1
|
Ruiz-Fresneda MA, González-Morales E, Gila-Vilchez C, Leon-Cecilla A, Merroun ML, Medina-Castillo AL, Lopez-Lopez MT. Clay-polymer hybrid hydrogels in the vanguard of technological innovations for bioremediation, metal biorecovery, and diverse applications. MATERIALS HORIZONS 2024; 11:5533-5549. [PMID: 39145624 DOI: 10.1039/d4mh00975d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Polymeric hydrogels are among the most studied materials due to their exceptional properties for many applications. In addition to organic and inorganic-based hydrogels, "hybrid hydrogels" have been gaining significant relevance in recent years due to their enhanced mechanical properties and a broader range of functionalities while maintaining good biocompatibility. In this sense, the addition of micro- and nanoscale clay particles seems promising for improving the physical, chemical, and biological properties of hydrogels. Nanoclays can contribute to the physical cross-linking of polymers, enhancing their mechanical strength and their swelling and biocompatibility properties. Nowadays, they are being investigated for their potential use in a wide range of applications, including medicine, industry, and environmental decontamination. The use of microorganisms for the decontamination of environments impacted by toxic compounds, known as bioremediation, represents one of the most promising approaches to address global pollution. The immobilization of microorganisms in polymeric hydrogel matrices is an attractive procedure that can offer several advantages, such as improving the preservation of cellular integrity, and facilitating cell separation, recovery, and transport. Cell immobilization also facilitates the biorecovery of critical materials from wastes within the framework of the circular economy. The present work aims to present an up-to-date overview on the different "hybrid hydrogels" used to date for bioremediation of toxic metals and recovery of critical materials, among other applications, highlighting possible drawbacks and gaps in research. This will provide the latest trends and advancements in the field and contribute to search for effective bioremediation strategies and critical materials recovery technologies.
Collapse
Affiliation(s)
| | | | - Cristina Gila-Vilchez
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Alberto Leon-Cecilla
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Mohamed L Merroun
- Universidad de Granada, Departamento de Microbiología, E-18071 Granada, Spain.
| | - Antonio L Medina-Castillo
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
- Universidad de Granada, Departamento de Química Analítica, E-18071 Granada, Spain
| | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| |
Collapse
|
2
|
Veeraswamy D, Subramanian A, Mohan D, Ettiyagounder P, Selvaraj PS, Ramasamy SP, Veeramani V. Exploring the origins and cleanup of mercury contamination: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53943-53972. [PMID: 37964142 DOI: 10.1007/s11356-023-30636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Mercury is a global pollutant that poses significant risks to human health and the environment. Natural sources of mercury include volcanic eruptions, while anthropogenic sources include industrial processes, artisanal and small-scale gold mining, and fossil fuel combustion. Contamination can arise through various pathways, such as atmospheric deposition, water and soil contamination, bioaccumulation, and biomagnification in food chains. Various remediation strategies, including phytoremediation, bioremediation, chemical oxidation/reduction, and adsorption, have been developed to address mercury pollution, including physical, chemical, and biological approaches. The effectiveness of remediation techniques depends on the nature and extent of contamination and site-specific conditions. This review discusses the challenges associated with mercury pollution and remediation, including the need for effective monitoring and management strategies. Overall, this review offers a comprehensive understanding of mercury contamination and the range of remediation techniques available to mitigate its adverse impacts.
Collapse
Affiliation(s)
- Davamani Veeraswamy
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
- College of Engineering, Science and Environment, Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan Campus, Callaghan, NSW, 2308, Australia
| | - Arulmani Subramanian
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, 638 401, Tamil Nadu, India.
