1
|
Mei Y, Wang L, Chen T, Song C, Cheng K, Cai W, Zhou D, Gao S, Jiang F, Liu S, Liu Z. Ferroptosis: A New Direction in the Treatment of Intervertebral Disc Degeneration. Cell Biochem Biophys 2024:10.1007/s12013-024-01468-6. [PMID: 39102089 DOI: 10.1007/s12013-024-01468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Intervertebral disc degeneration (IVDD) is one of the most common musculoskeletal disorders in middle-aged and elderly people, and lower back pain (LBP) is the main clinical symptom [1, 2], which often causes significant pain and great economic burden to patients [3]. The current molecular mechanisms of IVDD include extracellular matrix degradation, cellular pyroptosis, apoptosis, necrotic apoptosis, senescence, and the newly discovered ferroptosis [4, 5], among which ferroptosis, as a new hot spot of research, has a non-negligible role in IVDD. Ferroptosis is an iron-dependent cell death caused by lipid peroxide accumulation [6]. Its main mechanism is cell death caused by lipid peroxidation by oxygen radicals due to iron overload and inhibition of pathways such as SLC7A11-GSH-GPX4. Currently, more and more studies have found a close relationship between IVDD and ferroptosis [7]. In the process of ferroptosis, the most important factors are abnormal iron metabolism, increased ROS, lipid peroxidation, and abnormal proteins such as GSH, GPX4, and system XC-. Our group has previously elucidated the pathogenesis of IVDD in terms of extracellular matrix degradation, myeloid cell senescence and pyroptosis, apoptosis, and inflammatory immunity. Therefore, this time, we will use ferroptosis as an entry point to discover the new mechanism of IVDD and provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Yongliang Mei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liquan Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ting Chen
- Department of Critical Care Medicine, Luzhou maternal's and Children's Health Hospital, Luzhou, 646000, Sichuan, China
| | - Chao Song
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Kang Cheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Weiye Cai
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Daqian Zhou
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Silong Gao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feng Jiang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shigui Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Third People's Hospital of Luzhou, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
3
|
Chakraborty S, Chen P, Bornhorst J, Schwerdtle T, Schumacher F, Kleuser B, Bowman AB, Aschner M. Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans. Metallomics 2015; 7:847-56. [PMID: 25769119 DOI: 10.1039/c5mt00052a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overexposure to the essential metal manganese (Mn) can result in an irreversible condition known as manganism that shares similar pathophysiology with Parkinson's disease (PD), including dopaminergic (DAergic) cell loss that leads to motor and cognitive impairments. However, the mechanisms behind this neurotoxicity and its relationship with PD remain unclear. Many genes confer risk for autosomal recessive, early-onset PD, including the parkin/PARK2 gene that encodes for the E3 ubiquitin ligase Parkin. Using Caenorhabditis elegans (C. elegans) as an invertebrate model that conserves the DAergic system, we previously reported significantly increased Mn accumulation in pdr-1/parkin mutants compared to wildtype (WT) animals. For the current study, we hypothesize that this enhanced accumulation is due to alterations in Mn transport in the pdr-1 mutants. While no change in mRNA expression of the major Mn importer proteins (smf-1-3) was found in pdr-1 mutants, significant downregulation in mRNA levels of the putative Mn exporter ferroportin (fpn-1.1) was observed. Using a strain overexpressing fpn-1.1 in worms lacking pdr-1, we show evidence for attenuation of several endpoints of Mn-induced toxicity, including survival, metal accumulation, mitochondrial copy number and DAergic integrity, compared to pdr-1 mutants alone. These changes suggest a novel role of pdr-1 in modulating Mn export through altered transporter expression, and provides further support of metal dyshomeostasis as a component of Parkinsonism pathophysiology.
Collapse
Affiliation(s)
- Sudipta Chakraborty
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Lenartowicz M, Starzyński RR, Krzeptowski W, Grzmil P, Bednarz A, Ogórek M, Pierzchała O, Staroń R, Gajowiak A, Lipiński P. Haemolysis and perturbations in the systemic iron metabolism of suckling, copper-deficient mosaic mutant mice - an animal model of Menkes disease. PLoS One 2014; 9:e107641. [PMID: 25247420 PMCID: PMC4172471 DOI: 10.1371/journal.pone.0107641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/13/2014] [Indexed: 01/25/2023] Open
Abstract
The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism.
Collapse
Affiliation(s)
- Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Aleksandra Bednarz
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Mateusz Ogórek
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Olga Pierzchała
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Robert Staroń
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Anna Gajowiak
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| |
Collapse
|
5
|
Abstract
Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states.
