1
|
Huang Y, Zhu H, Zhao H, Xu H, Xiong X, Tang C, Xu J. Interactions between arsenic and nitrogen regulate nitrogen availability and arsenic mobility in flooded paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135981. [PMID: 39342852 DOI: 10.1016/j.jhazmat.2024.135981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
In paddy soils, arsenic (As) stress influences nitrogen (N) transformation while application of N fertilizers during rice cropping affects As transformation. However, specific interactive effects between As and N in flooded paddy soils on As mobility and N availability were unclear. Here, we examined N and As dynamics in flooded paddy soils treated with four As levels (0, 30, 80 and 150 mg kg-1) and three urea additions (0, 4 and 8 mmol N kg-1). Arsenic contamination inhibited diazotrophs (nifH) and fungi but promoted AOA and denitrification genes (narG, nirK, nirS), decreasing dissolved organic N, NH4+-N and NO3--N. Besides, urea application stimulated As- and Fe-reducing bacteria (arrA and Geo) coupled with anammox. On Day 28, the addition of 8 mmol N kg-1 increased total As concentrations in solutions of soils treated with 30 and 80 mg As kg-1 by 2.4 and 1.8 times compared with the nil-N control. In contrast, at 150 mg As kg-1, it decreased the total As concentration in soil solution by 63 % through facilitating As(III) oxidation coupled with NO3--N reduction. These results indicate that As contamination decreases N availability, but urea application affects As mobility, depending on As contamination level.
Collapse
Affiliation(s)
- Yu Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Hang Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haojie Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xinquan Xiong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences / La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Xu G, Li X, Liu X, Han J, Shao K, Yang H, Fan F, Zhang X, Dou J. Bibliometric insights into the evolution of uranium contamination reduction research topics: Focus on microbial reduction of uranium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170397. [PMID: 38307284 DOI: 10.1016/j.scitotenv.2024.170397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Confronting the threat of environment uranium pollution, decades of research have yielded advanced and significant findings in uranium bioremediation, resulting in the accumulation of tremendous amount of high-quality literature. In this study, we analyzed over 10,000 uranium reduction-related papers published from 1990 to the present in the Web of Science based on bibliometrics, and revealed some critical information on knowledge structure, thematic evolution and additional attention. Methods including contribution comparison, co-occurrence and temporal evolution analysis are applied. The results of the distribution and impact analysis of authors, sources, and journals indicated that the United States is a leader in this field of research and China is on the rise. The top keywords remained stable, primarily focused on chemicals (uranium, iron, plutonium, nitrat, carbon), characters (divers, surfac, speciat), and microbiology (microbial commun, cytochrome, extracellular polymeric subst). Keywords related to new strains, reduction mechanisms and product characteristics demonstrated the strongest uptrend, while some keywords related to mechanism and performance were clearly emerging in the past 5 years. Furthermore, the evolution of the thematic progression can be categorized into three stages, commencing with the discovery of the enzymatic reduction of hexavalent uranium to tetravalent uranium, developing in the groundwater remediation process at uranium-contaminated sites, and delving into the research on microbial reduction mechanisms of uranium. For future research, enhancing the understanding of mechanisms, improving uranium removal performance, and exploring practical applications can be considered. This study provides unique insights into microbial uranium reduction research, providing valuable references for related studies in this field.
Collapse
Affiliation(s)
- Guangming Xu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xindai Li
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinyao Liu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Juncheng Han
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Kexin Shao
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Haotian Yang
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China.