| | - Deepasri Mohan
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technology, Shalimar, 190025, Jammu and Kashmir Union Territory, India
| | - Parameswari Ettiyagounder
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Paul Sebastian Selvaraj
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
- College of Engineering, Science and Environment, Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan Campus, Callaghan, NSW, 2308, Australia
| | - Sangeetha Piriya Ramasamy
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
- School of Water, Energy, and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Venkatesan Veeramani
- Department of Civil Engineering, University College of Engineering, Anna University, Ariyalur, 621 731, Tamil Nadu, India
| |
Collapse
|
3
|
Radojević I, Jakovljević V, Grujić S, Ostojić A, Ćirković K. Biofilm formation by selected microbial strains isolated from wastewater and their consortia: mercury resistance and removal potential. Res Microbiol 2024; 175:104092. [PMID: 37331492 DOI: 10.1016/j.resmic.2023.104092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Wastewater often contains an increased amount of mercury and, at the same time, resistant microorganisms. During wastewater treatment, a biofilm of indigenous microorganisms is often unavoidable. Therefore, the objective of this research is to isolate and identify microorganisms from wastewater and investigate their ability to form biofilms for possible application in mercury removal processes. The resistance of planktonic cells and their biofilms to the effects of mercury was investigated using Minimum Biofilm Eradication Concentration-High Throughput Plates. The formation of biofilms and the degree of resistance to mercury were confirmed in polystyrene microtiter plates with 96 wells. Biofilm on AMB Media carriers (Assisting Moving Bad Media) was quantified using the Bradford protein assay. The removal of mercury ions by biofilms formed on AMB Media carriers of selected isolates and their consortia was determined by a removal test in Erlenmeyer flasks simulating MBBR. All isolates in planktonic form showed some degree of resistance to mercury. The most resistant microorganisms (Enterobacter cloacae, Klebsiella oxytoca, Serratia odorifera, and Saccharomyces cerevisiae) were tested for their ability to form biofilms in the presence and absence of mercury, both in polystyrene plates and on ABM carriers. The results showed that among planktonic forms, K. oxytoca was the most resistant. A biofilm of the same microorganisms was more than 10-fold resistant. Most consortia biofilms had MBEC values > 100,000 μg/mL. Among individual biofilms, E. cloacae showed the highest mercury removal efficiency (97.81% for 10 days). Biofilm consortia composed of three species showed the best ability to remove mercury (96.64%-99.03% for 10 days). This study points to the importance of consortia of different types of wastewater microorganisms in the form of biofilms and suggests that they can be used to remove mercury in wastewater treatment bioreactors.
Collapse
Affiliation(s)
- Ivana Radojević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Laboratory of Microbiology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia.
| | - Violeta Jakovljević
- State University of Novi Pazar, Department of Natural-Mathematical Sciences, Vuka Karadžića 9, 36300 Novi Pazar, Republic of Serbia.
| | - Sandra Grujić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Laboratory of Microbiology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia.
| | - Aleksandar Ostojić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Laboratory of Microbiology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia.
| | - Katarina Ćirković
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Laboratory of Microbiology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia.
| |
Collapse
|
4
|
Rani L, Srivastav AL, Kaushal J. Bioremediation: An effective approach of mercury removal from the aqueous solutions. CHEMOSPHERE 2021; 280:130654. [PMID: 34162069 DOI: 10.1016/j.chemosphere.2021.130654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg(II)) is the 16th rarest element present in the earth's crust. Due to rapid industrialization and urban expansions, the mercury concentration has been elevated in the environment. Hg(II) contamination in the aqueous environment has become a great challenge for human beings. The main source of Hg(II) in the aqueous phase is untreated effluent industries (such as the paper industry). Hg(II) is non-biodegradable in nature and even its trace amount in an aqueous environment can pose chronic threats among the humans (damage to the central nervous system, respiratory system, and cardiovascular system, mutation of DNA), animals, and aquatic creatures. Therefore, the removal of mercury from aqueous solutions is an urgent need of the modern era. The conventional techniques such as ion exchange, precipitation, membrane filtrations are costly and also generate byproducts in the environment. Bioremediation is a sustainable, environmentally sound, and cost-effective technique to remove Hg(II) from the aqueous solutions. In this process, naturally occurring microorganisms are utilized to remove the Hg(II) from the aqueous solutions. Lentinus edodes, U. lactuca, and Typha domingensis are found to have great potential to remove mercury from water ranged from ~100 mg g-1 to 337 mg g-1.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, 140 417, India; School of Basic Sciences, Chitkara University, Himachal Pradesh, 174 103, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, 174 103, India.
