1
|
Tafazzoli K, Ghavami M, Khosravi-Darani K. Investigation of impact of siderophore and process variables on production of iron enriched Saccharomyces boulardii by Plackett-Burman design. Sci Rep 2024; 14:22813. [PMID: 39353969 PMCID: PMC11445229 DOI: 10.1038/s41598-024-70467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
The primary cause of anemia worldwide is due to poor diet and iron deficiency. Iron (Fe) enriched yeast can be the most effective way to manage anemia because of the capability for biotransformation of mineral to organic and bioavailable iron. To overcome the low richness of yeast, the use of siderophore as cellular iron carriers is a new approach. In this research, for the first time the potential of siderophore in increasing the Fe enrichment of Saccharomyces boulardii (S. boulardii), which is important because of its probiotic properties and resistance to different stresses, has been investigated to produce of potential iron supplements. For this purpose, siderophore was produced by Pseudomonas aeruginosa (P. aeruginosa). Siderophore impact, along with ten other independent process variables, has been studied on the efficiency of iron biotransformation by the Plackett-Burman design (PBD). The results showed that the highest biotransformation yield was 17.77 mg Fe/g dry cell weight (DCW) in the highest biomass weight of 9 g/l. Iron concentration is the most important variable, with contributions of 46% and 70.79% for biomass weight and biotransformation, respectively, followed by fermentation time, agitation speed, and KH2PO4 concentration. But increasing the level of siderophore and zinc led to a significant negative effect. siderophore inefficiency may be attributed to the absence of membrane receptors for pyoverdine (Pvd) and pyochelin (Pch) siderophores. Also, the steric hindrance of the cell wall mannan, the stickiness and sediment ability of the yeast, can create limitations in the absorption of elements. Such yeast can be used as a potential source of iron even for vegetarians and vegans in the form of medicinal and fortified food products to improve the treatment of anemia. It is recommended that further research be focused on increasing the iron enrichment of yeast by overcoming the structural barrier of the cell wall, investigating factors affecting membrane permeability and iron transport potential of other types of siderophores.
Collapse
Affiliation(s)
- Kiyana Tafazzoli
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Ghavami
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Charalampous G, Fragkou E, Kalogerakis N, Antoniou E, Gontikaki E. Diversity links to functionality: Unraveling the impact of pressure disruption and culture medium on crude oil-enriched microbial communities from the deep Eastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 202:116275. [PMID: 38564821 DOI: 10.1016/j.marpolbul.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Mesopelagic water from the deep Eastern Mediterranean Sea (EMS) was collected under disrupted (REPRESS) or undisturbed (HP) pressure conditions and was acclimated to oil (OIL) or dispersed-oil (DISPOIL) under in situ pressure and temperature (10 MPa, 14 °C). Decompression resulted in oil-acclimatised microbial communities of lower diversity despite the restoration of in situ pressure conditions during the 1-week incubation. Further biodiversity loss was observed when oil-acclimatised communities were transferred to ONR7 medium to facilitate the isolation of oil-degrading bacteria. Microbial diversity loss impacted the degradation of recalcitrant oil compounds, especially PAHs, as low-abundance taxa, linked with PAH degradation, were outcompeted in the enrichment process. Thalassomonas, Pseudoalteromonas, Halomonas and Alcanivorax were enriched in ONR7 under all experimental conditions. No effect of dispersant application on the microbial community structure was identified. A. venustensis was isolated under all tested conditions suggesting a potential key role of this species in hydrocarbons removal in the deep EMS.
Collapse
Affiliation(s)
- Georgia Charalampous
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece.
| | - Efsevia Fragkou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece
| | - Eleftheria Antoniou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece
| | - Evangelia Gontikaki
- Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece.