| | - Xiaodong Zhang
- Analytical and Testing Center of BNU, Beijing Normal University, Beijing 100875, PR China
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
3
|
Ighalo JO, Chen Z, Ohoro CR, Oniye M, Igwegbe CA, Elimhingbovo I, Khongthaw B, Dulta K, Yap PS, Anastopoulos I. A review of remediation technologies for uranium-contaminated water. CHEMOSPHERE 2024; 352:141322. [PMID: 38296212 DOI: 10.1016/j.chemosphere.2024.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Uranium is a naturally existing radioactive element present in the Earth's crust. It exhibits lithophilic characteristics, indicating its tendency to be located near the surface of the Earth and tightly bound to oxygen. It is ecotoxic, hence the need for its removal from the aqueous environment. This paper focuses on the variety of water treatment processes for the removal of uranium from water and this includes physical (membrane separation, adsorption and electrocoagulation), chemical (ion exchange, photocatalysis and persulfate reduction), and biological (bio-reduction and biosorption) approaches. It was observed that membrane filtration and ion exchange are the most popular and promising processes for this application. Membrane processes have high throughput but with the challenge of high power requirements and fouling. Besides high pH sensitivity, ion exchange does not have any major challenges related to its application. Several other unique observations were derived from this review. Chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand, hydroxyapatite aerogel and MXene/graphene oxide composite has shown super-adsorbent performance (>1000 mg/g uptake capacity) for uranium. Ultrafiltration (UF) membranes, reverse osmosis (RO) membranes and electrocoagulation have been observed not to go below 97% uranium removal/conversion efficiency for most cases reported in the literature. Heat persulfate reduction has been explored quite recently and shown to achieve as high as 86% uranium reduction efficiency. We anticipate that future studies would explore hybrid processes (which are any combinations of multiple conventional techniques) to solve various aspects of the process design and performance challenges.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | - Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000 Kazakhstan
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria; Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Isaiah Elimhingbovo
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | - Banlambhabok Khongthaw
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kanika Dulta
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun-248007, Uttarakhand, India
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostaki Campus, Arta 47100, Greece
| |
Collapse
|
4
|
Jaffé PR, Huang S, Park J, Ruiz-Urigüen M, Shuai W, Sima M. Defluorination of PFAS by Acidimicrobium sp. strain A6 and potential applications for remediation. Methods Enzymol 2024; 696:287-320. [PMID: 38658084 DOI: 10.1016/bs.mie.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Acidimicrobium sp. strain A6 is a recently discovered autotrophic bacterium that is capable of oxidizing ammonium while reducing ferric iron and is relatively common in acidic iron-rich soils. The genome of Acidimicrobium sp. strain A6 contains sequences for several reductive dehalogenases, including a gene for a previously unreported reductive dehalogenase, rdhA. Incubations of Acidimicrobium sp. strain A6 in the presence of perfluorinated substances, such as PFOA (perfluorooctanoic acid, C8HF15O2) or PFOS (perfluorooctane sulfonic acid, C8HF17O3S), have shown that fluoride, as well as shorter carbon chain PFAAs (perfluoroalkyl acids), are being produced, and the rdhA gene is expressed during these incubations. Results from initial gene knockout experiments indicate that the enzyme associated with the rdhA gene plays a key role in the PFAS defluorination by Acidimicrobium sp. strain A6. Experiments focusing on the defluorination kinetics by Acidimicrobium sp. strain A6 show that the defluorination kinetics are proportional to the amount of ammonium oxidized. To explore potential applications for PFAS bioremediation, PFAS-contaminated biosolids were augmented with Fe(III) and Acidimicrobium sp. strain A6, resulting in PFAS degradation. Since the high demand of Fe(III) makes growing Acidimicrobium sp. strain A6 in conventional rectors challenging, and since Acidimicrobium sp. strain A6 was shown to be electrogenic, it was grown in the absence of Fe(III) in microbial electrolysis cells, where it did oxidize ammonium and degraded PFAS.
Collapse
Affiliation(s)
- Peter R Jaffé
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States.
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States
| | - Jinhee Park
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States
| | - Melany Ruiz-Urigüen
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States; Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Ecuador
| | - Weitao Shuai
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States; Department of Civil and Environmental Engineering, Northwestern University, Princeton, NJ, United States
| | - Matthew Sima
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States
| |
Collapse
|
5
|
Chen G, Du Y, Fang L, Wang X, Liu C, Yu H, Feng M, Chen X, Li F. Distinct arsenic uptake feature in rice reveals the importance of N fertilization strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158801. [PMID: 36115399 DOI: 10.1016/j.scitotenv.2022.158801] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The environmental behavior of arsenic (As) is commonly affected by the biogeochemical processes of iron (Fe) and nitrogen (N). In this study, field experiments were conducted to explore As uptake in rice and As translation and distribution in As-contaminated iron-rich paddy soils after applying different forms of N fertilizers, including urea (CO(NH2)2), ammonium bicarbonate (NH4HCO3), nitrate of potash (KNO3), and ammonium bicarbonate + nitrate of potash (NH4HCO3 + KNO3). The results indicated that applying nitrate N fertilizer inhibited the reduction and dissolution of As-bearing iron minerals and promoted microbial-mediated As(III) oxidation in flooded soil, thus reducing the soil As bioavailability. The concentrations of total As and inorganic As ratio (iAs/TAs) in rice grain decreased by 32.4 % and 15.4 %, respectively. However, the application of ammonium nitrogen promoted the reductive dissolution of As-bearing iron minerals and stimulated microbial As(V) reduction in flooded soil, leading to the release of As from soil to porewater. The total As concentration and inorganic As uptake ratio in rice grain increased by 20.1 % and 6.2 %, respectively, when urea was applied, and by 29.6 % and 10.5 %, respectively, when ammonium bicarbonate was applied. However, the simultaneous application of NH4+ and NO3- had no significant effect on As concentration in rice grain and its transformation in paddy soils. Ammonium nitrogen enhanced the organic As concentration in rice grain because the increased As(III) promoted As methylation in soil. In contrast, nitrate decreased the organic As uptake by rice grain because the decreased As(III) diminished As methylation in soil. The results provide reasonable N fertilization strategies for regulating the As biogeochemical process and reducing the risk of As contamination in rice.
