1
|
Kedves A, Yavuz Ç, Kedves O, Haspel H, Kónya Z. Response to shock load of titanium dioxide nanoparticles on aerobic granular sludge and algal-bacterial granular sludge processes. NANOIMPACT 2024; 36:100532. [PMID: 39454679 DOI: 10.1016/j.impact.2024.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in various fields and can consequently be detected in wastewater, making it necessary to study their potential impacts on biological wastewater treatment processes. In this study, the shock-load impacts of TiO2 NPs were investigated at concentrations ranging between 1 and 200 mg L-1 on nutrient removal, extracellular polymeric substances (EPSs), microbial activity in aerobic granular sludge (AGS), and algal-bacterial granular sludge (AB-AGS) bioreactors. The results indicated that low concentration (≤10 mg L-1) TiO2 NPs had no effect on microbial activity or the removal of chemical oxygen demand (COD), nitrogen, and phosphorus, due to the increased production of extracellular polymeric substances (EPSs) in the sludge. In contrast, the performance of both AGS and AB-AGS bioreactors gradually deteriorated as the concentration of TiO2 NPs in the influent increased to 50, 100, and 200 mg L-1. Specifically, the ammonia‑nitrogen removal rate in AGS decreased from 99.9 % to 88.6 %, while in AB-AGS it dropped to 91.3 % at 200 mg L-1 TiO2 NPs. Furthermore, the nitrate‑nitrogen levels remained stable in AB-AGS, while NO3-N was detected in the effluent of AGS at 100 and 200 mg L-1. Microbial activities change similarly as smaller decrease in the specific ammonia uptake rate (SAUR) and specific nitrate uptake rate (SNUR) was found in AB-AGS compared to those in AGS. Overall, the algal-bacterial sludge exhibited higher resilience against TiO2 NPs, which was attributed to a) higher EPS volume, b) smaller decrease in LB-EPS, and c) the favorable protein to polysaccharide (PN/PS) ratio. This in turn, along with the symbiotic relationship between the algae and bacteria, mitigates the toxic effects of nanoparticles.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.
| | - Çağdaş Yavuz
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Henrik Haspel
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary; HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary; HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary
| |
Collapse
|
2
|
Alklaf SA, Zhang S, Zhu J, Manirakiza B, Addo FG, Guo S, Alnadari F. Impacts of nano-titanium dioxide toward Vallisneria natans and epiphytic microbes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129066. [PMID: 35739691 DOI: 10.1016/j.jhazmat.2022.129066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
In this study, Vallisneria natans plants were exposed to 5 and 20 nm of titanium dioxide nanoparticles (TiO₂ NPs) anatase and 600-1000 nm of bulk at 5 and 20 mg/L for 30 days. SEM images and EDX spectra revealed that epiphytic biofilms were more prone to TiO₂ NPs adhesion than bare plant leaves. TiO₂ NPs injured plant leaf cells, ruptured epiphytic diatoms membranes and increased the ratio of free-living microbes. The TN, NH4⁺-N and NO3--N concentrations significantly decreased, respectively, by 44.9%, 33.6%, and 23.6% compared to bulk treatments after 30 days due to macrophyte damage and a decline in diversity of epiphytic bacterial community and abundance of nitrogen cycle bacteria. TiO₂ NPs size-dependent decrease in bacterial relative abundance was detected, including phylum Cyanobacteria, Planctomycetes, and Verrucomicrobia. Although TiO₂ NPs increased eukaryotic diversity and abundance, abundances of Bacillariophyceae and Vampyrellidae classes and Gastrotricha and Phragmoplastophyta phylum decreased significantly under TiO₂ NPs exposure compared to bulk and control. TiO₂ NPs reduced intensities of interaction relationships among epiphytic microbial genera. This study shed new light on the potential effects of TiO₂ NPs toxicity toward aquatic plants and epiphytic microbial communities and its impacts on nitrogen species removal in wetlands.