| |
Collapse
|
3
|
Venkatachalam J, Mohan H, Seralathan KK. Significance of Herbaspirillum sp. in biodegradation and biodetoxification of herbicides, pesticides, hydrocarbons and heavy metals - A review. ENVIRONMENTAL RESEARCH 2023; 239:117367. [PMID: 37827364 DOI: 10.1016/j.envres.2023.117367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In today's industrialized world, contamination of soil and water with various substances has emerged as a pressing concern. Bioremediation, with its advantages of degradation or detoxification, non-polluting nature, and cost-effectiveness, has become a promising method due to technological advancements. Among the bioremediation agents, bacteria have been highly explored and documented as a productive organism. Recently, few studies have reported on the significance of Herbaspirillum sp., a Gram-negative bacterium, in bioremediating herbicides, pesticides, polycyclic aromatic hydrocarbons, metalloids, and heavy metals, as well as its role in augmenting phytoremediation efforts. Herbaspirillum sp. GW103 leached 66% of Cu from ore materials and significantly enhanced the phytoaccumulation of Pb and Zn in plumule and radical tissues of Zea mays L. plants. Additionally, Herbaspirillum sp. WT00C reduced Se6+ into Se0, resulting in an increased Se0 content in tea plants. Also, Herbaspirillum sp. proved effective in degrading 0.6 mM of 4-chlorophenol, 92.8% of pyrene, 77.4% of fluoranthene, and 16.4% of trifluralin from aqueous solution and soil-water system. Considering these findings, this review underscores the need for further exploration into the pathways of pollutant degradation, the enzymes pivotal in the degradation or detoxification processes, the influence of abiotic factors and pollutants on crucial gene expression, and the potential toxicity of intermediate products generated during the degradation process. This perspective reframes the numerical data to underscore the underutilized potential of Herbaspirillum sp. within the broader context of addressing a significant research gap. This shift in emphasis aligns more closely with the problem-necessity for solution-existing unexplored solution framework.
Collapse
Affiliation(s)
- Janaki Venkatachalam
- PG and Research Department of Chemistry, Sri Sarada College for Women, Salem, 636016, Tamil Nadu, India
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
4
|
Li YX, Lin W, Han YH, Wang YQ, Wang T, Zhang H, Zhang Y, Wang SS. Biodegradation of p-hydroxybenzoic acid in Herbaspirillum aquaticum KLS-1 isolated from tailing soil: Characterization and molecular mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131669. [PMID: 37236108 DOI: 10.1016/j.jhazmat.2023.131669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The wide distribution of p-hydroxybenzoic acid (PHBA) in the environments has attracted great concerns due to its potential risks to organisms. Bioremediation is considered a green way to remove PHBA from environment. Here, a new PHBA-degrading bacterium Herbaspirillum aquaticum KLS-1was isolated and its PHBA degradation mechanisms were fully evaluated. Results showed that strain KLS-1 could utilize PHBA as the sole carbon source and completely degrade 500 mg/L PHBA within 18 h. The optimal conditions for bacterial growth and PHBA degradation were pH values of 6.0-8.0, temperatures of 30 °C-35 °C, shaking speed of 180 rpm, Mg2+ concentration of 2.0 mM and Fe2+ concentration of 1.0 mM. Draft genome sequencing and functional gene annotations identified three operons (i.e., pobRA, pcaRHGBD and pcaRIJ) and several free genes possibly participating in PHBA degradation. The key genes pobA, ubiA, fadA, ligK and ubiG involved in the regulation of protocatechuate and ubiquinone (UQ) metabolisms were successfully amplified in strain KLS-1 at mRNA level. Our data suggested that PHBA could be degraded by strain KLS-1 via the protocatechuate ortho-/meta-cleavage pathway and UQ biosynthesis pathway. This study has provided a new PHBA-degrading bacterium for potential bioremediation of PHBA pollution.
Collapse
Affiliation(s)
- Yi-Xi Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Wei Lin
- College of Life Science, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Yong-He Han
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China.