Collapse
Affiliation(s)
- Gongning Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiangqin Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chuanping Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Huanyun Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Mi Feng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
6
|
Wan L, Liu H, Wang X. Anaerobic ammonium oxidation coupled to Fe(III) reduction: Discovery, mechanism and application prospects in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151687. [PMID: 34788664 DOI: 10.1016/j.scitotenv.2021.151687] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Fe(III) reduction coupled with anaerobic ammonium oxidation is known as Feammox. Feammox, which was first discovered in wetland ecosystems, has the potential to be used in wastewater treatment systems due to its ability to remove ammonium. Feammox can produce N2, NO2- or NO3- through the reduction of Fe(III) and oxidation of ammonium, which is a potential process to nitrogen loss from aquatic ecosystems and terrestrial ecosystems. The Acidimicrobiaceae sp. A6 was the first Feammox functional bacteria that was successfully isolated from wetlands. The nitrogen removal effect of Feammox can be influenced by many environmental factors, such as pH, organic matter, and different sources of Fe(III). Feammox has broad application prospects, but more exploration is needed to apply this principle to wastewater treatment. This review introduces the development, mechanism, functional microbes and factors affecting the Feammox process, and discusses its potential applications.
Collapse
Affiliation(s)
- Liuyang Wan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xingzu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
7
|
You W, Peng W, Tian Z, Zheng M. Uranium bioremediation with U(VI)-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149107. [PMID: 34325147 DOI: 10.1016/j.scitotenv.2021.149107] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) pollution is an environmental hazard caused by the development of the nuclear industry. Microbial reduction of hexavalent uranium (U(VI)) to tetravalent uranium (U(IV)) reduces U solubility and mobility and has been proposed as an effective method to remediate uranium contamination. In this review, U(VI) remediation with respect to U(VI)-reducing bacteria, mechanisms, influencing factors, products, and reoxidation are systematically summarized. Reportedly, some metal- and sulfate-reducing bacteria possess excellent U(VI) reduction capability through mechanisms involving c-type cytochromes, extracellular pili, electron shuttle, or thioredoxin reduction. In situ remediation has been demonstrated as an ideal strategy for large-scale degradation of uranium contaminants than ex situ. However, U(VI) reduction efficiency can be affected by various factors, including pH, temperature, bicarbonate, electron donors, and coexisting metal ions. Furthermore, it is noteworthy that the reduction products could be reoxidized when exposed to oxygen and nitrate, inevitably compromising the remediation effects, especially for non-crystalline U(IV) with weak stability.
Collapse
Affiliation(s)
- Wenbo You
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wanting Peng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichao Tian
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
8
|
Zhu J, Li T, Liao C, Li N, Wang X. A promising destiny for Feammox: From biogeochemical ammonium oxidation to wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148038. [PMID: 34090165 DOI: 10.1016/j.scitotenv.2021.148038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Ammonium is one of the most common forms of nitrogen that exists in wastewater, and it can cause severe pollution when it is discharged without treatment. New technologies must be developed to effectively remove ammonium because conventional nitrification-denitrification methods are limited by the lack of organic carbon. Anaerobic ammonium oxidation coupled to Fe(III) reduction is known as Feammox, and is a recently discovered nitrogen cycling process. Feammox can proceed under autotrophic or anaerobic conditions and effectively transforms ammonium to stable, innocuous dinitrogen gas, using the ferric iron as an electron acceptor. This method is cost-effective, environmentally friendly, and conducive to joint application with other nitrogen removal reactions in low-C/N municipal wastewater treatments. This review provides a comprehensive survey of Feammox mechanistic investigations and presents studies regarding the functional microorganism colonies. The potential for Feammox to be applied for the removal of nitrogen from various polluted water sources and the combination of the Feammox process with other frontier environmental technologies are also discussed. In addition, future perspectives for removing ammonium using Feammox are presented.