Collapse
Affiliation(s)
- Salah Alden Alklaf
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jianzhong Zhu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Shaozhuang Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Fawze Alnadari
- Department of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
3
|
Piao S, He D. Sediment Bacteria and Phosphorus Fraction Response, Notably to Titanium Dioxide Nanoparticle Exposure. Microorganisms 2022; 10:microorganisms10081643. [PMID: 36014061 PMCID: PMC9412993 DOI: 10.3390/microorganisms10081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Titanium dioxide nanoparticle (TiO2 NP) toxicity to the growth of organisms has been gradually clarified; however, its effects on microorganism-mediated phosphorus turnover are poorly understood. To evaluate the influences of TiO2 NPs on phosphorus fractionation and the bacterial community, aquatic microorganisms were exposed to different concentrations of TiO2 NPs with different exposure times (i.e., 0, 10, and 30 days). We observed the adhesion of TiO2 NPs to the cell surfaces of planktonic microbes by using SEM, EDS, and XRD techniques. The addition of TiO2 NPs resulted in a decrease in the total phosphorus of water and an increase in the total phosphorus of sediments. Additionally, elevated TiO2 NPs enhanced the sediment activities of reductases (i.e., dehydrogenase [0.19–2.25 μg/d/g] and catalase [1.06–2.92 μmol/d/g]), and significantly decreased the absolute abundances of phosphorus-cycling-related genes (i.e., gcd [1.78 × 104–9.55 × 105 copies/g], phoD [5.50 × 103–5.49 × 107 copies/g], pstS [4.17 × 102–1.58 × 106 copies/g]), and sediment bacterial diversity. TiO2 NPs could noticeably affect the bacterial community, showing dramatic divergences in relative abundances (e.g., Actinobacteria, Acidobacteria, and Firmicutes), coexistence patterns, and functional redundancies (e.g., translation and transcription). Our results emphasized that the TiO2 NP amount—rather than the exposure time—showed significant effects on phosphorus fractions, enzyme activity, phosphorus-cycling-related gene abundance, and bacterial diversity, whereas the exposure time exhibited a greater influence on the composition and function of the sediment bacterial community than the TiO2 NP amount. Our findings clarify the responses of phosphorus fractions and the bacterial community to TiO2 NP exposure in the water–sediment ecosystem and highlight potential environmental risks of the migration of untreated TiO2 NPs to aquatic ecosystems.
Collapse
|
4
|
Soran ML, Lung I, Opriș O, Culicov O, Ciorîță A, Stegarescu A, Zinicovscaia I, Yushin N, Vergel K, Kacso I, Borodi G. The Effect of TiO 2 Nanoparticles on the Composition and Ultrastructure of Wheat. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3413. [PMID: 34947760 PMCID: PMC8706113 DOI: 10.3390/nano11123413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/21/2023]
Abstract
The present work aims to follow the influence of TiO2 nanoparticles (TiO2 NPs) on bioactive compounds, the elemental content of wheat, and on wheat leaves' ultrastructure. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). The concentration of phenolic compounds, assimilation pigments, antioxidant capacity, elemental content, as well as the ultrastructural changes that may occur in the wheat plants grown in the presence or absence of TiO2 NPs were evaluated. In plants grown in the presence of TiO2 NPs, the amount of assimilating pigments and total polyphenols decreased compared to the control sample, while the antioxidant activity of plants grown in amended soil was higher than those grown in control soil. Following ultrastructural analysis, no significant changes were observed in the leaves of TiO2-treated plants. Application of TiO2 NPs to soil caused a significant reaction of the plant to stress conditions. This was revealed by the increase of antioxidant capacity and the decrease of chlorophyll, total polyphenols, and carotenoids. Besides, the application of TiO2 NPs led to significant positive (K, Zn, Br, and Mo) and negative (Na, Mn, Fe, As, Sr, Sb, and Ba) variation of content.
Collapse
Affiliation(s)
- Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (M.-L.S.); (I.L.); (O.O.); (A.C.); (A.S.); (I.K.); (G.B.)
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (M.-L.S.); (I.L.); (O.O.); (A.C.); (A.S.); (I.K.); (G.B.)
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (M.-L.S.); (I.L.); (O.O.); (A.C.); (A.S.); (I.K.); (G.B.)
| | - Otilia Culicov
- Joint Institute for Nuclear Research, 6 Joliot-Curie, 1419890 Dubna, Russia; (I.Z.); (N.Y.); (K.V.)
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania
| | - Alexandra Ciorîță
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (M.-L.S.); (I.L.); (O.O.); (A.C.); (A.S.); (I.K.); (G.B.)
- Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor, 400006 Cluj-Napoca, Romania
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (M.-L.S.); (I.L.); (O.O.); (A.C.); (A.S.); (I.K.); (G.B.)
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, 6 Joliot-Curie, 1419890 Dubna, Russia; (I.Z.); (N.Y.); (K.V.)
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 407 Atomistilor, 077125 Magurele, Romania
| | - Nikita Yushin
- Joint Institute for Nuclear Research, 6 Joliot-Curie, 1419890 Dubna, Russia; (I.Z.); (N.Y.); (K.V.)
| | - Konstantin Vergel
- Joint Institute for Nuclear Research, 6 Joliot-Curie, 1419890 Dubna, Russia; (I.Z.); (N.Y.); (K.V.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (M.-L.S.); (I.L.); (O.O.); (A.C.); (A.S.); (I.K.); (G.B.)
| | - Gheorghe Borodi
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (M.-L.S.); (I.L.); (O.O.); (A.C.); (A.S.); (I.K.); (G.B.)
| |
Collapse
|