| | - Yao-Qiang Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Tao Wang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Hong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Yong Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350117, Fujian, China
| | - Shan-Shan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
5
|
Gunasekaran V, Canela N, Constantí M. Comparative Proteomic Analysis of an Ethyl Tert-Butyl Ether-Degrading Bacterial Consortium. Microorganisms 2022; 10:microorganisms10122331. [PMID: 36557584 PMCID: PMC9781318 DOI: 10.3390/microorganisms10122331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A bacterial consortium capable of degrading ethyl tert-butyl ether (ETBE) as a sole carbon source was enriched and isolated from gasoline-contaminated water. Arthrobacter sp., Herbaspirillum sp., Pseudacidovorax sp., Pseudomonas sp., and Xanthomonas sp. were identified as the initial populations with the 16S rDNA analysis. The consortium aerobically degraded 49% of 50 mg/L of ETBE, in 6 days. The ETBE degrading efficiency of the consortium increased to 98% even with the higher concentrations of ETBE (1000 mg/L) in the subsequent subcultures, which accumulated tert-butyl alcohol (TBA). Xanthomonas sp. and Pseudomonas sp. were identified as the predominant ETBE degrading populations in the final subculture. The metaproteome of the ETBE-grown bacterial consortium was compared with the glucose-grown bacterial consortium, using 2D-DIGE. Proteins related to the ETBE metabolism, stress response, carbon metabolism and chaperones were found to be abundant in the presence of ETBE while proteins related to cell division were less abundant. The metaproteomic study revealed that the ETBE does have an effect on the metabolism of the bacterial consortium. It also enabled us to understand the responses of the complex bacterial consortium to ETBE, thus revealing interesting facts about the ETBE degrading bacterial community.
Collapse
Affiliation(s)
- Vijayalakshmi Gunasekaran
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
- FA Bio, Harpenden AL5 2JQ, UK
- Correspondence: (V.G.); (M.C.); Tel.: +34-977-558457 (M.C.)
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Av. Universitat 1, 43204 Reus, Spain
| | - Magda Constantí
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
- Correspondence: (V.G.); (M.C.); Tel.: +34-977-558457 (M.C.)
| |
Collapse
|
6
|
Whole-cell electric sensor for determination of sodium dodecyl sulfate. World J Microbiol Biotechnol 2022; 38:118. [PMID: 35614280 PMCID: PMC9132749 DOI: 10.1007/s11274-022-03309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
Abstract
Linear alkyl sulfates are a major class of surfactants that have large-scale industrial application and thus wide environmental release. These organic pollutants threaten aquatic environments and other environmental compartments. We show the promise of the use of a whole-cell electric sensor in the analysis of low or residual concentrations of sodium dodecyl sulfate (SDS) in aqueous solutions. On the basis of bioinformatic analysis and alkylsulfatase activity determinations, we chose the gram-negative bacterium Herbaspirillum lusitanum, strain P6–12, as the sensing element. Strain P6–12 could utilize 0.01–400 mg/L of SDS as a growth substrate. The electric polarizability of cell suspensions changed at all frequencies used (50–3000 kHz). The determination limit of 0.01 mg/L is much lower than the official requirements for the content of SDS in potable and process water (0.5 and 1.0 mg/L, respectively), and the analysis takes about 1–5 min. The promise of H. lusitanum P6–12 for use in the remediation of SDS-polluted soils is discussed.
Collapse
|
7
|
Li X, Xu H, Gao B, Sun Y, Shi X, Wu J. Transport of a PAH-degrading bacterium in saturated limestone media under various physicochemical conditions: Common and unexpected retention and remobilization behaviors. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120858. [PMID: 31302357 DOI: 10.1016/j.jhazmat.2019.120858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/04/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Laboratory saturated columns packed with granular limestone grains were used to explore the retention and remobilization of functional bacteria FA1 under various physicochemical conditions. The unique surface properties of limestone and FA1 caused some unexpected phenomena. Solution IS, cation type, temperature and surface biological property all affected FA1 retention in the columns. The IS effect was temperature dependent and initial solution pH showed little influence due to the strong buffering ability of limestone. Perturbations of solution IS caused slight release of previously retained bacteria in some columns with NaCl as the background electrolyte, while increase in flow rate caused no release at all. When CaCl2 was the background, bacterial remobilization only occurred following both cation exchange and IS reduction. DLVO forces incorporating with surface roughness calculation were determined to assist with interpretation of interaction mechanisms. All the experimental evidences suggest the importance of cation bridging, cation exchange, surface roughness, and hydrophobic interaction in controlling bacterium transport in saturated limestone porous media.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Xiaoqing Shi
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Chettri B, Singh AK. Kinetics of hydrocarbon degradation by a newly isolated heavy metal tolerant bacterium Novosphingobium panipatense P5:ABC. BIORESOURCE TECHNOLOGY 2019; 294:122190. [PMID: 31585342 DOI: 10.1016/j.biortech.2019.122190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
This study report kinetics of PAHs and crude oil degradation by a newly isolated multiple heavy metal tolerant Novosphingobium panipatense P5:ABC. The isolate showed hydrocarbon degrading enzyme activities namely alkane hydroxylase, catechol 1,2-dioxygenase and catechol 2,3-dioxygenase. The level of C23O activity was 9.63 times higher than C12O thus suggesting active involvement of meta-cleavage pathway. The data of biodegradation of hydrocarbons fitted well to the first order kinetic model. The degradation rate was highest for phenanthrene followed by crude oil, and fluoranthene. We have further reported the estimate of fundamental kinetic parameters, half-saturation constant (Ks) and maximum degradation rates (Vmax) for biodegradation of phenanthrene and fluoranthene. Overall characterization underscores the potential of Novosphingobium in bioremediation of crude oil polluted sites.
