1
|
Sreekumar A, Kumar A, Biswas R, Biswas L. Emerging and alternative strategies for the treatment of nontuberculous mycobacterial infections. Expert Rev Anti Infect Ther 2024:1-19. [PMID: 39161153 DOI: 10.1080/14787210.2024.2395003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Nontuberculous mycobacteria (NTM) infections have emerged as a significant clinical challenge due to their intrinsic multidrug resistance and the limited efficacy of existing treatments. These infections are becoming increasingly prevalent, with a need for new and effective therapeutic strategies. AREAS COVERED This review addresses several key aspects of NTM infections: i) pathogenesis and epidemiology; ii) the limitations and challenges of current treatment options; iii) emerging and alternative therapeutic strategies; iv) advanced drug delivery systems such as nanoparticles and efflux pump inhibitors; v) innovative antibacterial alternatives like antimicrobial peptides, bacteriophage therapy, and phytochemicals; and vi) other potential treatment modalities such as inhaled nitric oxide, small molecules, surgical debridement, phototherapy, and immunomodulatory therapy. EXPERT OPINION Personalized medicine, advanced drug delivery systems, and alternative therapies hold promise for the future of NTM treatment. Early and accurate identification of NTM species, enabled by improved diagnostic methods, is critical for tailoring treatment regimens. Emerging therapies show promise against drug-resistant NTM strains, but overcoming barriers like clinical trials, regulatory hurdles, and high production costs is crucial. Continued research and innovation are essential to improve treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
| | - Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Raja Biswas
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lalitha Biswas
- Amrita Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
2
|
Siqueira FDS, Siqueira JD, Denardi LB, Moreira KS, Lima Burgo TA, de Lourenço Marques L, Machado AK, Davidson CB, Chaves OA, Anraku de Campos MM, Back DF. Antibacterial, antifungal, and anti-biofilm effects of sulfamethoxazole-complexes against pulmonary infection agents. Microb Pathog 2023; 175:105960. [PMID: 36587926 DOI: 10.1016/j.micpath.2022.105960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Antibiotic resistance associated with pulmonary infection agents has become a public health problem, being considered one of the main priorities for immediate resolution. Thus, to increase the therapeutic options in the fight against resistant microorganisms, the synthesis of molecules from pre-existing drugs has shown to be a promising alternative. In this sense, the present work reports the synthesis, characterization, and biological evaluation (against fungal and bacterial agents that cause lung infections) of potential metallodrugs based on sulfamethoxazole complexed with AuI, AgI, HgII, CdII, NiII, and CuII. The minimal inhibitory concentration (MIC) value was used to evaluate the antifungal and antibacterial properties of the compounds. In addition, it was also evaluated the antibiofilm capacity in Pseudomonas aeruginosa, through the quantification of its biomass and visualization using atomic force microscopy. For each case, molecular docking calculations were carried out to suggest the possible biological target of the assayed inorganic complexes. Our results indicated that the novel inorganic complexes are better antibacterial and antifungal than the commercial antibiotic sulfamethoxazole, highlighting the AgI-complex, which was able to inhibit the growth of microorganisms that cause lung diseases with concentrations in the 2-8 μg mL-1 range, probably at targeting dihydropteroate synthetase - a key enzyme involved in the folate synthesis. Furthermore, sulfamethoxazole complexes were able to inhibit the formation of bacterial biofilms at significantly lower concentrations than free sulfamethoxazole, probably mainly targeting the active site of LysR-type transcriptional regulator (PqsR). Overall, the present study reports preliminary results that demonstrate the derivatization of sulfamethoxazole with transition metal cations to obtain potential metallodrugs with applications as antimicrobial and antifungal against pulmonary infections, being an alternative for drug-resistant strains.
