Ying Rachel Oh
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Birte Peters
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Shyam S. Phartyal
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India
| | | | - Jana Wäldchen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany
| | - Aletta Bonn
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Pocock MJ, Adriaens T, Bertolino S, Eschen R, Essl F, Hulme PE, Jeschke JM, Roy HE, Teixeira H, de Groot M. Citizen science is a vital partnership for invasive alien species management and research. iScience 2024; 27:108623. [PMID: 38205243 PMCID: PMC10776933 DOI: 10.1016/j.isci.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Invasive alien species (IAS) adversely impact biodiversity, ecosystem functions, and socio-economics. Citizen science can be an effective tool for IAS surveillance, management, and research, providing large datasets over wide spatial extents and long time periods, with public participants generating knowledge that supports action. We demonstrate how citizen science has contributed knowledge across the biological invasion process, especially for early detection and distribution mapping. However, we recommend that citizen science could be used more for assessing impacts and evaluating the success of IAS management. Citizen science does have limitations, and we explore solutions to two key challenges: ensuring data accuracy and dealing with uneven spatial coverage of potential recorders (which limits the dataset's "fit for purpose"). Greater co-development of citizen science with public stakeholders will help us better realize its potential across the biological invasion process and across ecosystems globally while meeting the needs of participants, local communities, scientists, and decision-makers.
Collapse
Affiliation(s)
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Philip E. Hulme
- Bioprotection Aotearoa, Department of Pest Management and Conservation, Lincoln University, PO Box 84850, Christchurch, Lincoln 7648, New Zealand
| | - Jonathan M. Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Helen E. Roy
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, United Kingdom
| | - Heliana Teixeira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Maarten de Groot
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Barker BS, Coop L. Phenological Mapping of Invasive Insects: Decision Support for Surveillance and Management. INSECTS 2023; 15:6. [PMID: 38249012 PMCID: PMC10816952 DOI: 10.3390/insects15010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Readily accessible and easily understood forecasts of the phenology of invasive insects have the potential to support and improve strategic and tactical decisions for insect surveillance and management. However, most phenological modeling tools developed to date are site-based, meaning that they use data from a weather station to produce forecasts for that single site. Spatial forecasts of phenology, or phenological maps, are more useful for decision-making at area-wide scales, such as counties, states, or entire nations. In this review, we provide a brief history on the development of phenological mapping technologies with a focus on degree-day models and their use as decision support tools for invasive insect species. We compare three different types of phenological maps and provide examples using outputs of web-based platforms that are presently available for real-time mapping of invasive insects for the contiguous United States. Next, we summarize sources of climate data available for real-time mapping, applications of phenological maps, strategies for balancing model complexity and simplicity, data sources and methods for validating spatial phenology models, and potential sources of model error and uncertainty. Lastly, we make suggestions for future research that may improve the quality and utility of phenological maps for invasive insects.
Collapse
Affiliation(s)
- Brittany S. Barker
- Oregon Integrated Pest Management Center, Oregon State University, 4575 Research Way, Corvallis, OR 97333, USA;
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97333, USA
| | - Leonard Coop
- Oregon Integrated Pest Management Center, Oregon State University, 4575 Research Way, Corvallis, OR 97333, USA;
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97333, USA
| |
Collapse
|
4
|
Volery L, Vaz Fernandez M, Wegmann D, Bacher S. A general framework to quantify and compare ecological impacts under temporal dynamics. Ecol Lett 2023; 26:1726-1739. [PMID: 37515418 DOI: 10.1111/ele.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Biodiversity is diminishing at alarming rates due to multiple anthropogenic drivers. To mitigate these drivers, their impacts must be quantified accurately and comparably across drivers. To enable that, we present a generally applicable framework introducing fundamental principles of ecological impact quantification, including the quantification of interactions between multiple drivers. The framework contrasts biodiversity variables in impacted against those in unimpacted or other reference situations while accounting for their temporal dynamics through modelling. Properly accounting for temporal dynamics reduces biases in impact quantification and comparison. The framework addresses key questions around ecological impacts in global change science, namely, how to compare impacts under temporal dynamics across stressors, how to account for stressor interactions in such comparisons, and how to compare the success of management actions over time.
Collapse
Affiliation(s)
- Lara Volery
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Margarida Vaz Fernandez
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Price-Jones V, Brown PMJ, Adriaens T, Tricarico E, Farrow RA, Cardoso AC, Gervasini E, Groom Q, Reyserhove L, Schade S, Tsinaraki C, Marchante E. Eyes on the aliens: citizen science contributes to research, policy and management of biological invasions in Europe. NEOBIOTA 2022. [DOI: 10.3897/neobiota.78.81476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Invasive alien species (IAS) are a key driver of global biodiversity loss. Reducing their spread and impact is a target of the Sustainable Development Goals (SDG target 15.8) and of the EU IAS Regulation 1143/2014. The use of citizen science offers various benefits to alien species’ decision-making and to society, since public participation in research and management boosts awareness, engagement and scientific literacy and can reduce conflict in IAS management. We report the results of a survey on alien species citizen science initiatives within the framework of the European Cooperation in Science and Technology (COST) Action Alien-CSI. We gathered metadata on 103 initiatives across 41 countries, excluding general biodiversity reporting portals, spanning from 2005 to 2020, offering the most comprehensive account of alien species citizen science initiatives on the continent to date. We retrieved information on project scope, policy relevance, engagement methods, data capture, data quality and data management, methods and technologies applied and performance indicators such as the number of records coming from projects, the numbers of participants and publications. The 103 initiatives were unevenly distributed geographically, with countries with a tradition of citizen science showing more active projects. The majority of projects were contributory and were run at a national scale, targeting the general public, alien plants and insects, and terrestrial ecosystems. These factors of project scope were consistent between geographic regions. Most projects focused on collecting species presence or abundance data, aiming to map presence and spread. As 75% of the initiatives specifically collected data on IAS of Union Concern, citizen science in Europe is of policy relevance. Despite this, only half of the projects indicated sustainable funding. Nearly all projects had validation in place to verify species identifications. Strikingly, only about one third of the projects shared their data with open data repositories such as the Global Biodiversity Information Facility or the European Alien Species Information Network. Moreover, many did not adhere to the principles of FAIR data management. Finally, certain factors of engagement, feedback and support, had significant impacts on project performance, with the provision of a map with sightings being especially beneficial. Based on this dataset, we offer suggestions to strengthen the network of IAS citizen science projects and to foster knowledge exchange among citizens, scientists, managers, policy-makers, local authorities, and other stakeholders.
Collapse
|