Collapse
Affiliation(s)
- Bobby Chettri
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Arvind Kumar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
9
|
Li X, Xu H, Gao B, Yang Z, Sun Y, Shi X, Wu J. Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media: Effect of ion type and concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112940. [PMID: 31376604 DOI: 10.1016/j.envpol.2019.07.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Predicting the cotransport of functional microorganisms and heavy metals in porous media is essential to both bioremediation and pollutant risk assessment. In this study, batch and column experiments were conducted to explore the cotransport behaviors of functional bacteria (FA1) and heavy metals (Pb2+/Cd2+) in saturated sand media under different conditions. The sorption capacity of heavy metals on FA1 was much greater than that of the sand, while both FA1 and sand showed stronger affinity to Pb2+ than Cd2+. The surface properties, especially zeta potential, of the bacteria and sand were altered by metal adsorption. As a result, the co-existence of Pb2+ decreased the transport of FA1 more significantly than that of Cd2+, and the influence was more significant with higher heavy metal concentration. On the other hand, the co-existence of FA1 inhibited the mobility of Pb2+ and Cd2+ in most scenarios, except when the cotransport concentration of Pb2+ was 5 mg L-1, and the inhibition was more pronounced for Pb2+ than Cd2+. Increase in metal concentrations decreased the FA1-associated Pb2+/Cd2+ in effluents due to the remarkable decrease in FA1 mobility, and free soluble Pb2+/Cd2+ became the major migration species. In addition, due to stronger attractive forces and affinity between Pb2+ and FA1, nearly all presorbed-Pb2+ by sand was remobilized by FA1 and transported mainly in FA1-associated form other than soluble Pb2+. Findings from this study indicated that the cotransport of biocolloids and heavy metals are highly sensitive to the ion type and concentration, and evaluation of their transport in the subsurface should be carefully carried out to avoid inaccurate estimations.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhidong Yang
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Xiaoqing Shi
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Fluoranthene Biodegradation by Serratia sp. AC-11 Immobilized into Chitosan Beads. Appl Biochem Biotechnol 2019; 188:1168-1184. [DOI: 10.1007/s12010-019-02980-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 02/20/2019] [Indexed: 01/14/2023]
|
11
|
Sharma RS, Karmakar S, Kumar P, Mishra V. Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration. Ecol Evol 2019; 9:2263-2304. [PMID: 30847110 PMCID: PMC6392359 DOI: 10.1002/ece3.4743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Theories in soil biology, such as plant-microbe interactions and microbial cooperation and antagonism, have guided the practice of ecological restoration (ecorestoration). Below-ground biodiversity (bacteria, fungi, invertebrates, etc.) influences the development of above-ground biodiversity (vegetation structure). The role of rhizosphere bacteria in plant growth has been largely investigated but the role of phages (bacterial viruses) has received a little attention. Below the ground, phages govern the ecology and evolution of microbial communities by affecting genetic diversity, host fitness, population dynamics, community composition, and nutrient cycling. However, few restoration efforts take into account the interactions between bacteria and phages. Unlike other phages, filamentous phages are highly specific, nonlethal, and influence host fitness in several ways, which make them useful as target bacterial inocula. Also, the ease with which filamentous phages can be genetically manipulated to express a desired peptide to track and control pathogens and contaminants makes them useful in biosensing. Based on ecology and biology of filamentous phages, we developed a hypothesis on the application of phages in environment to derive benefits at different levels of biological organization ranging from individual bacteria to ecosystem for ecorestoration. We examined the potential applications of filamentous phages in improving bacterial inocula to restore vegetation and to monitor changes in habitat during ecorestoration and, based on our results, recommend a reorientation of the existing framework of using microbial inocula for such restoration and monitoring. Because bacterial inocula and biomonitoring tools based on filamentous phages are likely to prove useful in developing cost-effective methods of restoring vegetation, we propose that filamentous phages be incorporated into nature-based restoration efforts and that the tripartite relationship between phages, bacteria, and plants be explored further. Possible impacts of filamentous phages on native microflora are discussed and future areas of research are suggested to preclude any potential risks associated with such an approach.