Collapse
Affiliation(s)
- Fallon Dos Santos Siqueira
- Mycobacteriology Laboratory, Graduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Josiéli Demetrio Siqueira
- Inorganic Materials Laboratory, Graduate Program in Chemistry, Department of Chemistry Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Laura Bedin Denardi
- Mycobacteriology Laboratory, Graduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Kelly Schneider Moreira
- Coulomb Electrostatic and Mechanochemical Laboratory, Graduate Program in Chemistry, Department of Chemistry, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Thiago Augusto Lima Burgo
- Coulomb Electrostatic and Mechanochemical Laboratory, Graduate Program in Chemistry, Department of Chemistry, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Lenice de Lourenço Marques
- Inorganic Materials Laboratory, Graduate Program in Chemistry, Department of Chemistry Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil
| | - Alencar Kolinski Machado
- Laboratory of Genetics and Cell Culture, Graduate Program in Nanosciences, Franciscan University, Andradas' Street, 1614, zip code:, 97010-032, Santa Maria, Brazil
| | - Carolina Bordin Davidson
- Laboratory of Genetics and Cell Culture, Graduate Program in Nanosciences, Franciscan University, Andradas' Street, 1614, zip code:, 97010-032, Santa Maria, Brazil
| | - Otávio Augusto Chaves
- Coimbra Chemistry Center - Institute of Molecular Sciences (CQC-IMS), Faculty of Science and Technology, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Marli Matiko Anraku de Campos
- Mycobacteriology Laboratory, Graduate Program in Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil.
| | - Davi Fernando Back
- Inorganic Materials Laboratory, Graduate Program in Chemistry, Department of Chemistry Federal University of Santa Maria, Roraima Avenue 1000, zip code:, 97105-900, Santa Maria, Brazil.
| |
Collapse
|
3
|
Dermody R, Ali F, Popovich J, Chen S, Seo DK, Haydel SE. Modified aluminosilicates display antibacterial activity against nontuberculous mycobacteria and adsorb mycolactone and Mycobacterium ulcerans in vitro. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.1016426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mycobacterium ulcerans (MU) infection of skin and soft tissue leads to chronic skin ulceration known as Buruli ulcer. MU releases a lipid-like toxin, mycolactone, that diffuses into the tissue, effecting disease through localized tissue necrosis and immunosuppression. Cutaneous Buruli ulcer wounds slowly advance from a painless pre-ulcerative stage to an ulcerative lesion, leading to disparities in the timing of medical intervention and treatment outcomes. Novel Buruli ulcer wound management solutions could complement and supplement systemically administered antimicrobials and reduce time to healing. Capitalizing on nanopore structure, adsorption, and exchange capacities, aluminosilicate nanozeolites (nZeos) and geopolymers (GPs) were developed and investigated in the context of therapeutics for mycobacterial disease ulcerative wound care. nZeos were ion exchanged with copper or silver to assess the antimicrobial activity against MU and Mycobacterium marinum, a rapid growing, genetic ancestor of MU that also causes skin and soft tissue infections. Silver- and copper-exchanged nZeos were bactericidal against MU, while only silver-exchanged nZeos killed M. marinum. To mediate adsorption at a biological scale, GPs with different pore sizes and altered surface modifications were generated and assessed for the ability to adsorb MU and mycolactone. Macroporous GPs with and without stearic acid modification equivalently adsorbed MU cells, while mesoporous GPs with stearic acid adsorbed mycolactone toxin significantly better than mesoporous GPs or GPs modified with phenyltriethoxysilane (PTES). In cytotoxicity assays, Cu-nZeos lacked toxicity against Detroit 551, U-937, and WM-115 cells. GPs demonstrated limited cytotoxicity in Detroit 551 and WM-115, but produced time-dependent toxicity in U-937 cells. With their large surface area and adsorptive capacities, aluminosilicates nZeos and GPs may be modified and developed to support conventional BU wound care. Topical application of nZeos and GPs could kill MU within the cutaneous wound environment and physically remove MU and mycolactone with wound dressing changes, thereby improving wound healing and overall patient outcomes.
