1
|
Kunkle DE, Skaar EP. Moving metals: How microbes deliver metal cofactors to metalloproteins. Mol Microbiol 2023; 120:547-554. [PMID: 37408317 PMCID: PMC10592388 DOI: 10.1111/mmi.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
First row d-block metal ions serve as vital cofactors for numerous essential enzymes and are therefore required nutrients for all forms of life. Despite this requirement, excess free transition metals are toxic. Free metal ions participate in the production of noxious reactive oxygen species and mis-metalate metalloproteins, rendering enzymes catalytically inactive. Thus, bacteria require systems to ensure metalloproteins are properly loaded with cognate metal ions to maintain protein function, while avoiding metal-mediated cellular toxicity. In this perspective we summarize the current mechanistic understanding of bacterial metallocenter maturation with specific emphasis on metallochaperones; a group of specialized proteins that both shield metal ions from inadvertent reactions and distribute them to cognate target metalloproteins. We highlight several recent advances in the field that have implicated new classes of proteins in the distribution of metal ions within bacterial proteins, while speculating on the future of the field of bacterial metallobiology.
Collapse
Affiliation(s)
- Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms. Nat Commun 2022; 13:4731. [PMID: 35961955 PMCID: PMC9374683 DOI: 10.1038/s41467-022-32085-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis requires a P1B-ATPase metal exporter, CtpC (Rv3270), for resistance to zinc poisoning. Here, we show that zinc resistance also depends on a chaperone-like protein, PacL1 (Rv3269). PacL1 contains a transmembrane domain, a cytoplasmic region with glutamine/alanine repeats and a C-terminal metal-binding motif (MBM). PacL1 binds Zn2+, but the MBM is required only at high zinc concentrations. PacL1 co-localizes with CtpC in dynamic foci in the mycobacterial plasma membrane, and the two proteins form high molecular weight complexes. Foci formation does not require flotillin nor the PacL1 MBM. However, deletion of the PacL1 Glu/Ala repeats leads to loss of CtpC and sensitivity to zinc. Genes pacL1 and ctpC appear to be in the same operon, and homologous gene pairs are found in the genomes of other bacteria. Furthermore, PacL1 colocalizes and functions redundantly with other PacL orthologs in M. tuberculosis. Overall, our results indicate that PacL proteins may act as scaffolds that assemble P-ATPase-containing metal efflux platforms mediating bacterial resistance to metal poisoning. The human pathogen Mycobacterium tuberculosis requires a metal exporter, CtpC, for resistance to zinc poisoning. Here, the authors show that zinc resistance also depends on a chaperone-like protein that binds zinc ions, forms high-molecular-weight complexes with CtpC in the cytoplasmic membrane, and is required for CtpC function.
Collapse
|
3
|
Andrei A, Di Renzo MA, Öztürk Y, Meisner A, Daum N, Frank F, Rauch J, Daldal F, Andrade SLA, Koch HG. The CopA2-Type P 1B-Type ATPase CcoI Serves as Central Hub for cbb 3-Type Cytochrome Oxidase Biogenesis. Front Microbiol 2021; 12:712465. [PMID: 34589071 PMCID: PMC8475189 DOI: 10.3389/fmicb.2021.712465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Copper (Cu)-transporting P1B-type ATPases are ubiquitous metal transporters and crucial for maintaining Cu homeostasis in all domains of life. In bacteria, the P1B-type ATPase CopA is required for Cu-detoxification and exports excess Cu(I) in an ATP-dependent reaction from the cytosol into the periplasm. CopA is a member of the CopA1-type ATPase family and has been biochemically and structurally characterized in detail. In contrast, less is known about members of the CopA2-type ATPase family, which are predicted to transport Cu(I) into the periplasm for cuproprotein maturation. One example is CcoI, which is required for the maturation of cbb 3-type cytochrome oxidase (cbb 3-Cox) in different species. Here, we reconstituted purified CcoI of Rhodobacter capsulatus into liposomes and determined Cu transport using solid-supported membrane electrophysiology. The data demonstrate ATP-dependent Cu(I) translocation by CcoI, while no transport is observed in the presence of a non-hydrolysable ATP analog. CcoI contains two cytosolically exposed N-terminal metal binding sites (N-MBSs), which are both important, but not essential for Cu delivery to cbb 3-Cox. CcoI and cbb 3-Cox activity assays in the presence of different Cu concentrations suggest that the glutaredoxin-like N-MBS1 is primarily involved in regulating the ATPase activity of CcoI, while the CopZ-like N-MBS2 is involved in Cu(I) acquisition. The interaction of CcoI with periplasmic Cu chaperones was analyzed by genetically fusing CcoI to the chaperone SenC. The CcoI-SenC fusion protein was fully functional in vivo and sufficient to provide Cu for cbb 3-Cox maturation. In summary, our data demonstrate that CcoI provides the link between the cytosolic and periplasmic Cu chaperone networks during cbb 3-Cox assembly.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Maria Agostina Di Renzo
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Alexandra Meisner
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Noel Daum
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fabian Frank
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Susana L A Andrade
- Institute for Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Garg N, Taylor AJ, Pastorelli F, Flannery SE, Jackson PJ, Johnson MP, Kelly DJ. Genes Linking Copper Trafficking and Homeostasis to the Biogenesis and Activity of the cbb 3-Type Cytochrome c Oxidase in the Enteric Pathogen Campylobacter jejuni. Front Microbiol 2021; 12:683260. [PMID: 34248902 PMCID: PMC8267372 DOI: 10.3389/fmicb.2021.683260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial C-type haem-copper oxidases in the cbb 3 family are widespread in microaerophiles, which exploit their high oxygen-binding affinity for growth in microoxic niches. In microaerophilic pathogens, C-type oxidases can be essential for infection, yet little is known about their biogenesis compared to model bacteria. Here, we have identified genes involved in cbb 3-oxidase (Cco) assembly and activity in the Gram-negative pathogen Campylobacter jejuni, the commonest cause of human food-borne bacterial gastroenteritis. Several genes of unknown function downstream of the oxidase structural genes ccoNOQP were shown to be essential (cj1483c and cj1486c) or important (cj1484c and cj1485c) for Cco activity; Cj1483 is a CcoH homologue, but Cj1484 (designated CcoZ) has structural similarity to MSMEG_4692, involved in Qcr-oxidase supercomplex formation in Mycobacterium smegmatis. Blue-native polyacrylamide gel electrophoresis of detergent solubilised membranes revealed three major bands, one of which contained CcoZ along with Qcr and oxidase subunits. Deletion of putative copper trafficking genes ccoI (cj1155c) and ccoS (cj1154c) abolished Cco activity, which was partially restored by addition of copper during growth, while inactivation of cj0369c encoding a CcoG homologue led to a partial reduction in Cco activity. Deletion of an operon encoding PCu A C (Cj0909) and Sco (Cj0911) periplasmic copper chaperone homologues reduced Cco activity, which was partially restored in the cj0911 mutant by exogenous copper. Phenotypic analyses of gene deletions in the cj1161c-1166c cluster, encoding several genes involved in intracellular metal homeostasis, showed that inactivation of copA (cj1161c), or copZ (cj1162c) led to both elevated intracellular Cu and reduced Cco activity, effects exacerbated at high external Cu. Our work has therefore identified (i) additional Cco subunits, (ii) a previously uncharacterized set of genes linking copper trafficking and Cco activity, and (iii) connections with Cu homeostasis in this important pathogen.
