1
|
Shi S, Tian L, Xu S, Ji L, Nasir F, Li X, Song Z, Tian C. The rhizomicrobiomes of wild and cultivated crops react differently to fungicides. Arch Microbiol 2019; 201:477-486. [PMID: 30361816 DOI: 10.1007/s00203-018-1586-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/13/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022]
Abstract
The fungicides used to control diseases in cereal production can have adverse effects on non-target microbial communities, with possible consequences for plant health and productivity. Although we know that fungicides affect microbial community structure and soil activities, it is unclear how crop cultivars have altered the impact of fungicides on rhizomicrobiomes. In this study, the rhizosphere bacterial and fungal communities and structures of cultivated crops and their wild relatives were studied by Illumina MiSeq sequencing analysis. The results indicated that the rhizomicrobiome communities of wild crops reacted more strongly to fungicides than that of their cultivated relatives. Furthermore, fungal community composition was more affected by fungicides than bacterial community composition. Remarkably, the same trend was observed in both soybean and rice with regard to the influence of crop cultivar on the response of the rhizomicrobiome to fungicide application, although the level of the response was not similar. We report for the first time that the rhizomicrobiomes of wild crops reacted more strongly to fungicides than the rhizomicrobiomes of cultivated crops.
Collapse
Affiliation(s)
- Shaohua Shi
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangqi Xu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Li Ji
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Xiujun Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200433, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
| |
Collapse
|
2
|
Martins MR, Pereira P, Lima N, Cruz-Morais J. Degradation of metalaxyl and folpet by filamentous fungi isolated from Portuguese (Alentejo) vineyard soils. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:67-77. [PMID: 23430293 DOI: 10.1007/s00244-013-9877-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
Degradation of xenobiotics by microbial populations is a potential method to enhance the effectiveness of ex situ or in situ bioremediation. The purpose of this study was to evaluate the impact of repeated metalaxyl and folpet treatments on soil microbial communities and to select soil fungal strains able to degrade these fungicides. Results showed enhanced degradation of metalaxyl and folpet in vineyards soils submitted to repeated treatments with these fungicides. Indeed, the greatest degradation ability was observed in vineyard soil samples submitted to greater numbers of treatments. Respiration activities, as determined in the presence of selective antibiotics in soil suspensions amended with metalaxyl and folpet, showed that the fungal population was the microbiota community most active in the degradation process. Batch cultures performed with a progressive increase of fungicide concentrations allowed the selection of five tolerant fungal strains: Penicillium sp. 1 and Penicillium sp. 2, mycelia sterila 1 and 3, and Rhizopus stolonifer. Among these strains, mycelium sterila 3 and R. stolonifer presented only in vineyard soils treated with repeated application of these fungicides and showed tolerance >1,000 mg l(-1) against commercial formulations of metalaxyl (10 %) plus folpet (40 %). Using specific methods for inducing sporulation, mycelium sterila 3 was identified as Gongronella sp. Because this fungus is rare, it was compared using csM13-polymerase chain reaction (PCR) with the two known species, Gongronella butleri and G. lacrispora. The high tolerance to metalaxyl and folpet shown by Gongronella sp. and R. stolonifer might be correlated with their degradation ability. Our results point out that selected strains have potential for the bioremediation of metalaxyl and folpet in polluted soil sites.
Collapse
Affiliation(s)
- M Rosário Martins
- Chemistry Department and ICAAM, School of Science and Technology, University of Évora, 7000-671 Évora, Portugal.
| | | | | | | |
Collapse
|
3
|
Soil degradation of parthenin-does it contradict the role of allelopathy in the invasive weed Parthenium hysterophorus L.? J Chem Ecol 2009; 35:1137-50. [PMID: 19795173 DOI: 10.1007/s10886-009-9698-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 09/15/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
The invasive success of Parthenium hysterophorus L. is thought to be partially attributable to allelopathy mediated by the plant metabolite parthenin. To assess the ecological significance of parthenin release from plant material, its persistence and phytotoxicity in soil was studied. Results show parthenin is rapidly degraded with an average DT (50) of 59 h under standard experimental conditions. Degradation was delayed in sterilized soils, at lower soil moisture, and higher parthenin concentrations. Higher temperatures, higher CEC(pot)/clay content of soils, soil preconditioning with parthenin, and P. hysterophorus infestation accelerated degradation. Physico-chemical and biological processes are, therefore, expected to govern the fate of parthenin in soil. Parthenin exhibited low soil phytotoxicity and did not accumulate over time. Along with the indicated reduction in bioavailability and development of hormetic effects, results suggest that for parthenin to have detrimental allelopathic effects, it requires high P. hysterophorus densities that result in high soil levels of parthenin and soil conditions that favor the persistence of parthenin. In light of this, the ecological significance of parthenin is discussed.