Collapse
Affiliation(s)
- Jiaxuan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
9
|
Koffi NJ, Okabe S. Bioelectrochemical anoxic ammonium nitrogen removal by an MFC driven single chamber microbial electrolysis cell. CHEMOSPHERE 2021; 274:129715. [PMID: 33529951 DOI: 10.1016/j.chemosphere.2021.129715] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 05/27/2023]
Abstract
Nitrogen removal from wastewater is an indispensable but highly energy-demanding process, and thus more energy-saving treatment processes are required. Here, we investigated the performance of bioelectrochemical ammonium nitrogen (NH4+-N) removal from real domestic wastewater without energy-intensive aeration by a single chamber microbial electrolysis cell (MEC) that was electrically powered by a double chamber microbial fuel cell (MFC). Anoxic NH4+-N oxidation and total nitrogen (TN) removal rates were determined at various applied voltages (0-1.2 V), provided by the MFC. The MEC achieved a NH4+-N oxidation rate of 151 ± 42 g NH4+-N m-3 d-1 and TN removal rate of 95 ± 42 g-TN m-3 d-1 without aeration at the applied voltage of 0.8 V (the anode potential Eanode = +0.633 ± 0.218 V vs. SHE). These removal rates were much higher than the previously reported values and conventional biological nitrogen removal processes. Open and closed-circuit MEC batch experiments confirmed that anoxic NH4+-N oxidation was an electrochemically mediated biological process (that is, an anode acted as an electron acceptor) and denitrification occurred simultaneously without NO2- and NO3- accumulation. Moreover, ex-situ15N tracer experiment and microbial community analysis revealed that anammox and heterotrophic denitrification mainly contributed to the TN removal. Thus, the bioelectrochemical anodic NH4+-N oxidation was coupled with anammox and denitrification in this MFC-assisted MEC system. Taken together, our MFC-driven single chamber MEC could be a high rate energy-saving nitrogen removal process without external carbon and energy input and high energy-demanding aeration.
Collapse
Affiliation(s)
- N'Dah Joel Koffi
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
10
|
Zhao S, Zhang B, Sun X, Yang L. Hot spots and hot moments of nitrogen removal from hyporheic and riparian zones: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144168. [PMID: 33360457 DOI: 10.1016/j.scitotenv.2020.144168] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The Earth is experiencing excessive nitrogen (N) input to its various ecosystems due to human activities. How to effectively and efficiently remove N from ecosystems has been, is and will be at the center of attention in N research. Hyporheic and riparian zones are widely acknowledged for their buffering capacity to reduce contaminants (especially N) transport downstream. However, these zones are usually misunderstood that they can remove N at all spots and at any moments. Here pathways of N removal from hyporheic and riparian zones are reviewed and summarized with an emphasize on their hot spots and hot moments. N is biogeochemically removed by denitrification, anammox, nitrifier denitrification, denitrifying anaerobic methane oxidation, Feammox and Sulfammox. Hot moments of N removal are mainly triggered by precipitation, fire and snowmelt. Finally, some research needs are outlined and discussed, such as developing approaches for multiscale sampling and monitoring, quantifying the effects of hot spots and hot moments at hyporheic and riparian zones and evaluating the impacts of human activities on hot spots and hot moments, to inspire more research on hot spots and hot moments of N removal. By this review, we hope to bring awareness of the heterogeneity of hyporheic and riparian zones to catchment managers and policy makers when tackling N pollution problems.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai 201306, China; College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Baoju Zhang
- College of Ocean Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai 201306, China
| | - Xiaohui Sun
- College of Ocean Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai 201306, China
| | - Leimin Yang
- College of Ocean Science and Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai 201306, China
| |
Collapse
|
11
|
Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(VI) compounds from water. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01313-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Peña J, Straub M, Flury V, Loup E, Corcho J, Steinmann P, Bochud F, Froidevaux P. Origin and stability of uranium accumulation-layers in an Alpine histosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138368. [PMID: 32334206 DOI: 10.1016/j.scitotenv.2020.138368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Uranium (U) accumulation in organic soils is a common phenomenon that can lead to high U concentration in montane wetlands. The stability of the immobilized U in natural wetlands following redox fluctuations and re-oxidation events, however, is not currently known. In this study, we investigated a saturated histosol that had accumulated up to 6000 ppm of U at 30 cm below ground level (bgl). Uranium in the waters feeding the wetland originates from the weathering of surrounding gneiss rocks, a process releasing trace amounts (<3 ppb) of soluble U into nearby streams. Redox oscillations in the first 20 cm bgl led to the accumulation of U, Ca, S in low permeability layers at 30 and 45 cm bgl. XRF measurements along the core showed that U strongly correlates with sulfur (S) and calcium (Ca), but not iron (Fe). We tested the stability of uranium in the histosol over a nine-month laboratory amendment of a large core of the histosol (∅ 30 cm; length 55 cm) with up to 500 ppm nitrate. Nitrate addition was followed by complete nitrate reduction and re-generation of oxidizing Eh conditions in the top 25 cm of the soil without U release to the soil pore waters above background levels (1-2 ppb). Our results demonstrate that, fast reduction of nitrate, sulfate, and Fe(III) occur in the soil without U release. The remarkable stability of sorbed U in the histosol may result from buffering by sulfide and Sn° and/or strong U(IV)-OM or U(VI)-OM enhanced by organic S moieties or bridging complexation by Ca. That U in the soil was immobile under nitrate addition for up to 9 months can inform remediation strategies based on the use of artificial wetlands to limit U mobility in contaminated sites.