Collapse
Affiliation(s)
- Nitanshu Garg
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Federica Pastorelli
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sarah E Flannery
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Phillip J Jackson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
6
|
Rosario-Cruz Z, Eletsky A, Daigham NS, Al-Tameemi H, Swapna GVT, Kahn PC, Szyperski T, Montelione GT, Boyd JM. The copBL operon protects Staphylococcus aureus from copper toxicity: CopL is an extracellular membrane-associated copper-binding protein. J Biol Chem 2019; 294:4027-4044. [PMID: 30655293 PMCID: PMC6422080 DOI: 10.1074/jbc.ra118.004723] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/08/2019] [Indexed: 12/22/2022] Open
Abstract
As complications associated with antibiotic resistance have intensified, copper (Cu) is attracting attention as an antimicrobial agent. Recent studies have shown that copper surfaces decrease microbial burden, and host macrophages use Cu to increase bacterial killing. Not surprisingly, microbes have evolved mechanisms to tightly control intracellular Cu pools and protect against Cu toxicity. Here, we identified two genes (copB and copL) encoded within the Staphylococcus aureus arginine-catabolic mobile element (ACME) that we hypothesized function in Cu homeostasis. Supporting this hypothesis, mutational inactivation of copB or copL increased copper sensitivity. We found that copBL are co-transcribed and that their transcription is increased during copper stress and in a strain in which csoR, encoding a Cu-responsive transcriptional repressor, was mutated. Moreover, copB displayed genetic synergy with copA, suggesting that CopB functions in Cu export. We further observed that CopL functions independently of CopB or CopA in Cu toxicity protection and that CopL from the S. aureus clone USA300 is a membrane-bound and surface-exposed lipoprotein that binds up to four Cu+ ions. Solution NMR structures of the homologous Bacillus subtilis CopL, together with phylogenetic analysis and chemical-shift perturbation experiments, identified conserved residues potentially involved in Cu+ coordination. The solution NMR structure also revealed a novel Cu-binding architecture. Of note, a CopL variant with defective Cu+ binding did not protect against Cu toxicity in vivo Taken together, these findings indicate that the ACME-encoded CopB and CopL proteins are additional factors utilized by the highly successful S. aureus USA300 clone to suppress copper toxicity.
Collapse
Affiliation(s)
- Zuelay Rosario-Cruz
- From the Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901
| | - Alexander Eletsky
- the Department of Chemistry, State University of New York at Buffalo and Northeast Structural Genomics Consortium, Buffalo, New York 14260, and
| | - Nourhan S Daigham
- the Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - Hassan Al-Tameemi
- From the Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901
| | - G V T Swapna
- the Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - Peter C Kahn
- From the Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901
| | - Thomas Szyperski
- the Department of Chemistry, State University of New York at Buffalo and Northeast Structural Genomics Consortium, Buffalo, New York 14260, and
| | - Gaetano T Montelione
- the Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854,
- the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854
| | - Jeffrey M Boyd
- From the Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901,
| |
Collapse
|
7
|
Utz M, Andrei A, Milanov M, Trasnea PI, Marckmann D, Daldal F, Koch HG. The Cu chaperone CopZ is required for Cu homeostasis in Rhodobacter capsulatus and influences cytochrome cbb 3 oxidase assembly. Mol Microbiol 2019; 111:764-783. [PMID: 30582886 DOI: 10.1111/mmi.14190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/19/2022]
Abstract
Cu homeostasis depends on a tightly regulated network of proteins that transport or sequester Cu, preventing the accumulation of this toxic metal while sustaining Cu supply for cuproproteins. In Rhodobacter capsulatus, Cu-detoxification and Cu delivery for cytochrome c oxidase (cbb3 -Cox) assembly depend on two distinct Cu-exporting P1B -type ATPases. The low-affinity CopA is suggested to export excess Cu and the high-affinity CcoI feeds Cu into a periplasmic Cu relay system required for cbb3 -Cox biogenesis. In most organisms, CopA-like ATPases receive Cu for export from small Cu chaperones like CopZ. However, whether these chaperones are also involved in Cu export via CcoI-like ATPases is unknown. Here we identified a CopZ-like chaperone in R. capsulatus, determined its cellular concentration and its Cu binding activity. Our data demonstrate that CopZ has a strong propensity to form redox-sensitive dimers via two conserved cysteine residues. A ΔcopZ strain, like a ΔcopA strain, is Cu-sensitive and accumulates intracellular Cu. In the absence of CopZ, cbb3 -Cox activity is reduced, suggesting that CopZ not only supplies Cu to P1B -type ATPases for detoxification but also for cuproprotein assembly via CcoI. This finding was further supported by the identification of a ~150 kDa CcoI-CopZ protein complex in native R. capsulatus membranes.