Collapse
Affiliation(s)
- Sukru Gulec
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611;
| | | |
Collapse
|
6
|
Eleftheriadis T, Pissas G, Antoniadi G, Filippidis G, Golfinopoulos S, Spanoulis A, Liakopoulos V, Stefanidis I. Serum copper and ferroportin in monocytes of hemodialysis patients are both decreased but unassociated. Int Urol Nephrol 2014; 46:1825-31. [PMID: 24806658 DOI: 10.1007/s11255-014-0725-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE Disturbed iron homeostasis contributes to resistance to recombinant human erythropoietin (rHuEpo) in hemodialysis (HD) patients. Although increased hepcidin, which downregulates the iron exporter ferroportin, had been incriminated, such an association has not been confirmed. Albeit not universally accepted, it has been supported that in case of copper deficiency, decreased activity of multicopper oxidases induces endocytosis and degradation of ferroportin. Ferroportin in monocytes, serum copper, ceruloplasmin and markers of iron status were measured, and associations with rHuEpo resistance index (ERI) were evaluated. METHODS After a 4-week washout period from iron treatment, 34 HD patients and 20 healthy volunteers enrolled in the study. Ferroportin was assessed by means of Western blotting, copper colorimetrically, whereas ceruloplasmin with enzyme-linked immunosorbent assay. Hemoglobin, serum iron, ferritin and transferrin saturation (TSAT) were also measured. RESULTS Ferroportin in monocytes of HD patients was decreased. Serum copper, ceruloplasmin, iron and TSAT were decreased. No correlation between copper or ceruloplasmin and ferroportin was detected. ERI was negatively correlated with ferroportin and all the markers of iron adequacy, but not with copper or ceruloplasmin. CONCLUSION Although copper deficiency and decreased ferroportin are common in HD patients, copper might not play role in ferroportin level in monocytes and in iron metabolism in this population.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Medical School, University of Thessaly, Neo Ktirio, Mezourlo Hill, 411 10, Larissa, Greece,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Gulec S, Collins JF. Investigation of iron metabolism in mice expressing a mutant Menke's copper transporting ATPase (Atp7a) protein with diminished activity (Brindled; Mo (Br) (/y) ). PLoS One 2013; 8:e66010. [PMID: 23776592 PMCID: PMC3679098 DOI: 10.1371/journal.pone.0066010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/29/2013] [Indexed: 12/13/2022] Open
Abstract
During iron deficiency, perturbations in copper homeostasis have frequently been documented. Previous studies in iron-deprived rats demonstrated that enterocyte and hepatic copper levels increase and a copper transporter (the Menkes Copper ATPase; Atp7a) is induced in the duodenal epithelium in parallel to iron transport-related genes (e.g. Dmt1, Dcytb, Fpn1). Moreover, two ferroxidase proteins involved in iron homeostasis, hephaestin expressed in enterocytes and ceruloplasmin, produced and secreted into blood by the liver, are copper-dependent enzymes. We thus aimed to test the hypothesis that Atp7a function is important for the copper-related compensatory response of the intestinal epithelium to iron deficiency. Accordingly, iron homeostasis was studied for the first time in mice expressing a mutant Atp7a protein with minimal activity (Brindled [MoBr/y]). Mutant mice were rescued by perinatal copper injections, and, after a 7–8 week recovery period, were deprived of dietary iron for 3 weeks (along with WT littermates). Adult MoBr/y mice displayed copper-deficiency anemia but had normal iron status; in contrast, iron-deprived MoBr/y mice were iron deficient and more severely anemic with partial amelioration of the copper-deficient phenotype. Intestinal iron absorption in both genotypes (WT and MoBr/y) increased ∼3-fold when mice consumed a low-iron diet and ∼6-fold when mice were concurrently bled. WT mice exhibited no alterations in copper homeostasis in response to iron deprivation or phlebotomy. Conversely, upregulation of iron absorption was associated with increased enterocyte and liver copper levels and serum ferroxidase (ceruloplasmin) activity in MoBr/y mice, typifying the response to iron deprivation in many mammalian species. We thus speculate that a copper threshold exists that is necessary to allow appropriate regulate of iron absorption. In summary, MoBr/y mice were able to adequately regulate iron absorption, but unlike in WT mice, concurrent increases in enterocyte and liver copper levels and serum ferroxidase activity may have contributed to maintenance of iron homeostasis.