Collapse
Affiliation(s)
- Jasquelin Peña
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
| | - Marietta Straub
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Virginie Flury
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
| | - Eymerick Loup
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
| | - José Corcho
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philipp Steinmann
- Division of Radiation Protection, Federal Office of Public Health, Berne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pascal Froidevaux
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Active sulfur cycling in the terrestrial deep subsurface. ISME JOURNAL 2020; 14:1260-1272. [PMID: 32047278 DOI: 10.1038/s41396-020-0602-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
The deep terrestrial subsurface remains an environment where there is limited understanding of the extant microbial metabolisms. At Olkiluoto, Finland, a deep geological repository is under construction for the final storage of spent nuclear fuel. It is therefore critical to evaluate the potential impact microbial metabolism, including sulfide generation, could have upon the safety of the repository. We investigated a deep groundwater where sulfate is present, but groundwater geochemistry suggests limited microbial sulfate-reducing activity. Examination of the microbial community at the genome-level revealed microorganisms with the metabolic capacity for both oxidative and reductive sulfur transformations. Deltaproteobacteria are shown to have the genetic capacity for sulfate reduction and possibly sulfur disproportionation, while Rhizobiaceae, Rhodocyclaceae, Sideroxydans, and Sulfurimonas oxidize reduced sulfur compounds. Further examination of the proteome confirmed an active sulfur cycle, serving for microbial energy generation and growth. Our results reveal that this sulfide-poor groundwater harbors an active microbial community of sulfate-reducing and sulfide-oxidizing bacteria, together mediating a sulfur cycle that remained undetected by geochemical monitoring alone. The ability of sulfide-oxidizing bacteria to limit the accumulation of sulfide was further demonstrated in groundwater incubations and highlights a potential sink for sulfide that could be beneficial for geological repository safety.
Collapse
|
14
|
Ren Y, Hao Ngo H, Guo W, Wang D, Peng L, Ni BJ, Wei W, Liu Y. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems. BIORESOURCE TECHNOLOGY 2020; 297:122491. [PMID: 31810739 DOI: 10.1016/j.biortech.2019.122491] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 05/12/2023]
Abstract
Biological nitrogen removal (BNR) is a critical process in wastewater treatment. Recently, there have new microbial communities been discovered to be capable of performing BNR with novel metabolic pathways. This review presents the up-to-date status on these microorganisms, including ammonia oxidizing archaea (AOA), complete ammonia oxidation (COMAMMOX) bacteria, anaerobic ammonium oxidation coupled to iron reduction (FEAMMOX) bacteria, anaerobic ammonium oxidation (ANAMMOX) bacteria and denitrifying anaerobic methane oxidation (DAMO) microorganism. Their metabolic pathways and enzymatic reactions in nitrogen cycle are demonstrated. Generally, these novel microbial communities have advantages over canonical nitrifiers or denitrifiers, such as higher substrate affinities, better physicochemical tolerances and/or less greenhouse gas emission. Also, their recent development and/or implementation in BNR is discussed and outlook. Finally, the key implications of coupling these microbial communities for BNR are identified. Overall, this review illustrates novel microbial communities that could provide new possibilities for high-performance and energy-saving nitrogen removal from wastewater.
Collapse
Affiliation(s)
- Yi Ren
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
15
|
Lakaniemi AM, Douglas GB, Kaksonen AH. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:198-212. [PMID: 30851673 DOI: 10.1016/j.jhazmat.2019.02.074] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Biological reduction of soluble uranium from U(VI) to insoluble U(IV) coupled to the oxidation of an electron donor (hydrogen or organic compounds) is a potentially cost-efficient way to reduce the U concentrations in contaminated waters to below regulatory limits. A variety of microorganisms originating from both U contaminated and non-contaminated environments have demonstrated U(VI) reduction capacity under anaerobic conditions. Bioreduction of U(VI) is considered especially promising for in situ remediation, where the activity of indigenous microorganisms is stimulated by supplying a suitable electron donor to the subsurface to contain U contamination to a specific location in a sparingly soluble form. Less studied microbial biofilm-based bioreactors and bioelectrochemical systems have also shown potential for efficient U(VI) reduction to remove U from contaminated water streams. This review compares the advantages and challenges of U(VI)-reducing in situ remediation processes, bioreactors and bioelectrochemical systems. In addition, the current knowledge of U(VI) bioreduction mechanisms and factors affecting U(VI) reduction kinetics (e.g. pH, temperature, and the chemical composition of the contaminated water) are discussed, as both of these aspects are important in designing efficient remediation processes.