Collapse
|
4
|
Belardinelli JM, Li W, Martin KH, Zeiler MJ, Lian E, Avanzi C, Wiersma CJ, Nguyen TV, Angala B, de Moura VCN, Jones V, Borlee BR, Melander C, Jackson M. 2-Aminoimidazoles Inhibit Mycobacterium abscessus Biofilms in a Zinc-Dependent Manner. Int J Mol Sci 2022; 23:ijms23062950. [PMID: 35328372 PMCID: PMC8951752 DOI: 10.3390/ijms23062950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Biofilm growth is thought to be a significant obstacle to the successful treatment of Mycobacterium abscessus infections. A search for agents capable of inhibiting M. abscessus biofilms led to our interest in 2-aminoimidazoles and related scaffolds, which have proven to display antibiofilm properties against a number of Gram-negative and Gram-positive bacteria, including Mycobacterium tuberculosis and Mycobacterium smegmatis. The screening of a library of 30 compounds led to the identification of a compound, AB-2-29, which inhibits the formation of M. abscessus biofilms with an IC50 (the concentration required to inhibit 50% of biofilm formation) in the range of 12.5 to 25 μM. Interestingly, AB-2-29 appears to chelate zinc, and its antibiofilm activity is potentiated by the addition of zinc to the culture medium. Preliminary mechanistic studies indicate that AB-2-29 acts through a distinct mechanism from those reported to date for 2-aminoimidazole compounds.
Collapse
Affiliation(s)
- Juan M. Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Kevin H. Martin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (K.H.M.); (B.R.B.)
| | - Michael J. Zeiler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.Z.); (C.M.)
| | - Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Crystal J. Wiersma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Tuan Vu Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA;
| | - Bhanupriya Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Vinicius C. N. de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
| | - Bradley R. Borlee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (K.H.M.); (B.R.B.)
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.J.Z.); (C.M.)
- Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA;
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.M.B.); (W.L.); (E.L.); (C.A.); (C.J.W.); (B.A.); (V.C.N.d.M.); (V.J.)
- Correspondence: ; Tel.: +1-(970)-491-3582
| |
Collapse
|
5
|
Guterres KB, Rossi GG, de Campos MMA, Moreira KS, Burgo TAL, Iglesias BA. Nanomolar effective and first report of tetra-cationic silver(II) porphyrins against non-tuberculous mycobacteria in antimicrobial photodynamic approaches. Photodiagnosis Photodyn Ther 2022; 38:102770. [DOI: 10.1016/j.pdpdt.2022.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
|
6
|
Abstract
Rapidly growing mycobacteria (RGM) causing infections by biofilm formation. Semi-quantitative method of biofilm formation was adapted for macrotechnics. Sulphonamides complexed with metals is a promising anti-adhesion agent. Sulphonamides complexed with metal is a possible inhibitor of signaling of biofilm formation.
Rapidly growing mycobacteria (RGM) are found in non-sterile water and often associated with severe post-surgical infections and affect immunocompromised patients. In addition, RGM can prevent the host's immune response and have the ability to adhere to and form biofilms on biological and synthetic substrates, making pharmacological treatment difficult because conventional antimicrobials are ineffective against biofilms. Thus, there is an urgent need for new antimicrobial compounds that can overcome these problems. In this context, sulfonamides complexed with Au, Cd, Ag, Cu, and Hg have shown excellent activity against various microorganisms. Considering the importance of combating RGM-associated infections, this study aimed to evaluate the activity of sulfonamide metal complexes against RGM biofilm. The sulfonamides were tested individually for their ability to inhibit mycobacterial formation and destroy the preformed biofilm of standard RGM strains, such as Mycobacterium abscessus, M. fortuitum, and M. massiliense. All sulfonamides complexed with metals could reduce, at subinhibitory concentrations, the adhesion and biofilm formation of three RGM species in polystyrene tubes. It is plausible that the anti-biofilm capacity of the compounds is due to the inhibition of c-di-GMP synthesis, which is an important signal for RGM biofilm formation. Hence, the impacts and scientific contribution of this study are based on the discovery of a potential new therapeutic option against RGM-associated biofilm infections. Sulfonamides complexed with metals have proven to be a useful and promising tool to reduce microbial adhesion on inert surfaces, stimulating the improvement of methodologies to insert compounds as new antibacterial and coating agents for medical and hospital materials.