Collapse
Affiliation(s)
- Marcel Utz
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany
| | - Andreea Andrei
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany.,Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Martin Milanov
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany
| | - Petru-Iulian Trasnea
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany.,Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dorian Marckmann
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hans-Georg Koch
- Faculty of Medicine, Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 17, Freiburg, 79104, Germany
| |
Collapse
|
8
|
Kay KL, Zhou L, Tenori L, Bradley JM, Singleton C, Kihlken MA, Ciofi-Baffoni S, Le Brun NE. Kinetic analysis of copper transfer from a chaperone to its target protein mediated by complex formation. Chem Commun (Camb) 2018; 53:1397-1400. [PMID: 28078344 DOI: 10.1039/c6cc08966f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chaperone proteins that traffic copper around the cell minimise its toxicity by maintaining it in a tightly bound form. The transfer of copper from chaperones to target proteins is promoted by complex formation, but the kinetic characteristics of transfer have yet to be demonstrated for any chaperone-target protein pair. Here we report studies of copper transfer between the Atx1-type chaperone CopZ from Bacillus subtilis and the soluble domains of its cognate P-type ATPase transporter, CopAab. Transfer of copper from CopZ to CopAab was found to occur rapidly, with a rate constant at 25 °C of ∼267 s-1, many orders of magnitude higher than that for Cu(i) dissociation from CopZ in the absence of CopAab. The data demonstrate that complex formation between CopZ and CopAab, evidence for which is provided by NMR and electrospray ionisation mass spectrometry, dramatically enhances the rate of Cu(i) dissociation from CopZ.
Collapse
Affiliation(s)
- Kristine L Kay
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Liang Zhou
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Leonardo Tenori
- Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Chloe Singleton
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Margaret A Kihlken
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
9
|
Zhou L, Kay KL, Hecht O, Moore GR, Le Brun NE. The N-terminal domains of Bacillus subtilis CopA do not form a stable complex in the absence of their inter-domain linker. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:275-282. [DOI: 10.1016/j.bbapap.2017.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/02/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|
10
|
Cubillas C, Miranda-Sánchez F, González-Sánchez A, Elizalde JP, Vinuesa P, Brom S, García-de Los Santos A. A comprehensive phylogenetic analysis of copper transporting P 1B ATPases from bacteria of the Rhizobiales order uncovers multiplicity, diversity and novel taxonomic subtypes. Microbiologyopen 2017; 6. [PMID: 28217917 PMCID: PMC5552934 DOI: 10.1002/mbo3.452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 01/08/2023] Open
Abstract
The ubiquitous cytoplasmic membrane copper transporting P1B‐1 and P1B‐3‐type ATPases pump out Cu+ and Cu2+, respectively, to prevent cytoplasmic accumulation and avoid toxicity. The presence of five copies of Cu‐ATPases in the symbiotic nitrogen‐fixing bacteria Sinorhizobium meliloti is remarkable; it is the largest number of Cu+‐transporters in a bacterial genome reported to date. Since the prevalence of multiple Cu‐ATPases in members of the Rhizobiales order is unknown, we performed an in silico analysis to understand the occurrence, diversity and evolution of Cu+‐ATPases in members of the Rhizobiales order. Multiple copies of Cu‐ATPase coding genes (2–8) were detected in 45 of the 53 analyzed genomes. The diversity inferred from a maximum‐likelihood (ML) phylogenetic analysis classified Cu‐ATPases into four monophyletic groups. Each group contained additional subtypes, based on the presence of conserved motifs. This novel phylogeny redefines the current classification, where they are divided into two subtypes (P1B‐1 and P1B‐3). Horizontal gene transfer (HGT) as well as the evolutionary dynamic of plasmid‐borne genes may have played an important role in the functional diversification of Cu‐ATPases. Homologous cytoplasmic and periplasmic Cu+‐chaperones, CopZ, and CusF, that integrate a CopZ‐CopA‐CusF tripartite efflux system in gamma‐proteobacteria and archeae, were found in 19 of the 53 surveyed genomes of the Rhizobiales. This result strongly suggests a high divergence of CopZ and CusF homologs, or the existence of unexplored proteins involved in cellular copper transport.
Collapse
Affiliation(s)
- Ciro Cubillas
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Fabiola Miranda-Sánchez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Antonio González-Sánchez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - José Pedro Elizalde
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Pablo Vinuesa
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandro García-de Los Santos
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
11
|
Amolegbe SA, Akinremi CA, Adewuyi S, Lawal A, Bamigboye MO, Obaleye JA. Some nontoxic metal-based drugs for selected prevalent tropical pathogenic diseases. J Biol Inorg Chem 2016; 22:1-18. [DOI: 10.1007/s00775-016-1421-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 11/18/2016] [Indexed: 02/04/2023]
|
12
|
Shoshan MS, Dekel N, Goch W, Shalev DE, Danieli T, Lebendiker M, Bal W, Tshuva EY. Unbound position II in MXCXXC metallochaperone model peptides impacts metal binding mode and reactivity: Distinct similarities to whole proteins. J Inorg Biochem 2016; 159:29-36. [PMID: 26901629 DOI: 10.1016/j.jinorgbio.2016.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 01/17/2023]
Abstract
The effect of position II in the binding sequence of copper metallochaperones, which varies between Thr and His, was investigated through structural analysis and affinity and oxidation kinetic studies of model peptides. A first Cys-Cu(I)-Cys model obtained for the His peptide at acidic and neutral pH, correlated with higher affinity and more rapid oxidation of its complex; in contrast, the Thr peptide with the Cys-Cu(I)-Met coordination under neutral conditions demonstrated weaker and pH dependent binding. Studies with human antioxidant protein 1 (Atox1) and three of its mutants where S residues were replaced with Ala suggested that (a) the binding affinity is influenced more by the binding sequence than by the protein fold (b) pH may play a role in binding reactivity, and (c) mutating the Met impacted the affinity and oxidation rate more drastically than did mutating one of the Cys, supporting its important role in protein function. Position II thus plays a dominant role in metal binding and transport.