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, 140 417, India
| |
Collapse
|
5
|
Alotaibi BS, Khan M, Shamim S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms 2021; 9:1628. [PMID: 34442707 PMCID: PMC8402239 DOI: 10.3390/microorganisms9081628] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The rise of anthropogenic activities has resulted in the increasing release of various contaminants into the environment, jeopardizing fragile ecosystems in the process. Heavy metals are one of the major pollutants that contribute to the escalating problem of environmental pollution, being primarily introduced in sensitive ecological habitats through industrial effluents, wastewater, as well as sewage of various industries. Where heavy metals like zinc, copper, manganese, and nickel serve key roles in regulating different biological processes in living systems, many heavy metals can be toxic even at low concentrations, such as mercury, arsenic, cadmium, chromium, and lead, and can accumulate in intricate food chains resulting in health concerns. Over the years, many physical and chemical methods of heavy metal removal have essentially been investigated, but their disadvantages like the generation of chemical waste, complex downstream processing, and the uneconomical cost of both methods, have rendered them inefficient,. Since then, microbial bioremediation, particularly the use of bacteria, has gained attention due to the feasibility and efficiency of using them in removing heavy metals from contaminated environments. Bacteria have several methods of processing heavy metals through general resistance mechanisms, biosorption, adsorption, and efflux mechanisms. Bacillus spp. are model Gram-positive bacteria that have been studied extensively for their biosorption abilities and molecular mechanisms that enable their survival as well as their ability to remove and detoxify heavy metals. This review aims to highlight the molecular methods of Bacillus spp. in removing various heavy metals ions from contaminated environments.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| |
Collapse
|
6
|
Recent developments in environmental mercury bioremediation and its toxicity: A review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.enmm.2020.100283] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Mariano C, Mello IS, Barros BM, da Silva GF, Terezo AJ, Soares MA. Mercury alters the rhizobacterial community in Brazilian wetlands and it can be bioremediated by the plant-bacteria association. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13550-13564. [PMID: 32030584 DOI: 10.1007/s11356-020-07913-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
This study examined how soil mercury contamination affected the structure and functionality of rhizobacteria communities from Aeschynomene fluminensis and Polygonum acuminatum and how rhizobacteria mediate metal bioremediation. The strains were isolated using culture-dependent methods, identified through 16S rDNA gene sequencing, and characterized with respect to their functional traits related to plant growth promotion and resistance to metals and antibiotics. The bioremediation capacity of the rhizobacteria was determined in greenhouse using corn plants. The isolated bacteria belonged to the phyla Actinobacteria, Deinococcus-Thermus, Firmicutes, and Proteobacteria, with great abundance of the species Microbacterium trichothecenolyticum. The rhizobacteria abundance, richness, and diversity were greater in mercury-contaminated soils. Bacteria isolated from contaminated environments had higher minimum inhibitory concentration values, presented plasmids and the merA gene, and were multi-resistant to metals and antibiotics. Enterobacter sp._C35 and M. trichothecenolyticum_C34 significantly improved (Dunnett's test, p < 0.05) corn plant growth in mercury-contaminated soil. These bacteria helped to reduce up to 87% of the mercury content in the soil, and increased the mercury bioaccumulation factor by up to 94%. Mercury bioremediation mitigated toxicity of the contaminated substrate. Enterobacter sp._C35, Bacillus megaterium_C28, and Bacillus mycoides_C1 stimulated corn plant growth and could be added to biofertilizers produced in research and related industries.
Collapse
Affiliation(s)
- Caylla Mariano
- Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Ivani Souza Mello
- Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Breno Martins Barros
- Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | - Ailton Jose Terezo
- Central Analytical of Fuels, Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Marcos Antônio Soares
- Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
8
|
Ji Y, Wang YT. Se(VI) reduction by continuous-flow reactors packed with Shigella fergusonii strain TB42616 immobilized by Ca2+-alginate gel beads. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Danil de Namor AF, Alharthi S, Howlin B, Al Hakawati N. A selective and easily recyclable dimer based on a calix[4]pyrrole derivative for the removal of mercury(ii) from water. RSC Adv 2020; 10:3060-3071. [PMID: 35497725 PMCID: PMC9048711 DOI: 10.1039/c9ra09911e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/09/2020] [Indexed: 11/21/2022] Open
Abstract
A recyclable mercury(ii) selective dimer based on a calix[4]pyrrole derivative has been synthesised and characterised by mass and FT-IR spectrometry, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX). Information regarding the ability of the dimer to interact with metal cations was obtained from FTIR and SEM-EDX analyses. A striking feature of micrographs of the loaded dimer is the change of morphology with the cation. Based on these results, optimal conditions for removing cations from water were assessed under different experimental conditions. Results obtained demonstrate that the removal process is fast. Capacity values and selectivity factors show that the dimer is selective for Hg(ii) in single and multiple component metal solutions relative to other cations. Single-ion transfer Gibbs energies from water to a solvent containing common functionalities to those of the dimer were used to assess the counter-ion effect on the removal process. Agreement is found between these data and energy calculations derived from molecular simulation studies. Studies on polluted water in the presence of normal water components in addition to toxic metal cations are reported. Further experimental work on wastewater from the mining industry is in progress.