Collapse
Affiliation(s)
- Aino-Maija Lakaniemi
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI- 33104, Tampere University, Finland; CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia, 6014, Australia.
| | - Grant B Douglas
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia, 6014, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, Western Australia, 6014, Australia
| |
Collapse
|
16
|
Ge J, Huang S, Han I, Jaffé PR. Degradation of tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:248-255. [PMID: 30685665 DOI: 10.1016/j.envpol.2019.01.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The degradation of trichloroethylene (TCE) and tetrachloroethylene (PCE), in incubations where ammonium was oxidized while iron was being reduced indicates that these compounds can be degraded during the Feammox process by Acidimicrobiaceae sp. A6 (ATCC, PTA-122488). None of these compounds were degraded in incubations to which no ammonium was added, indicating that they were degraded during the oxidation of ammonium. Degradation of TCE and PCE (ranging between 32% and 55%) was observed in incubations with a pure Acidimicrobiaceae sp. A6 culture as well as an Acidimicrobiaceae sp. A6 enrichment culture over a 2-week period. In addition to these batch studies, a column study, with a 5-h hydraulic residence time, was conducted contrasting the degradation of TCE in iron-rich soil columns that were either seeded with a pure or an enrichment culture of Acidimicrobiaceae sp. A6 to achieve ammonium oxidation under iron reduction, and a control column that was initially not seeded and later seeded with Geobacter metallireducens. While there was ∼22% TCE removal in the columns seeded with Acidimicrobiaceae sp. A6, there was no removal in the unseeded column or the column seeded with G. metallireducens which was being operated under iron reducing conditions. Feammox is an anoxic process that requires acidic conditions. Hence, these results indicate that this process might be harnessed where other bioremediation strategies are difficult, since many require neutral or alkaline conditions, and supplying ammonium to an anoxic aquifer is relatively easy, since there are not many processes that will oxidize ammonium in the absence of dissolved oxygen.
Collapse
Affiliation(s)
- Jinyi Ge
- China Agricultural University, China; Princeton University, USA
| | | | - Il Han
- Princeton University, USA
| | | |
Collapse
|
17
|
Electrode Colonization by the Feammox Bacterium Acidimicrobiaceae sp. Strain A6. Appl Environ Microbiol 2018; 84:AEM.02029-18. [PMID: 30291122 PMCID: PMC6275345 DOI: 10.1128/aem.02029-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/23/2018] [Indexed: 02/01/2023] Open
Abstract
Most studies on electrogenic microorganisms have focused on the most abundant heterotrophs, while other microorganisms also commonly present in electrode microbial communities, such as Actinobacteria strains, have been overlooked. The novel Acidimicrobiaceae sp. strain A6 (Actinobacteria) is an iron-reducing bacterium that can colonize the surface of anodes in sediments and is linked to electrical current production, making it an electrode-reducing bacterium. Furthermore, A6 can carry out anaerobic ammonium oxidation coupled to iron reduction. Therefore, findings from this study open the possibility of using electrodes instead of iron as electron acceptors, as a means to promote A6 to treat NH4+-containing wastewater more efficiently. Altogether, this study expands our knowledge of electrogenic bacteria and opens the possibility of developing Feammox-based technologies coupled to bioelectric systems for the treatment of NH4+ and other contaminants in anoxic systems. Acidimicrobiaceae sp. strain A6 (A6), from the Actinobacteria phylum, was recently identified as a microorganism that can carry out anaerobic ammonium (NH4+) oxidation coupled to iron reduction, a process also known as Feammox. Being an iron-reducing bacterium, A6 was studied as a potential electrode-reducing bacterium that may transfer electrons extracellularly onto electrodes while gaining energy from NH4+ oxidation. Actinobacteria species have been overlooked as electrogenic bacteria, and the importance of lithoautotrophic iron reducers as electrode-reducing bacteria at anodes has not been addressed. By installing electrodes in the soil of a forested riparian wetland where A6 thrives, in soil columns in the laboratory, and in A6-bioaugmented constructed wetland (CW) mesocosms and by operating microbial electrolysis cells (MECs) with pure A6 culture, the characteristics and performances of this organism as an electrode-reducing bacterium candidate were investigated. In this study, we show that Acidimicrobiaceae sp. strain A6, a lithoautotrophic bacterium, is capable of colonizing electrodes under controlled conditions. In addition, A6 appears to be an electrode-reducing bacterium, since current production was boosted shortly after the CWs were seeded with enrichment A6 culture and current production was detected in MECs operated with pure A6, with the anode as the sole electron acceptor and NH4+ as the sole electron donor. IMPORTANCE Most studies on electrogenic microorganisms have focused on the most abundant heterotrophs, while other microorganisms also commonly present in electrode microbial communities, such as Actinobacteria strains, have been overlooked. The novel Acidimicrobiaceae sp. strain A6 (Actinobacteria) is an iron-reducing bacterium that can colonize the surface of anodes in sediments and is linked to electrical current production, making it an electrode-reducing bacterium. Furthermore, A6 can carry out anaerobic ammonium oxidation coupled to iron reduction. Therefore, findings from this study open the possibility of using electrodes instead of iron as electron acceptors, as a means to promote A6 to treat NH4+-containing wastewater more efficiently. Altogether, this study expands our knowledge of electrogenic bacteria and opens the possibility of developing Feammox-based technologies coupled to bioelectric systems for the treatment of NH4+ and other contaminants in anoxic systems.