Collapse
|
7
|
Stenger‐Smith JR, Mascharak PK. Gold Drugs with {Au(PPh
3
)}
+
Moiety: Advantages and Medicinal Applications. ChemMedChem 2020; 15:2136-2145. [DOI: 10.1002/cmdc.202000608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Jenny R. Stenger‐Smith
- Department of Chemistry and Biochemistry University of California, Santa Cruz 1156 High Street Santa Cruz CA 95064 USA
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry University of California, Santa Cruz 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
8
|
Metal center ion effects on photoinactivating rapidly growing mycobacteria using water-soluble tetra-cationic porphyrins. Biometals 2020; 33:269-282. [PMID: 32980947 DOI: 10.1007/s10534-020-00251-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
Rapidly growing mycobacteria (RGM) are pathogens that belong to the mycobacteriaceae family and responsible for causing mycobacterioses, which are infections of opportunistic nature and with increasing incidence rates in the world population. This work evaluated the use of six water-soluble cationic porphyrins as photosensitizers for the antimicrobial photodynamic therapy (aPDT) of four RGM strains: Mycolicibacterium fortuitum, Mycolicibacterium smeagmatis, Mycobacteroides abscessus subs. Abscessus, and Mycobacteroides abscessus subsp. massiliense. Experiments were conducted with an adequate concentration of photosensitizer under white-light irradiation conditions over 90 min and the results showed that porphyrins 1 and 2 (M = 2H or ZnII ion) were the most effective and significantly reduced the concentration of viable mycobacteria. The present work shows the result is dependent on the metal-center ion coordinated in the cationic porphyrin core. Moreover, we showed by atomic force microscopy (AFM) the possible membrane photodamage caused by reactive oxygen species and analyzed the morphology and adhesive force properties. Tetra-positively charged and water-soluble metalloporphyrins may be promising antimycobacterial aPDT agents with potential applications in medical clinical cases and bioremediation.
Collapse
|
9
|
Yufanyi DM, Abbo HS, Titinchi SJ, Neville T. Platinum(II) and Ruthenium(II) complexes in medicine: Antimycobacterial and Anti-HIV activities. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Recent Studies on the Antimicrobial Activity of Transition Metal Complexes of Groups 6–12. CHEMISTRY-SWITZERLAND 2020. [DOI: 10.3390/chemistry2020026] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antimicrobial resistance is an increasingly serious threat to global public health that requires innovative solutions to counteract new resistance mechanisms emerging and spreading globally in infectious pathogens. Classic organic antibiotics are rapidly exhausting the structural variations available for an effective antimicrobial drug and new compounds emerging from the industrial pharmaceutical pipeline will likely have a short-term and limited impact before the pathogens can adapt. Inorganic and organometallic complexes offer the opportunity to discover and develop new active antimicrobial agents by exploiting their wide range of three-dimensional geometries and virtually infinite design possibilities that can affect their substitution kinetics, charge, lipophilicity, biological targets and modes of action. This review describes recent studies on the antimicrobial activity of transition metal complexes of groups 6–12. It focuses on the effectiveness of the metal complexes in relation to the rich structural chemical variations of the same. The aim is to provide a short vade mecum for the readers interested in the subject that can complement other reviews.
Collapse
|
11
|
Stenger-Smith J, Kamariza M, Chakraborty I, Ouattara R, Bertozzi CR, Mascharak PK. Enhanced Bactericidal Effects of Pyrazinamide Toward Mycobacterium smegmatis and Mycobacterium tuberculosis upon Conjugation to a {Au(I)-triphenylphosphine} + Moiety. ACS OMEGA 2020; 5:6826-6833. [PMID: 32258918 PMCID: PMC7114878 DOI: 10.1021/acsomega.0c00071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
As part of the quest for new gold drugs, we have explored the efficacy of three gold complexes derived from the tuberculosis drug pyrazinamide (PZA), namely, the gold(I) complex [Au(PPh3)(PZA)]OTf (1, OTf = trifluoromethanesulfonate) and two gold(III) complexes [Au(PZA)Cl2] (2) and [Au(PZO)Cl2] (3, PZO = pyrazinoic acid, the metabolic product of PZA) against two mycobacteria, Mycobacterium tuberculosis and Mycobacterium smegmatis. Only complex 1 with the {Au(PPh3)}+ moiety exhibits significant bactericidal activity against both strains. In the presence of thiols, 1 gives rise to free PZA and {Au(PPh3)}-thiol polymeric species. A combination of PZA and the {Au(PPh3)}-thiol polymeric species appears to lead to enhanced efficacy of 1 against M. tuberculosis.