Collapse
|
4
|
Yu Y, Chu X, Pang G, Xiang Y, Fang H. Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. J Environ Sci (China) 2009; 21:179-185. [PMID: 19402419 DOI: 10.1016/s1001-0742(08)62248-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Carbendazim, a systemic benzimidazole fungicide, is applied repeatedly to control plant diseases including soilborne diseases, over a growing season. Studies were carried out under laboratory conditions to assess the effects of repeated carbendazim applications on its persistence and microbial community in soil. The results indicate that dissipation of carbendazim in soil was accelerated with its application frequency. The degradation rate constant of carbendazim was increased significantly from 0.074 d(-1) to 0.79 d(-1). The corresponding half-life was shorten markedly from 9.3 d to 0.9 d after four repeated applications. No significant inhibitory effect of carbendazim on soil microbial utilization of the carbon sources was observed after first treatment, but a slight increase in average well color development (AWCD) was shown after second, third, and fourth applications. It suggested that soil microorganisms become adapted to carbendazim after repeated application. Simpson and Shannon indexes of soil microbial community from carbendazim treated soil were also similar to those from the control soil, indicating that the richness and dominant character of soil microorganisms remain unchangeable after repeated application. However, after first, second, and third addition of carbendazim, McIntosh indexes on day 21 were significantly higher compared with the control, suggesting that balance of soil microorganisms was altered due to the enrichment of the specific carbendazim-adapting strains in soil.
Collapse
Affiliation(s)
- Yunlong Yu
- Department of Plant Protection, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | | | | | | | | |
Collapse
|
5
|
Wang X, Song M, Gao C, Dong B, Zhang Q, Fang H, Yu Y. Carbendazim induces a temporary change in soil bacterial community structure. J Environ Sci (China) 2009; 21:1679-83. [PMID: 20131598 DOI: 10.1016/s1001-0742(08)62473-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effect of carbendazim applications on the diversity and structure of a soil bacterial community was studied under field conditions using temperature gradient gel electrophoresis (TGGE) and partial sequence analysis of PCR-amplified 16S rRNA gene. After four successive introductions of carbendazim at a level of 0.94 kg active ingredient (a.i.)/ha, the genetic diversity (expressed as Shannon index, H') decreased from 1.43 in the control to 1.29 in treated soil. This harmful effect seems to increase with the concentration of carbendazim. The value of H' in the soil treated with carbendazim at 4.70 kg a.i./ha was reduced to 1.05 (P < or = 0.05). The structure of soil bacterial community was also affected after four repeated applications of carbendazim at levels of 0.94, 1.88 and 4.70 kg a.i./ha, as seen in the relative intensities of the individual band. However, the bacterial community in carbendazim-treated soil recovered to that in the control 360 d after the first treatment. The results indicated that repeated applications of carbendazim could reduce soil microbial diversity and alter the bacterial community structure temporarily.
Collapse
Affiliation(s)
- Xiuguo Wang
- Department of Plant Protection, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Ho MH, Lin KY, Wang YS. Formulation factors that can reduce the formation of the phytotoxic impurity, N,N'-dibutylurea, from benomyl. CHEMOSPHERE 2007; 68:1465-73. [PMID: 17493661 DOI: 10.1016/j.chemosphere.2007.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 03/15/2007] [Accepted: 03/26/2007] [Indexed: 05/15/2023]
Abstract
Fungicide benomyl is easily decomposed to carbendazim (MBC) and butyl isocyanate (BIC) in formulation, BIC is further hydrolyzed to butylamine. The BIC also reacts with butylamine to form N,N'-dibutylurea (DBU), a phytotoxic compound. The purpose of this study was to investigate the effects of selected additives and the manufacturing method of benomyl water dispersible granules (WG) on reducing DBU content in benomyl formulations. The manufacturing methods studied were granulation by extrusion, fluid bed spray, and spray dry. For the extrusion method, each benomyl powder formulation was homogenized by kneading with 20% v/w of 95% ethanol instead of water. After granulation, the percentages of the active ingredient benomyl and its degradation product carbendazim in each formulation were determined. For the fluid bed spray method, two formulations of wettable powders were formed. The first sample was granulated using 5% Na(2)SO(4) as the binder solution; the second sample used 2% urea. Changes in the active ingredient content after granulation were determined for each sample. For the spray dry method, four basic formulations of 70% benomyl, 5% sodium dodecyl sulfate (SDS) and 10% or 20% sodium sulfate were prepared, to study the effects of HMTA, urea and dispersant on reducing DBU formation in formulation. The DBU content of each formulation was measured for the fresh samples and after 1 year of storage. The results showed that urea had a stabilizing effect on benomyl, and reduced DBU formation. BIC increased benomyl yield during manufacturing, which reduced DBU content in fresh samples but allowed a greater potential for future DBU formation since it did not stabilize the extra benomyl. HMTA was found to reduce DBU in both aqueous BIC and prepared formulations. The study discusses how each of the selected constituents affected DBU formation and how commercial formulations can be improved to reduce DBU formation. From this study, it is clear that a safer benomyl formulation can be developed.
Collapse
Affiliation(s)
- Ming-Hsun Ho
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | | |
Collapse
|