1
|
Recent Advancements and Challenges in Lignin Valorization: Green Routes towards Sustainable Bioproducts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186055. [PMID: 36144795 PMCID: PMC9500909 DOI: 10.3390/molecules27186055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022]
Abstract
The aromatic hetero-polymer lignin is industrially processed in the paper/pulp and lignocellulose biorefinery, acting as a major energy source. It has been proven to be a natural resource for useful bioproducts; however, its depolymerization and conversion into high-value-added chemicals is the major challenge due to the complicated structure and heterogeneity. Conversely, the various pre-treatments techniques and valorization strategies offers a potential solution for developing a biomass-based biorefinery. Thus, the current review focus on the new isolation techniques for lignin, various pre-treatment approaches and biocatalytic methods for the synthesis of sustainable value-added products. Meanwhile, the challenges and prospective for the green synthesis of various biomolecules via utilizing the complicated hetero-polymer lignin are also discussed.
Collapse
|
2
|
Biodegradation of Naphthalene and Anthracene by Aspergillus glaucus Strain Isolated from Antarctic Soil. Processes (Basel) 2022. [DOI: 10.3390/pr10050873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biotechnologies based on microbial species capable of destroying harmful pollutants are a successful way to solve some of the most important problems associated with a clean environment. The subject of investigation is the Antarctic fungal strain Aspergillus glaucus AL1. The culturing of the examined strain was performed with 70 mg of wet mycelium being inoculated in a Czapek Dox liquid medium containing naphthalene, anthracene, or phenanthrene (0.3 g/L) as the sole carbon source. Progressively decreasing naphthalene and anthracene concentrations were monitored in the culture medium until the 15th day of the cultivation of A. glaucus AL1. The degradation was determined through gas chromatography–mass spectrometry. Both decreased by 66% and 44%, respectively, for this period. The GC-MS analyses were applied to identify salicylic acid, catechol, and ketoadipic acid as intermediates in the naphthalene degradation. The intermediates identified in anthracene catabolism are 2-hydroxy-1-naphthoic acid, o-phthalic acid, and protocatechuic acid. The enzyme activities for phenol 2-monooxygenase (1.14.13.7) and catechol 1,2-dioxygenase (1.13.11.1) were established. A gene encoding an enzyme with catechol 1,2-dioxygenase activity was identified and sequenced (GeneBank Ac. No KM360483). The recent study provides original data on the potential of an ascomycete’s fungal strain A. glaucus strain AL 1 to degrade naphthalene and anthracene.
Collapse
|
3
|
Kietkwanboot A, Chaiprapat S, Müller R, Suttinun O. Biodegradation of phenolic compounds present in palm oil mill effluent as single and mixed substrates by Trametes hirsuta AK04. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:989-1002. [PMID: 32406803 DOI: 10.1080/10934529.2020.1763092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
The ability of white-rot fungus, Trametes hirsuta AK04, to utilize phenolics as single and mixed substrates was determined in mineral medium and palm oil mill effluent (POME). The strain AK04 was able to rapidly metabolize all ten phenolics as single and mixed substrates at all test concentrations. With single substrates, between 78 and 98% removal was achieved within seven days. The biomass yield increased with increasing concentration from 100 to 500 mg L-1 but slightly decreased when the concentration was increased up to 1,000 mg L-1. When fitted to a Haldane model, the groups of benzoic and cinnamic acid derivatives gave significantly higher maximum specific growth rates than other phenolics. Phenol exhibited the lowest affinity and highest inhibitory effects on fungal metabolism. In mixed substrates, the total concentration ranges of phenolics mixtures between 1,000 and 6,000 mg L-1 did not affect the fungal growth rate and the strain AK04 showed a high degree of resistance to their toxic effects. The addition of glucose and yeast extract enhanced the degradation rates of individual phenolics in the substrate mixtures, demonstrating the advantage of this strain for treating complex media, such as industrial wastewater.