Collapse
Affiliation(s)
- Angela F Danil de Namor
- Laboratory of Thermochemistry, Department of Chemistry, University of Surrey Guildford Surrey GU2 7XH UK +44(0)-1483 689581 +44(0)-7757147701
- Instituto Nacional de Tecnologia Industrial, Ministry of Production Argentina
| | - Salman Alharthi
- Laboratory of Thermochemistry, Department of Chemistry, University of Surrey Guildford Surrey GU2 7XH UK +44(0)-1483 689581 +44(0)-7757147701
| | - Brendan Howlin
- Laboratory of Thermochemistry, Department of Chemistry, University of Surrey Guildford Surrey GU2 7XH UK +44(0)-1483 689581 +44(0)-7757147701
| | - Nawal Al Hakawati
- Laboratory of Thermochemistry, Department of Chemistry, University of Surrey Guildford Surrey GU2 7XH UK +44(0)-1483 689581 +44(0)-7757147701
| |
Collapse
|
10
|
Effects of Pseudomonas alkylphenolica KL28 on immobilization of Hg in soil and accumulation of Hg in cultivated plant. Biotechnol Lett 2019; 41:1343-1354. [PMID: 31583497 DOI: 10.1007/s10529-019-02736-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The available content of mercury (Hg) in farmland soil is directly related to the safety of agricultural products. Meanwhile, humans may accumulate high concentrations of Hg through the food chain, resulting in health damage. Regarding the remediation technologies of Hg-contaminated soil, research and development is mainly concentrated on the immobilisation of Hg in soil and efficient extraction by accumulators. Therefore, in this work, the highly Hg-tolerant strain Pseudomonas alkylphenolica KL28 was used to study the removal effect of Hg in a solution, immobilization effect of Hg in soil, and its effect on growth, Hg accumulation and photosynthetic characteristics of Brassica campestris L. RESULTS KL28 could effectively remove Hg2+ in the solution, with the removal ratio of 96.0% at 24 h. This strain could reduce decreases in shoots' and roots' dry weights by 31% and 16%, respectively, at a Hg concentration of 20 mg/L. The available Hg in the soil decreased to 4.7-9.4% in 8 days treated with KL28 bacterial solution at a dosage of 100 L/hm2. Meanwhile, with increases in Hg concentrations, Fv/Fm, Y(II), Y(I) and Y(NPQ) in the leaves of B. campestris showed a downward trend while Y(ND) and Y(NO) displayed an upward trend. Under the stress of 20 mg/L Hg2+, KL28 could reduce the Fv/Fm from 11.2 to 6.1%. CONCLUSIONS KL28 could effectively remove Hg in the solution, immobilize Hg in soil, promote growth, decrease Hg accumulation and affect photosynthetic characteristics of B. campestris, indicating its potential use in Hg contaminated soils.