Collapse
Affiliation(s)
- Michal S Shoshan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Noa Dekel
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02106, Poland
| | - Deborah E Shalev
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Tsafi Danieli
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Mario Lebendiker
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02106, Poland
| | - Edit Y Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel.
| |
Collapse
|
13
|
Kay KL, Hamilton CJ, Le Brun NE. Mass spectrometry of B. subtilis CopZ: Cu(i)-binding and interactions with bacillithiol. Metallomics 2016; 8:709-19. [DOI: 10.1039/c6mt00036c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mass spectrometry reveals a high resolution overview of species formed by CopZ and Cu(i), and the effects of the physiological low molecular weight thiol bacillithiol.
Collapse
Affiliation(s)
- Kristine L. Kay
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich, UK
| | | | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich, UK
| |
Collapse
|
14
|
Smith AT, Barupala D, Stemmler TL, Rosenzweig AC. A new metal binding domain involved in cadmium, cobalt and zinc transport. Nat Chem Biol 2015; 11:678-84. [PMID: 26192600 PMCID: PMC4543396 DOI: 10.1038/nchembio.1863] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/28/2015] [Indexed: 11/26/2022]
Abstract
The P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural, and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd2+, Co2+, or Zn2+ ions in distinct and unique sites, and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full length CzcP, truncated CzcP, and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Taken together, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.
Collapse
Affiliation(s)
- Aaron T Smith
- 1] Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA. [2] Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Dulmini Barupala
- Department of Pharmaceutical Sciences and Cardiovascular Research Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences and Cardiovascular Research Institute, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Amy C Rosenzweig
- 1] Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA. [2] Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
15
|
Smith AT, Smith KP, Rosenzweig AC. Diversity of the metal-transporting P1B-type ATPases. J Biol Inorg Chem 2014; 19:947-60. [PMID: 24729073 PMCID: PMC4119550 DOI: 10.1007/s00775-014-1129-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/21/2014] [Indexed: 01/23/2023]
Abstract
The P1B-ATPases are integral membrane proteins that couple ATP hydrolysis to metal cation transport. Widely distributed across all domains of life, these enzymes have been previously shown to transport copper, zinc, cobalt, and other thiophilic heavy metals. Recent data suggest that these enzymes may also be involved in nickel and/or iron transport. Here we have exploited large amounts of genomic data to examine and classify the various P1B-ATPase subfamilies. Specifically, we have combined new methods of data partitioning and network visualization known as Transitivity Clustering and Protein Similarity Networks with existing biochemical data to examine properties such as length, speciation, and metal-binding motifs of the P1B-ATPase subfamily sequences. These data reveal interesting relationships among the enzyme sequences of previously established subfamilies, indicate the presence of two new subfamilies, and suggest the existence of new regulatory elements in certain subfamilies. Taken together, these findings underscore the importance of P1B-ATPases in homeostasis of nearly every biologically relevant transition metal and provide an updated framework for future studies.
Collapse
Affiliation(s)
- Aaron T. Smith
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Kyle P. Smith
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
16
|
Le Brun NE. Copper in Prokaryotes. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ability of copper to cycle its oxidation state, and to form high-affinity complexes with a range of biologically relevant ligands, underpins the central role that this metal plays in prokaryotic processes such as respiration, oxidative stress response, the nitrogen cycle and pigmentation. However, the very properties that nature has exploited also mean that copper is extremely toxic. To minimize this toxicity, while also ensuring sufficient supply of the metal, complex systems of trafficking evolved to facilitate transport of copper (as Cu(I)) across membranes and its targeted distribution within the cytoplasm, membrane and periplasm. The past 20 years have seen our understanding of such systems grow enormously, and atomic/molecular and mechanistic detail of many of the major cellular trafficking components is now available. This chapter begins with a discussion of the chemistry of copper that is relevant for understanding the role of this metal throughout life. The subsequent focus is then on current understanding of copper homeostasis in prokaryotes, with eukaryotic copper homeostasis dealt with in the following chapters. The chapter aims to provide a chemical perspective on these complex biological systems, emphasizing the importance of thermodynamic and kinetic properties of copper and the complexes it forms.
Collapse
Affiliation(s)
- Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
17
|
Abstract
Biological trace metals are needed in small quantities, but used by all living organisms. They are employed in key cellular functions in a variety of biological processes, resulting in the various degree of dependence of organisms on metals. Most effort in the field has been placed on experimental studies of metal utilization pathways and metal-dependent proteins. On the other hand, systemic level analyses of metalloproteomes (or metallomes) have been limited for most metals. In this chapter, we focus on the recent advances in comparative genomics, which provides many insights into evolution and function of metal utilization. These studies suggested that iron and zinc are widely used in biology (presumably by all organisms), whereas some other metals such as copper, molybdenum, nickel, and cobalt, show scattered occurrence in various groups of organisms. For these metals, most user proteins are well characterized and their dependence on a specific element is evolutionarily conserved. We also discuss evolutionary dynamics of the dependence of user proteins on different metals. Overall, comparative genomics analysis of metallomes provides a foundation for the systemic level understanding of metal utilization as well as for investigating the general features, functions, and evolutionary dynamics of metal use in the three domains of life.