Collapse
Affiliation(s)
- Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| |
Collapse
|
12
|
Xu HY, Ge JL, Zhang LL, Zhang C, Jin R, Wang XH. A Dibenz[a,h]Anthracene-Degrading Strain Amycolatopsis sp. Y1-2 from Soils in the Coal Mining Areas. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1539019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hong-Ying Xu
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, China
| | - Jing-Li Ge
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, China
| | - Ling-Li Zhang
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, China
| | - Chan Zhang
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, China
| | - Ru Jin
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, China
| | - Xiao-Hui Wang
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, China
| |
Collapse
|
13
|
He C, Li Y, Huang C, Chen F, Ma Y. Genome Sequence and Metabolic Analysis of a Fluoranthene-Degrading Strain Pseudomonas aeruginosa DN1. Front Microbiol 2018; 9:2595. [PMID: 30429835 PMCID: PMC6220107 DOI: 10.3389/fmicb.2018.02595] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/11/2018] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa DN1, isolated from petroleum-contaminated soil, showed excellent degradation ability toward diverse polycyclic aromatic hydrocarbons (PAHs). Many studies have been done to improve its degradation ability. However, the molecular mechanisms of PAHs degradation in DN1 strain are unclear. In this study, the whole genome of DN1 strain was sequenced and analyzed. Its genome contains 6,641,902 bp and encodes 6,684 putative open reading frames (ORFs), which has the largest genome in almost all the comparative Pseudomonas strains. Results of gene annotation showed that this strain harbored over 100 candidate genes involved in PAHs degradation, including those encoding 25 dioxygenases, four ring-hydroxylating dioxygenases, five ring-cleaving dioxygenases, and various catabolic enzymes, transcriptional regulators, and transporters in the degradation pathways. In addition, gene knockout experiments revealed that the disruption of some key PAHs degradation genes in DN1 strain, such as catA, pcaG, pcaH, and rhdA, did not completely inhibit fluoranthene degradation, even though their degradative rate reduced to some extent. Three intermediate metabolites, including 9-hydroxyfluorene, 1-acenaphthenone, and 1, 8-naphthalic anhydride, were identified as the dominating intermediates in presence of 50 μg/mL fluoranthene as the sole carbon source according to gas chromatography mass spectrometry analysis. Taken together, the genomic and metabolic analysis indicated that the fluoranthene degradation by DN1 strain was initiated by dioxygenation at the C-1, 2-, C-2, 3-, and C-7, 8- positions. These results provide new insights into the genomic plasticity and environmental adaptation of DN1 strain.