Collapse
Affiliation(s)
- Anukool Kietkwanboot
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | - Sumate Chaiprapat
- Department of Civil Engineering, Faculty of Engineering, Energy Systems Research Institute (PERIN), Prince of Songkla University, Songkhla, Thailand
| | - Rudolf Müller
- Institute of Technical Biocatalysis, Hamburg University of Technology, Hamburg, Germany
| | - Oramas Suttinun
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Research Program: The Development of Management System for Reduction and Control of Water Contamination and Distribution in Songkhla Lake Basin and the Western Coastline of the South of Thailand, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| |
Collapse
|
4
|
Production of lignin-modifying enzymes by Trametes ochracea on high-molecular weight fraction of olive mill wastewater, a byproduct of olive oil biorefinery. N Biotechnol 2019; 50:44-51. [DOI: 10.1016/j.nbt.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/19/2022]
|
5
|
Brink DP, Ravi K, Lidén G, Gorwa-Grauslund MF. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol 2019; 103:3979-4002. [PMID: 30963208 PMCID: PMC6486533 DOI: 10.1007/s00253-019-09692-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
Abstract
Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database ( www.elignindatabase.com ), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings.
Collapse
Affiliation(s)
- Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| | - Krithika Ravi
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
6
|
Sun PP, Araud EM, Huang C, Shen Y, Monroy GL, Zhong S, Tong Z, Boppart SA, Eden JG, Nguyen TH. Disintegration of simulated drinking water biofilms with arrays of microchannel plasma jets. NPJ Biofilms Microbiomes 2018; 4:24. [PMID: 30374407 PMCID: PMC6194111 DOI: 10.1038/s41522-018-0063-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022] Open
Abstract
Biofilms exist and thrive within drinking water distribution networks, and can present human health concerns. Exposure of simulated drinking water biofilms, grown from groundwater, to a 9 × 9 array of microchannel plasma jets has the effect of severely eroding the biofilm and deactivating the organisms they harbor. In-situ measurements of biofilm structure and thickness with an optical coherence tomography (OCT) system show the biofilm thickness to fall from 122 ± 17 µm to 55 ± 13 µm after 15 min. of exposure of the biofilm to the microplasma column array, when the plasmas are dissipating a power density of 58 W/cm2. All biofilms investigated vanish with 20 min. of exposure. Confocal laser scanning microscopy (CLSM) demonstrates that the number of living cells in the biofilms declines by more than 93% with 15 min. of biofilm exposure to the plasma arrays. Concentrations of several oxygen-bearing species, generated by the plasma array, were found to be 0.4–21 nM/s for the hydroxyl radical (OH), 85–396 nM/s for the 1O2 excited molecule, 98–280 µM for H2O2, and 24–42 µM for O3 when the power density delivered to the array was varied between 3.6 W/cm2 and 79 W/cm2. The data presented here demonstrate the potential of microplasma arrays as a tool for controlling, through non-thermal disruption and removal, mixed-species biofilms prevalent in commercial and residential water systems. Biofilms in drinking water premise plumbing systems can be disrupted and their microorganisms deactivated by exposure to jets of ionized gas known as plasma. Researchers at the University of Illinois, USA, led by Thanh (Helen) Nguyen and J. Gary Eden, explored the potential of low temperature plasma jets in disrupting & removing drinking water biofilms. The plasma was directed through fabricated microchannels and onto samples that the simulated biofilms. The interaction of the plasma with air and water generated reactive chemical species and ultraviolet radiation that disrupted the biofilms and deactivated the microorganisms within them. The biofilms studied vanished within 20 min. of plasma exposure. Plasma jets offer an inexpensive, low temperature and chlorine-free method for combating harmful biofilms in drinking water premise plumbing systems.