Collapse
|
18
|
Blaby-Haas CE, Merchant SS. The ins and outs of algal metal transport. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1531-52. [PMID: 22569643 PMCID: PMC3408858 DOI: 10.1016/j.bbamcr.2012.04.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Metal transporters are a central component in the interaction of algae with their environment. They represent the first line of defense to cellular perturbations in metal concentration, and by analyzing algal metal transporter repertoires, we gain insight into a fundamental aspect of algal biology. The ability of individual algae to thrive in environments with unique geochemistry, compared to non-algal species commonly used as reference organisms for metal homeostasis, provides an opportunity to broaden our understanding of biological metal requirements, preferences and trafficking. Chlamydomonas reinhardtii is the best developed reference organism for the study of algal biology, especially with respect to metal metabolism; however, the diversity of algal niches necessitates a comparative genomic analysis of all sequenced algal genomes. A comparison between known and putative proteins in animals, plants, fungi and algae using protein similarity networks has revealed the presence of novel metal metabolism components in Chlamydomonas including new iron and copper transporters. This analysis also supports the concept that, in terms of metal metabolism, algae from similar niches are more related to one another than to algae from the same phylogenetic clade. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
19
|
Rowland JL, Niederweis M. Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis (Edinb) 2012; 92:202-10. [PMID: 22361385 DOI: 10.1016/j.tube.2011.12.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/27/2011] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis is an important bacterial pathogen with an extremely slow growth rate, an unusual outer membrane of very low permeability and a cunning ability to survive inside the human host despite a potent immune response. A key trait of M. tuberculosis is to acquire essential nutrients while still preserving its natural resistance to toxic compounds. In this regard, copper homeostasis mechanisms are particularly interesting, because copper is an important element for bacterial growth, but copper overload is toxic. In M. tuberculosis at least two enzymes require copper as a cofactor: the Cu/Zn-superoxide dismutase SodC and the cytochrome c oxidase which is essential for growth in vitro. Mutants of M. tuberculosis lacking the copper metallothionein MymT, the efflux pump CtpV and the membrane protein MctB are more susceptible to copper indicating that these proteins are part of a multipronged system to balance intracellular copper levels. Recent evidence showed that part of copper toxicity is a reversible damage of Fe-S clusters of dehydratases and the displacement of other divalent cations such as zinc and manganese as cofactors in proteins. There is accumulating evidence that macrophages use copper to poison bacteria trapped inside phagosomes. Here, we review the rapidly increasing knowledge about copper homeostasis in M. tuberculosis and contrast those with similar mechanisms in Escherichia coli. These findings reveal an intricate interplay between the host which aims to overload the phagosome with copper and M. tuberculosis which utilizes several mechanisms to reduce the toxic effects of excess copper.
Collapse
Affiliation(s)
- Jennifer L Rowland
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL 35294, USA
| | | |
Collapse
|
20
|
Zhou L, Singleton C, Le Brun NE. CopAb, the second N-terminal soluble domain of Bacillus subtilis CopA, dominates the Cu(i)-binding properties of CopAab. Dalton Trans 2012; 41:5939-48. [DOI: 10.1039/c2dt30126a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Rosenzweig AC, Argüello JM. Toward a molecular understanding of metal transport by P(1B)-type ATPases. CURRENT TOPICS IN MEMBRANES 2012; 69:113-36. [PMID: 23046649 DOI: 10.1016/b978-0-12-394390-3.00005-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The P(1B) family of P-type ATPases couples the transport of cytoplasmic transition metals across biological membranes to the hydrolysis of ATP. These ubiquitous transporters function in maintaining cytoplasmic metal quotas and in the assembly of metalloproteins, and have been classified into subfamilies (P(1B-1)-P(1B-5)) on the basis of their transported substrates (Cu(+), Zn(2+), Cu(2+), and Co(2+)) and signature sequences in their transmembrane segments. In addition, each subgroup presents a characteristic membrane topology and specific regulatory cytoplasmic metal-binding domains. In recent years, significant major aspects of their transport mechanism have been described, including the stoichiometry of transport and the delivery of substrates to transport sites by metallochaperones. Toward understanding their structure, the metal coordination by transport sites has been characterized for Cu(+) and Zn(2+)-ATPases. In addition, atomic resolution structures have been determined, providing key insight into the elements that enable transition metal transport. Because the Cu(+)-transporting ATPases are found in humans and are linked to disease, this subfamily has been the focus of intense study. As a result, significant progress has been made toward understanding Cu(+)-ATPase function on the molecular level, using both the human proteins and the bacterial homologs, most notably the CopA proteins from Archaeoglobus fulgidus, Bacillus subtilis, and Thermotoga maritima. This chapter thus focuses on the mechanistic and structural information obtained by studying these latter Cu(+)-ATPases, with some consideration of how these aspects might differ for the other subfamilies of P(1B)-ATPases.
Collapse
Affiliation(s)
- Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| | | |
Collapse
|
22
|
Zhou L, Singleton C, Hecht O, Moore GR, Le Brun NE. Cu(I)- and proton-binding properties of the first N-terminal soluble domain of Bacillus subtilis CopA. FEBS J 2011; 279:285-98. [DOI: 10.1111/j.1742-4658.2011.08422.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Heo DH, Baek IJ, Kang HJ, Kim JH, Chang M, Kang CM, Yun CW. Cd2+ binds to Atx1 and affects the physical interaction between Atx1 and Ccc2 in Saccharomyces cerevisiae. Biotechnol Lett 2011; 34:303-7. [PMID: 22009569 DOI: 10.1007/s10529-011-0763-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/29/2011] [Indexed: 11/25/2022]
Abstract
The ATX1 deletion strain of Saccharomyces cerevisiae is more resistant to Cd(2+) than the wild-type. To investigate the function of Atx1 in Cd(2+) toxicity, we used a metal-binding assay to study the interaction between Atx1 and Cd(2+) in vitro. Using circular dichroism and two-hybrid analyses, we found that Atx1 can bind Cd(2+) specifically and that Cd(2+) binding to Atx1 affects the physical interaction between Atx1 and Ccc2. These results imply that Atx1 delivers Cd(2+) to Ccc2 and that this delivery is, at least in part, responsible for Cd(2+) toxicity in S. cerevisiae.