Collapse
Affiliation(s)
- Chunqiu He
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yanpeng Li
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Chao Huang
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Fulin Chen
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
14
|
Wu Z, Xie M, Li Y, Gao G, Bartlam M, Wang Y. Biodegradation of decabromodiphenyl ether (BDE 209) by a newly isolated bacterium from an e-waste recycling area. AMB Express 2018; 8:27. [PMID: 29478232 PMCID: PMC6890894 DOI: 10.1186/s13568-018-0560-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/16/2018] [Indexed: 12/24/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) have become widespread environmental pollutants all over the world. A newly isolated bacterium from an e-waste recycling area, Stenotrophomonas sp. strain WZN-1, can degrade decabromodiphenyl ether (BDE 209) effectively under aerobic conditions. Orthogonal test results showed that the optimum conditions for BDE 209 biodegradation were pH 5, 25 °C, 0.5% salinity, 150 mL minimal salt medium volume. Under the optimized condition, strain WZN-1 could degrade 55.15% of 65 μg/L BDE 209 under aerobic condition within 30 day incubation. Moreover, BDE 209 degradation kinetics was fitted to a first-order kinetics model. The biodegradation mechanism of BDE 209 by strain WZN-1 were supposed to be three possible metabolic pathways: debromination, hydroxylation, and ring opening processes. Four BDE 209 degradation genes, including one hydrolase, one dioxygenase and two dehalogenases, were identified based on the complete genome sequencing of strain WZN-1. The real-time qPCR demonstrated that the expression level of four identified genes were significantly induced by BDE 209, and they played an important role in the degradation process. This study is the first to demonstrate that the newly isolated Stenotrophomonas strain has an efficient BDE 209 degradation ability and would provide new insights for the microbial degradation of PBDEs.
Collapse
|
15
|
Efficient biosorption of Pb(II) from aqueous solutions by a PAH-degrading strain Herbaspirillum chlorophenolicum FA1. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Hentati D, Chebbi A, Loukil S, Kchaou S, Godon JJ, Sayadi S, Chamkha M. Biodegradation of fluoranthene by a newly isolated strain of Bacillus stratosphericus from Mediterranean seawater of the Sfax fishing harbour, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15088-15100. [PMID: 27083911 DOI: 10.1007/s11356-016-6648-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
A physico-chemical characterization of seawater taken from the fishing harbour of Sfax, Tunisia, revealed a contamination by organic and inorganic micropollutants. An aerobic marine halotolerant Bacillus stratosphericus strain FLU5 was isolated after enrichment on fluoranthene, a persistent and toxic polycyclic aromatic hydrocarbon (PAH). GC-MS analyses showed that strain FLU5 was capable of degrading almost 45 % of fluoranthene (100 mg l(-1)), without yeast extract added, after 30 days of incubation at 30 g l(-1) NaCl and 37 °C. In addition, the isolate FLU5 showed a remarkable capacity to grow on a wide range of aliphatic, aromatic and complex hydrocarbons. This strain could also synthesize a biosurfactant which was capable of reducing the surface tension of the cell-free medium, during the growth on fluoranthene. The biodegradative abilities of PAHs are promising and can be used to perform the bioremediation strategies of seawaters and marine sediments contaminated by hydrocarbons.
Collapse
Affiliation(s)
- Dorra Hentati
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Alif Chebbi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Slim Loukil
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Sonia Kchaou
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Jean-Jacques Godon
- Laboratory INRA of Environmental Biotechnology, Avenue des Etangs, F-11100, Narbonne, France
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
17
|
Mishra S, Singh SN, Pande V. Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. BIORESOURCE TECHNOLOGY 2014; 164:299-308. [PMID: 24862007 DOI: 10.1016/j.biortech.2014.04.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Fluoranthene is highly toxic and ubiquitous in the environment. A study on degradation of 200 ppm of fluoranthene in MSM by two bacterial strains Pseudomonas aeruginosa PSA5, Rhodococcus sp. NJ2 and their consortium revealed that fluoranthene was degraded 74% by Rhodococcus sp. NJ2, 61% by Pseudomonas sp. PSA5 and 97% by their consortium. Higher degradation in the consortium may be attributed to synergistic action between two bacteria. It was also observed that several degradative enzymes catechol 1,2 dioxygenase, catechol 2,3 dioxygenase, protocatechuate 2,3 dioxygenase, protocatechuate 3,4 dioxygenase, protocatechuate 4,5 dioxygenase, salicylate hydroxylase and 2-carboxybenzaldehyde dehydrogenase were differentially induced at different stages of fluoranthene degradation. Biodegradation kinetics indicated half life period of fluoranthene degradation. Besides, glycolipid, as a biosurfactant, was induced to facilitate the degradation process. Hence, both the bacteria may be used individually or in combination for effective decontamination of oil and sludge contaminated soil.