Collapse
|
18
|
Rios-Del Toro EE, Valenzuela EI, López-Lozano NE, Cortés-Martínez MG, Sánchez-Rodríguez MA, Calvario-Martínez O, Sánchez-Carrillo S, Cervantes FJ. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments. Biodegradation 2018; 29:429-442. [DOI: 10.1007/s10532-018-9839-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/08/2018] [Indexed: 11/28/2022]
|
19
|
in ‘t Zandt MH, de Jong AEE, Slomp CP, Jetten MSM. The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol Ecol 2018; 94:4966976. [PMID: 29873717 PMCID: PMC5989612 DOI: 10.1093/femsec/fiy064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are the drivers of biogeochemical methane and nitrogen cycles. Essential roles of chemolithoautotrophic microorganisms in these cycles were predicted long before their identification. Dedicated enrichment procedures, metagenomics surveys and single-cell technologies have enabled the identification of several new groups of most-wanted spookmicrobes, including novel methoxydotrophic methanogens that produce methane from methylated coal compounds and acetoclastic 'Candidatus Methanothrix paradoxum', which is active in oxic soils. The resultant energy-rich methane can be oxidized via a suite of electron acceptors. Recently, 'Candidatus Methanoperedens nitroreducens' ANME-2d archaea and 'Candidatus Methylomirabilis oxyfera' bacteria were enriched on nitrate and nitrite under anoxic conditions with methane as an electron donor. Although 'Candidatus Methanoperedens nitroreducens' and other ANME archaea can use iron citrate as an electron acceptor in batch experiments, the quest for anaerobic methane oxidizers that grow via iron reduction continues. In recent years, the nitrogen cycle has been expanded by the discovery of various ammonium-oxidizing prokaryotes, including ammonium-oxidizing archaea, versatile anaerobic ammonium-oxidizing (anammox) bacteria and complete ammonium-oxidizing (comammox) Nitrospira bacteria. Several biogeochemical studies have indicated that ammonium conversion occurs under iron-reducing conditions, but thus far no microorganism has been identified. Ultimately, iron-reducing and sulfate-dependent ammonium-oxidizing microorganisms await discovery.
Collapse
Affiliation(s)
- Michiel H in ‘t Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Anniek EE de Jong
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Caroline P Slomp
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Department of Earth Sciences, Geochemistry, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Mike SM Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
20
|
Shen Y, Zheng X, Wang X, Wang T. The biomineralization process of uranium(VI) by Saccharomyces cerevisiae - transformation from amorphous U(VI) to crystalline chernikovite. Appl Microbiol Biotechnol 2018; 102:4217-4229. [PMID: 29564524 DOI: 10.1007/s00253-018-8918-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 11/30/2022]
Abstract
Microorganisms play a significant role in uranium(VI) biogeochemistry and influence U(VI) transformation through biomineralization. In the present work, the process of uranium mineralization was investigated by Saccharomyces cerevisiae. The toxicity experiments showed that the viability of cell was not significantly affected by 100 mg L-1 U(VI) under 4 days of exposure time. The batch experiments showed that the phosphate concentration and pH value increased over time during U(VI) adsorption. Meanwhile, thermodynamic calculations demonstrated that the adsorption system was supersaturated with respect to UO2HPO4. The X-ray powder diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analyses indicated that the U(VI) was first attached onto the cell surface and reacted with hydroxyl, carboxyl, and phosphate groups through electrostatic interactions and complexation. As the immobilization of U(VI) transformed it from the ionic to the amorphous state, lamellar uranium precipitate was formed on the cell surface. With the prolongation of time, the amorphous uranium compound disappeared, and there were some crystalline substances observed extracellularly, which were well-characterized as tetragonal-chernikovite. Furthermore, the size of chernikovite was regulated at nano-level by cells, and the perfect crystal was formed finally. These findings provided an understanding of the non-reductive transformation process of U(VI) from the amorphous to crystalline state within microbe systems, which would be beneficial for the U(VI) treatment and reuse of nuclides and heavy metals.