Collapse
Affiliation(s)
- Dong-Hyuk Heo
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Reyes-Caballero H, Campanello GC, Giedroc DP. Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys Chem 2011; 156:103-14. [PMID: 21511390 DOI: 10.1016/j.bpc.2011.03.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 01/13/2023]
Abstract
Prokaryotic organisms have evolved the capacity to quickly adapt to a changing and challenging microenvironment in which the availability of both biologically required and non-essential transition metal ions can vary dramatically. In all bacteria, a panel of metalloregulatory proteins controls the expression of genes encoding membrane transporters and metal trafficking proteins that collectively manage metal homeostasis and resistance. These "metal sensors" are specialized allosteric proteins, in which the direct binding of a specific or small number of "cognate" metal ion(s) drives a conformational change in the regulator that allosterically activates or inhibits operator DNA binding, or alternatively, distorts the promoter structure thereby converting a poor promoter to a strong one. In this review, we discuss our current understanding of the features that control metal specificity of the allosteric response in these systems, and the role that structure, thermodynamics and conformational dynamics play in mediating allosteric activation or inhibition of DNA binding.
Collapse
|
25
|
Siluvai GS, Nakano M, Mayfield M, Blackburn NJ. The essential role of the Cu(II) state of Sco in the maturation of the Cu(A) center of cytochrome oxidase: evidence from H135Met and H135SeM variants of the Bacillus subtilis Sco. J Biol Inorg Chem 2010; 16:285-97. [PMID: 21069401 DOI: 10.1007/s00775-010-0725-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/19/2010] [Indexed: 01/24/2023]
Abstract
Sco is a red copper protein that plays an essential yet poorly understood role in the metalation of the Cu(A) center of cytochrome oxidase, and is stable in both the Cu(I) and Cu(II) forms. To determine which oxidation state is important for function, we constructed His135 to Met or selenomethionine (SeM) variants that were designed to stabilize the Cu(I) over the Cu(II) state. H135M was unable to complement a scoΔ strain of Bacillus subtilis, indicating that the His to Met substitution abrogated cytochrome oxidase maturation. The Cu(I) binding affinities of H135M and H135SeM were comparable to that of the WT and 100-fold tighter than that of the H135A variant. The coordination chemistry of the H135M and H135SeM variants was studied by UV/vis, EPR, and XAS spectroscopy in both the Cu(I) and the Cu(II) forms. Both oxidation states bound copper via the S atoms of C45, C49 and M135. In particular, EXAFS data collected at both the Cu and the Se edges of the H135SeM derivative provided unambiguous evidence for selenomethionine coordination. Whereas the coordination chemistry and copper binding affinity of the Cu(I) state closely resembled that of the WT protein, the Cu(II) state was unstable, undergoing autoreduction to Cu(I). H135M also reacted faster with H(2)O(2) than WT Sco. These data, when coupled with the complete elimination of function in the H135M variant, imply that the Cu(I) state cannot be the sole determinant of function; the Cu(II) state must be involved in function at some stage of the reaction cycle.
Collapse
Affiliation(s)
- Gnana S Siluvai
- Division of Environmental and Biomolecular Systems, Oregon Health and Sciences University, 20000 NW Walker Road, Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
26
|
Agarwal S, Hong D, Desai NK, Sazinsky MH, Argüello JM, Rosenzweig AC. Structure and interactions of the C-terminal metal binding domain of Archaeoglobus fulgidus CopA. Proteins 2010; 78:2450-8. [PMID: 20602459 DOI: 10.1002/prot.22753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Cu(+)-ATPase CopA from Archaeoglobus fulgidus belongs to the P(1B) family of the P-type ATPases. These integral membrane proteins couple the energy of ATP hydrolysis to heavy metal ion translocation across membranes. A defining feature of P(1B-1)-type ATPases is the presence of soluble metal binding domains at the N-terminus (N-MBDs). The N-MBDs exhibit a conserved ferredoxin-like fold, similar to that of soluble copper chaperones, and bind metal ions via a conserved CXXC motif. The N-MBDs enable Cu(+) regulation of turnover rates apparently through Cu-sensitive interactions with catalytic domains. A. fulgidus CopA is unusual in that it contains both an N-terminal MBD and a C-terminal MBD (C-MBD). The functional role of the unique C-MBD has not been established. Here, we report the crystal structure of the apo, oxidized C-MBD to 2.0 A resolution. In the structure, two C-MBD monomers form a domain-swapped dimer, which has not been observed previously for similar domains. In addition, the interaction of the C-MBD with the other cytoplasmic domains of CopA, the ATP binding domain (ATPBD) and actuator domain (A-domain), has been investigated. Interestingly, the C-MBD interacts specifically with both of these domains, independent of the presence of Cu(+) or nucleotides. These data reinforce the uniqueness of the C-MBD and suggest a distinct structural role for the C-MBD in CopA transport.