Collapse
Affiliation(s)
- Shweta Mishra
- Environmental Science Division, CSIR-National Botanical Research Institute (NBRI), Lucknow, Uttar Pradesh, India
| | - S N Singh
- Environmental Science Division, CSIR-National Botanical Research Institute (NBRI), Lucknow, Uttar Pradesh, India.
| | - Veena Pande
- Department of Biotechnology, Kumaun University Nainital, Uttarakhand, India
| |
Collapse
|
18
|
Draft Genome Sequence of the Naphthalene Degrader Herbaspirillum sp. Strain RV1423. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00188-14. [PMID: 24652979 PMCID: PMC3961726 DOI: 10.1128/genomea.00188-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Herbaspirillum sp. strain RV1423 was isolated from a site contaminated with alkanes and aromatic compounds and harbors the complete pathway for naphthalene degradation. The new features found in RV1423 increase considerably the versatility and the catabolic potential of a genus of bacteria previously considered mainly to be diazotrophic endophytes to plants.
Collapse
|
19
|
Wang Y, Wan R, Zhang S, Xie S. Anthracene biodegradation under nitrate-reducing condition and associated microbial community changes. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0567-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Monteiro RA, Balsanelli E, Tuleski T, Faoro H, Cruz LM, Wassem R, Baura VA, Tadra-Sfeir MZ, Weiss V, DaRocha WD, Muller-Santos M, Chubatsu LS, Huergo LF, Pedrosa FO, Souza EM. Genomic comparison of the endophyte Herbaspirillum seropedicaeSmR1 and the phytopathogen Herbaspirillum rubrisubalbicansM1 by suppressive subtractive hybridization and partial genome sequencing. FEMS Microbiol Ecol 2012; 80:441-51. [PMID: 22268687 DOI: 10.1111/j.1574-6941.2012.01309.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 12/23/2011] [Accepted: 01/11/2012] [Indexed: 12/28/2022] Open
Affiliation(s)
- Rose A. Monteiro
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Thalita Tuleski
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Helison Faoro
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Leonardo M. Cruz
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Roseli Wassem
- Department of Genetics; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Valter A. Baura
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Michelle Z. Tadra-Sfeir
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Vinícius Weiss
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Wanderson D. DaRocha
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Marcelo Muller-Santos
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Leda S. Chubatsu
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Luciano F. Huergo
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Fábio O. Pedrosa
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| | - Emanuel M. Souza
- Department of Biochemistry and Molecular Biology; Universidade Federal do Paraná; Curitiba; PR; Brazil
| |
Collapse
|
21
|
Wan R, Zhang S, Xie S. Microbial community changes in aquifer sediment microcosm for anaerobic anthracene biodegradation under methanogenic condition. J Environ Sci (China) 2012; 24:1498-1503. [PMID: 23513693 DOI: 10.1016/s1001-0742(11)60959-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The widespread distribution of polycyclic aromatic hydrocarbons (PAHs) in groundwater has become an important environmental issue. Knowledge of microbial community changes could aid in identification of particular microorganisms that are capable of degrading PAHs in contaminated aquifers. Therefore, 16S rRNA gene clone library analysis was used to identify the archaeal and bacterial communities in an aquifer sediment microcosm used for anaerobic anthracene degradation under methanogenic conditions. A remarkable shift of the archaeal community structure occurred after anaerobic anthracene degradation, but the types of the abundant bacterial phyla did not change. However, a decrease of both archaeal and bacterial diversity was observed. Bacterial genera Bacillus, Rhodococcus and Herbaspirillum might have links with anaerobic anthracene degradation, suggesting a role of microbial consortia. This work might add some new information for understanding the mechanism of PAH degradation under methanogenic conditions.
Collapse
Affiliation(s)
- Rui Wan
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China.
| | | | | |
Collapse
|