Collapse
Affiliation(s)
- Jenny Stenger-Smith
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Mireille Kamariza
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Indranil Chakraborty
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Ramatoulaye Ouattara
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Carolyn R. Bertozzi
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Pradip K. Mascharak
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| |
Collapse
|
12
|
Mizdal CR, Stefanello ST, Nogara PA, Antunes Soares FA, de Lourenço Marques L, de Campos MMA. Molecular docking, and anti-biofilm activity of gold-complexed sulfonamides on Pseudomonas aeruginosa. Microb Pathog 2018; 125:393-400. [DOI: 10.1016/j.micpath.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
|
13
|
The antibacterial and anti-biofilm activity of gold-complexed sulfonamides against methicillin-resistant Staphylococcus aureus. Microb Pathog 2018; 123:440-448. [DOI: 10.1016/j.micpath.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/03/2018] [Accepted: 08/03/2018] [Indexed: 01/15/2023]
|
14
|
Siqueira FDS, Rossi GG, Machado AK, Alves CFS, Flores VC, Somavilla VD, Agertt VA, Siqueira JD, Dias RDS, Copetti PM, Sagrillo MR, Back DF, de Campos MMA. Sulfamethoxazole derivatives complexed with metals: a new alternative against biofilms of rapidly growing mycobacteria. BIOFOULING 2018; 34:893-911. [PMID: 30418037 DOI: 10.1080/08927014.2018.1514497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biofilms are considered important sources of infections on biomedical surfaces, and most infections involving biofilm formation are associated with medical device implants. Therefore, there is an urgent need for new antimicrobial compounds that can combat microbial resistance associated with biofilm formation. In this context, this work aimed to evaluate the antibiofilm action of sulfamethoxazole complexed with Au, Cd, Cu, Ni and Hg on rapidly growing mycobacteria (RGM), as well as to evaluate their safety through cytotoxic assays. The results demonstrate potentiation of the novel compounds in antibiofilm activity, mainly in the complex with Au, which was able to completely inhibit biofilm formation and had the capacity to destroy the biofilm at all the concentrations tested. All cytotoxic data suggest that the majority of sulfamethoxazole metallic derivatives are antimicrobial alternatives, as well as safe molecules, which could be used as potential therapeutic agents for bacterial and biofilm elimination.
Collapse
Affiliation(s)
- Fallon Dos Santos Siqueira
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Grazielle Guidolin Rossi
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | | | | - Vanessa Costa Flores
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Viviane Drescher Somavilla
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Vanessa Albertina Agertt
- a Graduate Program in Pharmaceutical Sciences , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | | - Renne de Sousa Dias
- c Graduate Program in Chemistry , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | | | | - Davi Fernando Back
- c Graduate Program in Chemistry , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | | |
Collapse
|
15
|
Mondal S, Mondal TK, Rajesh Y, Mandal M, Sinha C. Copper(II)-sulfonamide Schiff base complexes: Structure, biological activity and theoretical interpretation. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Evidence for Inhibition of Topoisomerase 1A by Gold(III) Macrocycles and Chelates Targeting Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob Agents Chemother 2018; 62:AAC.01696-17. [PMID: 29483110 DOI: 10.1128/aac.01696-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/08/2018] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium tuberculosis and the fast-growing species Mycobacterium abscessus are two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistant M. tuberculosis strains and the high level of intrinsic resistance of M. abscessus call for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), against M. abscessus and M. tuberculosis We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicating in vitro conditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverse M. tuberculosis and M. abscessus clinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target the M. tuberculosis gyrase. In vitro enzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity against M. tuberculosis and M. abscessus that act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.
Collapse
|
17
|
Antibiofilm activity of nanoemulsions of Cymbopogon flexuosus against rapidly growing mycobacteria. Microb Pathog 2017; 113:335-341. [DOI: 10.1016/j.micpath.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/23/2022]
|