Collapse
|
11
|
Bioremediation of Mercury through Encapsulation of the Clone Carrying Meroperon. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Wang X, He Z, Luo H, Zhang M, Zhang D, Pan X, Gadd GM. Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:615-623. [PMID: 28988098 DOI: 10.1016/j.scitotenv.2017.09.336] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
Mercury contamination is a global concern because of its high toxicity, persistence, bioaccumulative nature, long distance transport and wide distribution in the environment. In this study, the efficiency and multiple-pathway remediation mechanisms of Hg2+ by a selenite reducing Escherichia coli was assessed. E. coli can reduce Hg2+ to Hg+ and Hg0 and selenite to selenide at the same time. This makes a multiple-pathway mechanisms for removal of Hg2+ from water in addition to biosorption. It was found that when the original Hg2+ concentration was 40μgL-1, 93.2±2.8% of Hg2+ was removed from solution by E. coli. Of the total Hg removed, it was found that 3.3±0.1% was adsorbed to the bacterium, 2.0±0.5% was bioaccumulated, and 7.3±0.6% was volatilized into the ambient environment, and most (80.6±5.7%) Hg was removed as HgSe and HgCl precipitates and Hg0. On one hand, selenite is reduced to selenide and the latter further reacts with Hg2+ to form HgSe precipitates. On the other hand Hg2+ is successively reduced to Hg+, which forms solid HgCl, and Hg0. This is the report on bacterially transformation of Hg2+ to HgSe, HgCl and Hg0 via multiple pathways. It is suggested that E. coli or other selenite reducing microorganisms are promising candidates for mercury bioremediation of contaminated wastewaters, as well as simultaneous removal of Hg2+ and selenite.
Collapse
Affiliation(s)
- Xiaonan Wang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD15EH, Scotland, UK
| |
Collapse
|
13
|
Podleśny M, Kubik-Komar A, Kucharska J, Wyrostek J, Jarocki P, Targoński Z. Media optimization for economic succinic acid production by Enterobacter sp. LU1. AMB Express 2017. [PMID: 28633512 PMCID: PMC5476557 DOI: 10.1186/s13568-017-0423-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Enterobacter sp. LU1 could efficiently convert glycerol to succinic acid under anaerobic conditions after the addition of lactose. In this study, media constituents affecting both Enterobacter sp. LU1 biomass and succinic acid production were investigated employing response surface methodology (RSM) with central composite design. Statistical methods led to the development of an efficient and inexpensive microbiological media based on crude glycerol, whey permeate as carbon sources and urea as a nitrogen source. The optimized production of bacterial biomass in aerobic conditions was predicted and the interactive effects between crude glycerol, urea and magnesium sulfate were investigated. As a result, a model for predicting the concentration of bacterial biocatalyst biomass was developed with crude glycerol as a sole carbon source. In addition, it was observed that the interactive effect between crude glycerol and urea was statistically significant. Response surface methodology was also employed to develop the model for predicting the concentration of succinic acid produced. Validity of the model was confirmed during verification experiments wherein actual results differed from predicted values by 0.77%. The applied statistical methods proved the feasibility for anaerobic succinic acid production on crude glycerol without expensive yeast extract addition. In conclusion, the RSM method can provide valuable information for succinic acid scale-up fermentation using Enterobacter sp. LU1.
Collapse
|
14
|
Figueiredo NL, Canário J, Serralheiro ML, Carvalho C. Optimization of microbial detoxification for an aquatic mercury-contaminated environment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:788-796. [PMID: 28850004 DOI: 10.1080/15287394.2017.1357311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mercury (Hg) reduction performed by microorganisms is well recognized as a biological means for remediation of contaminated environment. Recently, studies demonstrated that Hg-resistant microorganisms of Tagus Estuary are involved in metal reduction processes. In the present study, aerobic microbial community isolated from a highly Hg-contaminated area of Tagus Estuary was used to determine the optimization of the reduction process in conditions such as the contaminated ecosystem. Factorial design methodology was employed to examine the influence of glucose, sulfate, iron, and chloride on Hg reduction. In the presence of several concentrations of these elements, microbial community reduced Hg in a range of 37-61% of the initial 0.1 mg/ml Hg2+ levels. The response prediction through central composite design showed that the increase of sulfate concentration led to an optimal response in Hg reduction by microbial community, while the rise in chloride levels markedly decreased metal reduction. Iron may exert antagonistic effects depending upon the media composition. These results are useful in understanding the persistence of Hg contamination in Tagus Estuary after inactivation of critical industrial units, as well as data might also be beneficial for development of new bioremediation strategies either in Tagus Estuary and/or in other Hg-contaminated aquatic environments.