Collapse
Affiliation(s)
- Peter P Sun
- 1Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL 61801 USA.,2Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 USA
| | - Elbashir M Araud
- 1Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL 61801 USA
| | - Conghui Huang
- 1Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL 61801 USA
| | - Yun Shen
- 1Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL 61801 USA.,4Present Address: Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Guillermo L Monroy
- 3Department of Bioengineering, University of Illinois, Urbana, IL 61801 USA
| | - Shengyun Zhong
- 2Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 USA
| | - Zikang Tong
- 2Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 USA
| | - Stephen A Boppart
- 2Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 USA.,3Department of Bioengineering, University of Illinois, Urbana, IL 61801 USA
| | - J Gary Eden
- 2Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 USA
| | - Thanh H Nguyen
- 1Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
7
|
Valette N, Perrot T, Sormani R, Gelhaye E, Morel-Rouhier M. Antifungal activities of wood extractives. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Biological valorization of low molecular weight lignin. Biotechnol Adv 2016; 34:1318-1346. [DOI: 10.1016/j.biotechadv.2016.10.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
|
9
|
Yemendzhiev H, Peneva N, Zlateva P, Krastanov A, Alexieva Z. Growth ofTrametes Versicolorin Nitro and Hydroxyl Phenol Derivatives. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Yemendzhiev H, Zlateva P, Alexieva Z. Comparison of the Biodegradation Capacity of Two Fungal Strains Toward a Mixture of Phenol and Cresol by Mathematical Modeling. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Substrate interactions and kinetics study of phenolic compounds biodegradation by Pseudomonas sp. cbp1-3. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Flavin-containing monooxygenases from Phanerochaete chrysosporium responsible for fungal metabolism of phenolic compounds. Biodegradation 2011; 23:343-50. [PMID: 22102096 DOI: 10.1007/s10532-011-9521-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 06/29/2011] [Indexed: 10/15/2022]
Abstract
We investigated the cellular responses of the white-rot basidiomycete Phanerochaete chrysosporium against vanillin. Based upon a proteomic survey, it was demonstrated that two flavin-containing monooxygenases (PcFMO1 and PcFMO2) are translationally up-regulated in response to exogenous addition of vanillin. To elucidate their catalytic functions, we cloned cDNAs and heterologously expressed them in Escherichia coli. The recombinant PcFMO1 showed catalytic activities against monocyclic phenols such as phenol, hydroquinone, and 4-chlorophenol. In addition, the product from hydroquinone was identified as 1,2,4-trihydroxybenzene, an important intermediate in a metabolic pathway of aromatic compounds in which the aromatic ring of 1,2,4-trihydroxybenzene can be further cleaved by fungal dioxygenases for mineralization. Thus, the ortho-cleavage pathway of phenolic compounds would presumably be associated with PcFMO1.
Collapse
|
13
|
Tomei MC, Rita S, Angelucci DM, Annesini MC, Daugulis AJ. Treatment of substituted phenol mixtures in single phase and two-phase solid-liquid partitioning bioreactors. JOURNAL OF HAZARDOUS MATERIALS 2011; 191:190-195. [PMID: 21570179 DOI: 10.1016/j.jhazmat.2011.04.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 05/30/2023]
Abstract
The biological treatment of phenolics is constrained by the inherent cytotoxicity of these compounds. One method to alleviate such toxicity is to add a sequestering phase to absorb, and subsequently release, the substrate(s) to the micro-organisms; such a system is termed a Two Phase Partitioning Bioreactor. Here we have compared the performance of a TPPB, relative to single phase operation, in which a small volume (5%, v/v) of beads of the polymer Hytrel 8206 was used to treat aqueous mixtures of 2,4-dimethylphenol and 4-nitrophenol. Hytrel 8206 was selected from a range of polymers that were tested for their partition coefficients (PCs) for the target molecules, with the more hydrophobic compound (2,4-dimethylphenol) having a higher PC value (201) than 4-nitrophenol (143). Significantly increased removal rates for both substrates were demonstrated in TPPB mode relative to single phase operation. Additionally, the differential release of the compounds to the aqueous phase and their distinct PC values changed the kinetic pattern of the biotreatment system, smoothing out the cellular oxygen demand. Release of the substrates by the polymer over 60 operating cycles was virtually complete (>97%) demonstrating the reusability and robustness of the use of polymers in overcoming cytotoxicity of phenolic substrates.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, CNR, Monterotondo Scalo (Rome), Italy.
| | | | | | | | | |
Collapse
|