Collapse
Affiliation(s)
- Yanghao Shen
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Xinyan Zheng
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyu Wang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Tieshan Wang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Wang W, Dudel EG. Nitrogen species coupled with transpiration enhance Fe plaque assisted aquatic uranium removal via rhizofiltration of Phragmites australis Trin ex Steud. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 181:138-146. [PMID: 29150188 DOI: 10.1016/j.jenvrad.2017.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 08/27/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
The influences of N species and transpiration on the Fe plaque (IP) formation and related aquatic U rhizofiltration had not revealed yet, especially when these factors were co-existed. It was evaluated in a mesocosm experiment in the condition of respective ammonium (NH4+)/nitrate (NO3-) cultivation of Phragmites australis Trin ex Steud. coupled with different transpiration rates (TRs). The results suggested that the enhanced transpiration of P. australis improved the aquatic U rhizofiltration in both NO3- and NH4+ rich milieus. However, the NO3- dependent oxidizing milieu restricted aquatic U uptake by the root of P. australis (up to 47.6 ± 1.8 mg kg-1 under high TR) via IP assisted rhizofiltration. The high aquatic U availability and limited IP formation in NO3- rich milieu benefited the U retention within root tissue. On the contrary, the aquatic U rhizofiltration (up to 62.1 ± 1.0 mg kg-1 under high TR) was enhanced under NH4+ dependent reductive milieu. It was mainly contributed by U retention within IP. The area related U accumulation in different N species cultured roots was enhanced but did not significantly different under higher TR condition. The result suggested that the supplied NH4+ coupled with enhanced transpiration was supposed to be more optimized option for IP assisted aquatic U rhizofiltration via P. australis.
Collapse
Affiliation(s)
- Weiqing Wang
- Institute of Plant and Wood Chemistry, Dresden University of Technology, Pienner Strasse 19, D-01737 Tharandt, Germany.
| | - E Gert Dudel
- Institute of Plant and Wood Chemistry, Dresden University of Technology, Pienner Strasse 19, D-01737 Tharandt, Germany
| |
Collapse
|
22
|
Wang W, Gert Dudel E. Fe plaque-related aquatic uranium retention via rhizofiltration along a redox-state gradient in a natural Phragmites australis Trin ex Steud. wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12185-12194. [PMID: 28353101 DOI: 10.1007/s11356-017-8889-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
Studies have revealed that the rhizofiltration is a feasible plant-based technology for aquatic metal/metalloid removal. However, the performance of aquatic U retention via rhizofiltration has not been fully revealed yet. In this study, a field investigation was conducted in a Phragmites australis Trin ex Steud. dominated wetland to estimate the efficiency of Fe plaque (IP)-assisted U rhizofiltration, with redox-state gradient (-179 to 220 mV) and low aquatic U level (66.7 to 92.0 μg l-1). The U concentrations were determined in soil, root, and aboveground biomass of P. australis. The IP on root surface was extracted via DCB extraction procedure. The bio-concentration factor (BCF) was applied to evaluate the aquatic U transfer capacity from root to above ground biomass of P. australis. The result suggested that root of P. australis was highly effective for aquatic U uptake via rhizofiltration (BCF 1025 to 1556). It also benefited the real U accumulation in aboveground biomass of P. australis (up to 0.4 mg m-2) and related plant-water-soil U recycling. The IP and associated microbial community in rhizosphere was effective mediator for aquatic U retention on root surface (BCF 1162 to 847). The IP-assisted aquatic U rhizofiltration was significantly promoted in relatively reductive environment. It was benefited by the enhanced root uptake of Fe due to lower oxidizers (e.g., DO and NO3-) availability. On the other hand, the competitive adsorption effect from co-existing IP-affinitive elements (e.g., As) also possibly impaired the real capacity of IP-assisted aquatic U rhizofiltration via P. australis.
Collapse
Affiliation(s)
- Weiqing Wang
- Institute of Plant and Wood Chemistry, Dresden University of Technology, Pienner Strasse 19, D-01737, Tharandt, Germany.
| | - E Gert Dudel
- Institute of Plant and Wood Chemistry, Dresden University of Technology, Pienner Strasse 19, D-01737, Tharandt, Germany
| |
Collapse
|
23
|
Li D, Hu N, Sui Y, Ding D, Li K, Li G, Wang Y. Influence of bicarbonate on the abundance of microbial communities capable of reducing U(vi) in groundwater. RSC Adv 2017. [DOI: 10.1039/c7ra09795f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
7 experiments amended with 0, 5, 10, 15, 20, 25 and 30 mM initial concentrations of bicarbonate were conducted to investigate the influence of different concentrations of bicarbonate on the abundance of microbial communities capable of reducing U(vi) in groundwater.
Collapse
Affiliation(s)
- Dianxin Li
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Nan Hu
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Yang Sui
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Dexin Ding
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Ke Li
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Guangyue Li
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Yongdong Wang
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| |
Collapse
|