Collapse
Affiliation(s)
- Sorabh Agarwal
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
27
|
Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl Environ Microbiol 2010; 76:1341-8. [PMID: 20048058 DOI: 10.1128/aem.01952-09] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metallic copper alloys have recently attracted attention as a new antimicrobial weapon for areas where surface hygiene is paramount. Currently it is not understood on a molecular level how metallic copper kills microbes, but previous studies have demonstrated that a wide variety of bacteria, including Escherichia coli, Staphylococcus aureus, and Clostridium difficile, are inactivated within minutes or a few hours of exposure. In this study, we show that bacteria isolated from copper alloy coins comprise strains that are especially resistant against the toxic properties exerted by dry metallic copper surfaces. The most resistant of 294 isolates were Gram-positive staphylococci and micrococci, Kocuria palustris, and Brachybacterium conglomeratum but also included the proteobacterial species Sphingomonas panni and Pseudomonas oleovorans. Cells of some of these bacterial strains survived on copper surfaces for 48 h or more. Remarkably, when these dry-surface-resistant strains were exposed to moist copper surfaces, resistance levels were close to those of control strains and MICs for copper ions were at or below control strain levels. This suggests that mechanisms conferring resistance against dry metallic copper surfaces in these newly isolated bacterial strains are different from well-characterized copper ion detoxification systems. Furthermore, staphylococci on coins did not exhibit increased levels of resistance to antibiotics, arguing against coselection with copper surface resistance traits.
Collapse
|
28
|
Mechanistic insights into Cu(I) cluster transfer between the chaperone CopZ and its cognate Cu(I)-transporting P-type ATPase, CopA. Biochem J 2009; 424:347-56. [PMID: 19751213 DOI: 10.1042/bj20091079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multinuclear Cu(I) clusters are common in nature, but little is known about their formation or transfer between proteins. CopZ and CopA from Bacillus subtilis, which are involved in a copper-efflux pathway, both readily accommodate multinuclear Cu(I) clusters. Using the luminescence properties of a multinuclear Cu(I)-bound form of the two N-terminal soluble domains of CopA (CopAab) we have investigated the thermodynamic and kinetic properties of cluster formation and loss. We demonstrate that Cu(I)-bound forms of dimeric CopZ containing more than one Cu(I) per CopZ monomer can transfer Cu(I) to apo-CopAab, leading to the formation of luminescent dimeric CopAab. Kinetic studies demonstrated that transfer is a first-order process and that the rate-determining steps for transfer from CopZ to CopAab and vice versa are different processes. The rate of formation of luminescent CopAab via transfer of Cu(I) from CopZ was more rapid than that observed when Cu(I) was added 'directly' from solution or in complex with a cysteine variant of CopZ, indicating that transfer occurs via a transient protein-protein complex. Such a complex would probably require the interaction of at least one domain of CopAab with the CopZ dimer. Insight into how such a complex might form is provided by the high resolution crystal structure of Cu3(CopZ)3, a thus far unique trimeric form of CopZ containing a trinuclear Cu(I) cluster. Modelling studies showed that one of the CopZ monomers can be substituted for either domain of CopAab, resulting in a heterotrimer, thus providing a model for a 'trapped' copper exchange complex.
Collapse
|
29
|
Ma Z, Jacobsen FE, Giedroc DP. Coordination chemistry of bacterial metal transport and sensing. Chem Rev 2009; 109:4644-81. [PMID: 19788177 PMCID: PMC2783614 DOI: 10.1021/cr900077w] [Citation(s) in RCA: 434] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Ma
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128 USA
| | - Faith E. Jacobsen
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| |
Collapse
|
30
|
Affiliation(s)
- Amie K. Boal
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| | - Amy C. Rosenzweig
- Departments of Biochemistry, Molecular Biology and Cell Biology and of Chemistry, Northwestern University, Evanston, IL 60208
| |
Collapse
|
31
|
Zhang Y, Gladyshev VN. Comparative Genomics of Trace Elements: Emerging Dynamic View of Trace Element Utilization and Function. Chem Rev 2009; 109:4828-61. [DOI: 10.1021/cr800557s] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Zhang
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664
| | - Vadim N. Gladyshev
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664
| |
Collapse
|
32
|
Affiliation(s)
- Deenah Osman
- Life Sciences, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
33
|
Singleton C, Le Brun NE. The N-terminal soluble domains of Bacillus subtilis CopA exhibit a high affinity and capacity for Cu(i) ions. Dalton Trans 2009:688-96. [DOI: 10.1039/b810412c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Bagai I, Rensing C, Blackburn NJ, McEvoy MM. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry 2008; 47:11408-14. [PMID: 18847219 PMCID: PMC2593458 DOI: 10.1021/bi801638m] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transition metals require exquisite handling within cells to ensure that cells are not harmed by an excess of free metal species. In gram-negative bacteria, copper is required in only small amounts in the periplasm, not in the cytoplasm, so a key aspect of protection under excess metal conditions is to export copper from the periplasm. Additional protection could be conferred by a periplasmic chaperone to limit the free metal species prior to export. Using isothermal titration calorimetry, we have demonstrated that two periplasmic proteins, CusF and CusB, of the Escherichia coli Cu(I)/Ag(I) efflux system undergo a metal-dependent interaction. Through the development of a novel X-ray absorption spectroscopy approach using selenomethionine labeling to distinguish the metal sites of the two proteins, we have demonstrated transfer of Cu(I) occurs between CusF and CusB. The interaction between these proteins is highly specific, as a homologue of CusF with a 51% identical sequence and a similar affinity for metal, did not function in metal transfer. These experiments establish a metallochaperone activity for CusF in the periplasm of gram-negative bacteria, serving to protect the periplasm from metal-mediated damage.