Collapse
Affiliation(s)
- Neusa L Figueiredo
- a Department of Toxicological and Food Sciences, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| | - João Canário
- b Department of Chemical Engineering, Centro de Química Estrutural , Instituto Superior Técnico, Universidade de Lisboa , Lisboa , Portugal
| | - Maria Luísa Serralheiro
- c Department of Chemistry and Biochemistry Centro de Química e Bioquímica , Faculdade de Ciências da Universidade de Lisboa , Campo Grande , Lisboa , Portugal
| | - Cristina Carvalho
- a Department of Toxicological and Food Sciences, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
15
|
Ontañon OM, González PS, Barros GG, Agostini E. Improvement of simultaneous Cr(VI) and phenol removal by an immobilised bacterial consortium and characterisation of biodegradation products. N Biotechnol 2017; 37:172-179. [DOI: 10.1016/j.nbt.2017.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/26/2016] [Accepted: 02/12/2017] [Indexed: 10/20/2022]
|
16
|
do Nascimento FH, Rigobello-Masini M, Domingos RF, Pinheiro JP, Masini JC. Dynamic interactions of Hg(II) with the surface of green microalgae Chlamydomonas reinhardtii studied by stripping chronopotentiometry. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Mahbub KR, Bahar MM, Labbate M, Krishnan K, Andrews S, Naidu R, Megharaj M. Bioremediation of mercury: not properly exploited in contaminated soils! Appl Microbiol Biotechnol 2017; 101:963-976. [DOI: 10.1007/s00253-016-8079-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/18/2022]
|
18
|
Amin A, Latif Z. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L. J Basic Microbiol 2016; 57:204-217. [PMID: 27911010 DOI: 10.1002/jobm.201600352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/01/2016] [Indexed: 11/11/2022]
Abstract
Mercury resistant (HgR ) bacteria were screened from industrial effluents and effluents-polluted rhizosphere soils near to districts Kasur and Sheikhupura, Pakistan. Out of 60 isolates, three bacterial strains, Bacillus sp. AZ-1, Bacillus cereus AZ-2, and Enterobacter cloacae AZ-3 showed Hg-resistance as 20 μg ml-1 of HgCl2 and indole-3-acetic acid (IAA) production as 8-38 μg ml-1 . Biochemical and molecular characterization of selected bacteria was confirmed by 16S ribotyping. Mercury resistant genes merA, merB, and merE of mer operon in Bacillus spp. were checked by PCR amplification. The merE gene involved in the transportation of elemental mercury (Hg0 ) via cell membrane was first time cloned into pHLV vector and transformed in C43(DE3) Escherichia coli cells. The recombinant plasmid (pHLMerE) was expressed and purified by nickel (Ni+2 ) affinity chromatography. Chromatographic techniques viz. thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and Gas chromatography-mass spectrometry (GC-MS) confirmed the presence of Indole-3-acetic acid (IAA) in supernatant of selected bacteria. The strain E. cloacae AZ-3 detoxified 88% of mercury (Hg+2 ) from industrial effluent (p < 0.05) after immobilization in Na-alginate beads. Finally, Hg-resistant and IAA producing bacterial consortium of two strains, Bacillus sp. AZ-1 and E. cloacae AZ-3, inoculated in mercury amended soil with 20 μg ml-1 HgCl2 resulted 80, 22, 64, 116, 50, 75, 30, and 100% increase as compared to control plants in seed germination, shoot and root length, shoot and root fresh weight, number of pods per plant, number of seeds and weight of seeds, respectively, of chickpea (Cicer arietinum L.) in pot experiments (p < 0.05).
Collapse
Affiliation(s)
- Aatif Amin
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Zakia Latif
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
19
|
Azari A, Gharibi H, Kakavandi B, Ghanizadeh G, Javid A, Mahvi AH, Sharafi K, Khosravia T. Magnetic adsorption separation process: an alternative method of mercury extracting from aqueous solution using modified chitosan coated Fe3O4nanocomposites. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY 2016. [DOI: 10.1002/jctb.4990] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Ali Azari
- Department of Environmental Health Engineering; School of Public Health, Kermanshah University of Medical Sciences; Kermanshah Iran
- Department of Environmental Health Engineering, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Hamed Gharibi
- Department of Environmental Health Engineering, School of public Health; Shahroud University of Medical Sciences; Shahroud Iran
| | - Babak Kakavandi
- Department of Environmental Health Engineering, School of Public Health; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Ghader Ghanizadeh
- Health Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Allahbakhsh Javid
- Department of Environmental Health Engineering, School of public Health; Shahroud University of Medical Sciences; Shahroud Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Kiomars Sharafi
- Department of Environmental Health Engineering; School of Public Health, Kermanshah University of Medical Sciences; Kermanshah Iran
- Department of Environmental Health Engineering, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Touba Khosravia
- Research Center for Environmental Determinants of Health (RCEDH); Kermanshah University of Medical Sciences; Kermanshah Iran
| |
Collapse
|
20
|
Al-Ghouti MA, Abuqaoud RH, Abu-Dieyeh MH. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 49:238-244. [PMID: 26725036 DOI: 10.1016/j.wasman.2015.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%.