Collapse
Affiliation(s)
- Sukru Gulec
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, United States of America
| | - James F. Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
8
|
Matak P, Zumerle S, Mastrogiannaki M, El Balkhi S, Delga S, Mathieu JRR, Canonne-Hergaux F, Poupon J, Sharp PA, Vaulont S, Peyssonnaux C. Copper deficiency leads to anemia, duodenal hypoxia, upregulation of HIF-2α and altered expression of iron absorption genes in mice. PLoS One 2013; 8:e59538. [PMID: 23555700 PMCID: PMC3610650 DOI: 10.1371/journal.pone.0059538] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/15/2013] [Indexed: 01/25/2023] Open
Abstract
Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter - Dmt1) and ferric reductase - Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency.
Collapse
Affiliation(s)
- Pavle Matak
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Department of Pharmacology and Cancer Biology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sara Zumerle
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria Mastrogiannaki
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Stephanie Delga
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jacques R. R. Mathieu
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - François Canonne-Hergaux
- INSERM U1043-CPTP, Toulouse, France
- CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Joel Poupon
- Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, Paris, France
| | - Paul A. Sharp
- King’s College London, Diabetes & Nutritional Sciences Division, London, United Kingdom
| | - Sophie Vaulont
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Carole Peyssonnaux
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Regulatory effects of Cu, Zn, and Ca on Fe absorption: the intricate play between nutrient transporters. Nutrients 2013; 5:957-70. [PMID: 23519291 PMCID: PMC3705329 DOI: 10.3390/nu5030957] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/08/2013] [Accepted: 03/15/2013] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential nutrient for almost every living organism because it is required in a number of biological processes that serve to maintain life. In humans, recycling of senescent erythrocytes provides most of the daily requirement of iron. In addition, we need to absorb another 1–2 mg Fe from the diet each day to compensate for losses due to epithelial sloughing, perspiration, and bleeding. Iron absorption in the intestine is mainly regulated on the enterocyte level by effectors in the diet and systemic regulators accessing the enterocyte through the basal lamina. Recently, a complex meshwork of interactions between several trace metals and regulatory proteins was revealed. This review focuses on advances in our understanding of Cu, Zn, and Ca in the regulation of iron absorption. Ascorbate as an important player is also considered.
Collapse
|
10
|
Broderius M, Mostad E, Prohaska JR. Suppressed hepcidin expression correlates with hypotransferrinemia in copper-deficient rat pups but not dams. GENES & NUTRITION 2012; 7:405-14. [PMID: 22457245 PMCID: PMC3380187 DOI: 10.1007/s12263-012-0293-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/10/2012] [Indexed: 12/21/2022]
Abstract
Copper deficiency leads to anemia but the mechanism is unknown. Copper deficiency also leads to hypoferremia, which may limit erythropoiesis. The hypoferremia may be due to limited function of multicopper oxidases (MCO) hephaestin in enterocytes or GPI-ceruloplasmin in macrophages of liver and spleen whose function as a ferroxidase is thought essential for iron transfer out of cells. Iron release may also be limited by ferroportin (Fpn), the iron efflux transporter. Fpn may be lower following copper deficiency because of impaired ferroxidase activity of MCO. Fpn is also dependent on the liver hormone hepcidin as Fpn is degraded when hepcidin binds to Fpn. Anemia and hypoferremia both down regulate hepcidin by separate mechanisms. Current studies confirmed and extended earlier studies with copper-deficient (CuD) rats that suggested low hepicidin resulted in augmented Fpn. However, current studies in CuD dams failed to confirm a correlation that hepcidin expression was associated with low transferrin receptor 2 (TfR2) levels and also challenged the dogma that holotransferrin can explain the correlation with hepcidin. CuD dams exhibited hypoferremia, low liver TfR2, anemia in some rats, yet no depression in Hamp expression, the hepcidin gene. Normal levels of GDF-15, the putative erythroid cytokine that suppresses hepcidin, were detected in plasma of CuD and iron-deficient (FeD) dams. Importantly, FeD dams did display greatly lower Hamp expression. Normal hepcidin in these CuD dams is puzzling since these rats may need extra iron to meet needs of lactation and the impaired iron transfer noted previously.
Collapse
Affiliation(s)
- Margaret Broderius
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, 1035 University Drive, Duluth, MN 55812 USA
| | - Elise Mostad
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, 1035 University Drive, Duluth, MN 55812 USA
| | - Joseph R. Prohaska
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, 1035 University Drive, Duluth, MN 55812 USA
| |
Collapse
|