Collapse
Affiliation(s)
- Ireena Bagai
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | - Christopher Rensing
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Ninian J. Blackburn
- Department of Environmental and Biomolecular Systems, Oregon Graduate Institute, School of Science and Engineering, Oregon Health and Sciences University, 20000 Northwest Walker Road, Beaverton, Oregon 97006-8921
| | - Megan M. McEvoy
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
35
|
Roberts EA, Sarkar B. Liver as a key organ in the supply, storage, and excretion of copper. Am J Clin Nutr 2008; 88:851S-4S. [PMID: 18779307 DOI: 10.1093/ajcn/88.3.851s] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The liver plays an important role in the disposition of copper. Most dietary copper passes through the liver where it can be used for protein and energy production or excreted through the biliary route. Because copper is a prooxidant, its intracellular handling is tightly managed. In Wilson disease, in which synthesis of ceruloplasmin and biliary excretion of copper are defective, copper accumulates in the liver and leads to progressive liver damage. The features of hepatic Wilson disease are highly variable. The spectrum of liver disease includes mild inflammation, fatty liver, an autoimmune disorder, and cirrhosis. Wilson disease thus resembles drug hepatotoxicity, and indeed it can be regarded as a prototypic example of endogenous hepatotoxicity. Biomarkers developed for detecting drug hepatotoxicity may be relevant to Wilson disease. Biomarkers developed through metalloproteomics, which for copper seeks to define a set of proteins that have copper-binding capacity, or through genomic studies may also be relevant to Wilson disease and other disorders of copper handling, whether copper is deficient or overloaded.
Collapse
Affiliation(s)
- Eve A Roberts
- Genetics and Genome Biology Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.
| | | |
Collapse
|
36
|
Structure and Cu(I)-binding properties of the N-terminal soluble domains of Bacillus subtilis CopA. Biochem J 2008; 411:571-9. [PMID: 18215122 DOI: 10.1042/bj20071620] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CopA, a P-type ATPase from Bacillus subtilis, plays a major role in the resistance of the cell to copper by effecting the export of the metal across the cytoplasmic membrane. The N-terminus of the protein features two soluble domains (a and b), that each contain a Cu(I)-binding motif, MTCAAC. We have generated a stable form of the wild-type two-domain protein, CopAab, and determined its solution structure. This was found to be similar to that reported previously for a higher stability S46V variant, with minor differences mostly confined to the Ser(46)-containing beta3-strand of domain a. Chemical-shift analysis demonstrated that the two Cu(I)-binding motifs, located at different ends of the protein molecule, are both able to participate in Cu(I) binding and that Cu(I) is in rapid exchange between protein molecules. Surprisingly, UV-visible and fluorescence spectroscopy indicate very different modes of Cu(I) binding below and above a level of 1 Cu(I) per protein, consistent with a major structural change occurring above 1 Cu(I) per CopAab. Analytical equilibrium centrifugation and gel filtration results show that this is a result of Cu(I)-mediated dimerization of the protein. The resulting species is highly luminescent, indicating the presence of a solvent-shielded Cu(I) cluster.
Collapse
|
37
|
Simon I, Schaefer M, Reichert J, Stremmel W. Analysis of the human Atox 1 homologue in Wilson patients. World J Gastroenterol 2008; 14:2383-7. [PMID: 18416466 PMCID: PMC2705094 DOI: 10.3748/wjg.14.2383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the metallochaperone antioxidant-1 (Atox1) gene sequence in Wilson disease patients.
METHODS: Mutation analysis of the four exons of the Atox1 gene including the intron- exon boundaries was performed in 63 Wilson disease patients by direct sequencing.
RESULTS: From 63 selected patients no mutations were identified after the entire coding region including the intron- exon boundaries of Atox1 were sequenced. One known polymorphism within the Atox1 gene (5’UTR -99 T>C) in 31 (49%) of the Wilson patients as well as one previously undescribed variation (5’UTR -68 C>T) in 2 of the Wilson patients could be detected. Statistical analyses revealed that the existence of a variation within the Atox1- gene showed a tendency towards an earlier onset of the disease.
CONCLUSION: Based on the data of this study, no major role can be attributed to Atox1 in the pathophysiology or clinical variation of Wilson disease.
Collapse
|
38
|
Miras R, Morin I, Jacquin O, Cuillel M, Guillain F, Mintz E. Interplay between glutathione, Atx1 and copper. 1. Copper(I) glutathionate induced dimerization of Atx1. J Biol Inorg Chem 2007; 13:195-205. [PMID: 17957393 DOI: 10.1007/s00775-007-0310-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 10/07/2007] [Indexed: 12/30/2022]
Abstract
Copper is both an essential element as a catalytic cofactor and a toxic element because of its redox properties. Once in the cell, Cu(I) binds to glutathione (GSH) and various thiol-rich proteins that sequester and/or exchange copper with other intracellular components. Among them, the Cu(I) chaperone Atx1 is known to deliver Cu(I) to Ccc2, the Golgi Cu-ATPase, in yeast. However, the mechanism for Cu(I) incorporation into Atx1 has not yet been unraveled. We investigated here a possible role of GSH in Cu(I) binding to Atx1. Yeast Atx1 was expressed in Escherichia coli and purified to study its ability to bind Cu(I). We found that with an excess of GSH [at least two GSH/Cu(I)], Atx1 formed a Cu(I)-bridged dimer of high affinity for Cu(I), containing two Cu(I) and two GSH, whereas no dimer was observed in the absence of GSH. The stability constants (log beta) of the Cu(I) complexes measured at pH 6 were 15-16 and 49-50 for CuAtx1 and Cu (2) (I) (GS(-))(2)(Atx1)(2), respectively. Hence, these results suggest that in vivo the high GSH concentration favors Atx1 dimerization and that Cu (2) (I) (GS(-))(2)(Atx1)(2) is the major conformation of Atx1 in the cytosol.
Collapse
Affiliation(s)
- Roger Miras
- Laboratoire de Chimie et Biologie des Métaux, CEA, DSV, iRTSV, 17 rue des Martyrs, Grenoble, 38054, France
| | | | | | | | | | | |
Collapse
|