Collapse
Affiliation(s)
- Mohammad A Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Reem H Abuqaoud
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Mohammed H Abu-Dieyeh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
21
|
Prasad R, Pandey R, Barman I. Engineering tailored nanoparticles with microbes: quo vadis? WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:316-30. [PMID: 26271947 DOI: 10.1002/wnan.1363] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/04/2015] [Indexed: 01/10/2023]
Abstract
In the quest for less toxic and cleaner methods of nanomaterials production, recent developments in the biosynthesis of nanoparticles have underscored the important role of microorganisms. Their intrinsic ability to withstand variable extremes of temperature, pressure, and pH coupled with the minimal downstream processing requirements provide an attractive route for diverse applications. Yet, controlling the dispersity and facile tuning of the morphology of the nanoparticles of desired chemical compositions remains an ongoing challenge. In this Focus Review, we critically review the advances in nanoparticle synthesis using microbes, ranging from bacteria and fungi to viruses, and discuss new insights into the cellular mechanisms of such formation that may, in the near future, allow complete control over particle morphology and functionalization. In addition to serving as paradigms for cost-effective, biocompatible, and eco-friendly synthesis, microbes hold the promise for a unique template for synthesis of tailored nanoparticles targeted at therapeutic and diagnostic platform technologies.
Collapse
Affiliation(s)
- Ram Prasad
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rishikesh Pandey
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J. Sources and remediation techniques for mercury contaminated soil. ENVIRONMENT INTERNATIONAL 2015; 74:42-53. [PMID: 25454219 DOI: 10.1016/j.envint.2014.09.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 05/04/2023]
Abstract
Mercury (Hg) in soils has increased by a factor of 3 to 10 in recent times mainly due to combustion of fossil fuels combined with long-range atmospheric transport processes. Other sources as chlor-alkali plants, gold mining and cement production can also be significant, at least locally. This paper summarizes the natural and anthropogenic sources that have contributed to the increase of Hg concentration in soil and reviews major remediation techniques and their applications to control soil Hg contamination. The focus is on soil washing, stabilisation/solidification, thermal treatment and biological techniques; but also the factors that influence Hg mobilisation in soil and therefore are crucial for evaluating and optimizing remediation techniques are discussed. Further research on bioremediation is encouraged and future study should focus on the implementation of different remediation techniques under field conditions.
Collapse
Affiliation(s)
- Jingying Xu
- Department of Ecology and Genetics, Limnology, University of Uppsala, Uppsala 75236, Sweden; Waste Science and Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97187, Sweden
| | - Andrea Garcia Bravo
- Department of Ecology and Genetics, Limnology, University of Uppsala, Uppsala 75236, Sweden
| | - Anders Lagerkvist
- Waste Science and Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97187, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology, University of Uppsala, Uppsala 75236, Sweden
| | - Rolf Sjöblom
- Waste Science and Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97187, Sweden
| | - Jurate Kumpiene
- Waste Science and Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97187, Sweden
| |
Collapse
|
23
|
Sinha A, Sinha R, Khare SK. Heavy Metal Bioremediation and Nanoparticle Synthesis by Metallophiles. GEOMICROBIOLOGY AND BIOGEOCHEMISTRY 2014. [DOI: 10.1007/978-3-642-41837-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Daemi H, Barikani M, Barmar M. Compatible compositions based on aqueous polyurethane dispersions and sodium alginate. Carbohydr Polym 2013; 92:490-6. [DOI: 10.1016/j.carbpol.2012.09.046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/04/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022]
|
25
|
Chien M, Nakahata R, Ono T, Miyauchi K, Endo G. Mercury removal and recovery by immobilized Bacillus megaterium MB1. Front Chem Sci Eng 2012. [DOI: 10.1007/s11705-012-1284-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|