1
|
Gallardo M, Arancibia R, Jiménez C, Wilkinson S, Toro PM, Roussel P, Henry N. Ferrocene-based nitroheterocyclic sulfonylhydrazones: design, synthesis, characterization and trypanocidal properties. J Biol Inorg Chem 2023; 28:549-558. [PMID: 37462740 DOI: 10.1007/s00775-023-02010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023]
Abstract
A series of new ferrocenyl nitroheterocyclic sulfonylhydrazones (1a-4a and 1b-2b) were prepared by the reaction between formyl (R = H) or acetyl (R = CH3) nitroheterocyclic precursors [4/5-NO2(C5H2XCOR), where X = O, S)] and ferrocenyl tosyl hydrazine [(η5-C5H5)Fe(η5-C5H4SO2-NH-NH2)]. All compounds were characterized by conventional spectroscopic techniques. In the solid state, the molecular structures of compounds 1a, 2b, and 3a were determined by single-crystal X-ray diffraction. The compounds showed an E-configuration around the C=N moiety. Evaluation of trypanocidal activity, measured in vitro against the Trypanosoma cruzi and Trypanosoma brucei strains, indicated that all organometallic tosyl hydrazones displayed activity against both parasite species with a higher level of potency toward T. brucei than T. cruzi. Moreover, the biological evaluation showed that the 5-nitroheterocyclic derivatives were more efficient trypanocidal agents than their 4-nitroheterocyclic counterparts.
Collapse
Affiliation(s)
- Miguel Gallardo
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Arancibia
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - Claudio Jiménez
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Shane Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Patricia M Toro
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca, Chile
| | - Pascal Roussel
- Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, Univ. Artois,, Lille, France
| | - Natacha Henry
- Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, Univ. Artois,, Lille, France
| |
Collapse
|
2
|
Moroni AB, Calvo NL, Kaufman TS. Selected Aspects of the Analytical and Pharmaceutical Profiles of Nifurtimox. J Pharm Sci 2023; 112:1523-1538. [PMID: 36822273 DOI: 10.1016/j.xphs.2023.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Nifurtimox is a nitroheterocyclic drug employed for treatment of trypanosomiases (Chagas disease and West African sleeping sickness); its use for certain cancers has also been assessed. Despite having been in the market for over 50 years, knowledge of nifurtimox is still fragmentary and incomplete. Relevant aspects of the chemistry and biology of nifurtimox are reviewed to summarize the current knowledge of this drug. These comprise its chemical synthesis and the preparation of some analogues, as well as its chemical degradation. Selected physical data and physicochemical properties are also listed, along with different approaches toward the analytical characterization of the drug, including electrochemical (polarography, cyclic voltammetry), spectroscopic (ultraviolet-visible, nuclear magnetic resonance, electron spin resonance), and single crystal X-ray diffractometry. The array of polarographic, ultraviolet-visible spectroscopic, and chromatographic methods available for the analytical determination of nifurtimox (in bulk drug, pharmaceutical formulations, and biological samples), are also presented and discussed, along with chiral chromatographic and electrophoretic alternatives for the separation of the enantiomers of the drug. Aspects of the drug likeliness of nifurtimox, its classification in the Biopharmaceutical Classification System, and available pharmaceutical formulations are detailed, whereas pharmacological, chemical, and biological aspects of its metabolism and disposition are discussed.
Collapse
Affiliation(s)
- Aldana B Moroni
- Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario e Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina
| | - Natalia L Calvo
- Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario e Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina
| | - Teodoro S Kaufman
- Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario e Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina.
| |
Collapse
|
3
|
Yujiao H, Xinyu T, Xue F, Zhe L, Lin P, Guangliang S, Shu L. Selenium deficiency increased duodenal permeability and decreased expression of antimicrobial peptides by activating ROS/NF-κB signal pathway in chickens. Biometals 2023; 36:137-152. [PMID: 36434352 DOI: 10.1007/s10534-022-00468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Selenium (Se) is an essential trace element for the body. Various organs of the body, including the intestine, are affected by its deficiency. Se deficiency can induce oxidative stress and inflammatory responses in the intestine. It can also increase intestinal permeability and decrease intestinal immune function in mammals. However, the detailed studies, conducted on the intestinal molecular mechanisms of Se deficiency-induced injury in poultry, are limited. This study explored the adverse effects of Se deficiency on intestinal permeability and its mechanism. A Se-deficient chicken model was established, and the morphological changes in the chicken duodenum tissues were observed using a light microscope and transmission electron microscope (TEM). Western blotting, qRT-PCR, and other methods were used to detect the expression levels of selenoproteins, oxidative stress indicators, inflammatory factors, tight junction (TJ) proteins, antimicrobial peptides, and other related indicators in intestinal tissues. The results showed that Se deficiency could decrease the expression levels of selenoproteins and antioxidant capacity, activate the nuclear factor kappa-B (NF-κB) pathway, cause inflammation, and decrease the expression levels of TJ proteins and antimicrobial peptides in the duodenum tissues. The study also demonstrated that Se deficiency could increase intestinal permeability and decrease antimicrobial peptides via reactive oxygen species (ROS)/NF-κB. This study provided a theoretical basis for the scientific prevention and control of Se deficiency in poultry. Se deficiency decreased the expression levels of selenoproteins and increased ROS levels to activate the NF-κB pathway, resulting in the production of pro-inflammatory cytokines, reducing the expression levels of TJ protein, and weakening the expression of antimicrobial peptides, which contributed to the higher intestinal permeability. Oxidative stress weakened the expression of antimicrobial peptides.
Collapse
Affiliation(s)
- He Yujiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tang Xinyu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Xue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Li Zhe
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Peng Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shi Guangliang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Navarro M, Justo RMS, Delgado GYS, Visbal G. Metallodrugs for the Treatment of Trypanosomatid Diseases: Recent Advances and New Insights. Curr Pharm Des 2021; 27:1763-1789. [PMID: 33185155 DOI: 10.2174/1381612826666201113104633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Trypanosomatid parasites are responsible for many Neglected Tropical Diseases (NTDs). NTDs are a group of illnesses that prevail in low-income populations, such as in tropical and subtropical areas of Africa, Asia, and the Americas. The three major human diseases caused by trypanosomatids are African trypanosomiasis, Chagas disease and leishmaniasis. There are known drugs for the treatment of these diseases that are used extensively and are affordable; however, the use of these medicines is limited by several drawbacks such as the development of chemo-resistance, side effects such as cardiotoxicity, low selectivity, and others. Therefore, there is a need to develop new chemotherapeutic against these tropical parasitic diseases. Metal-based drugs against NTDs have been discussed over the years as alternative ways to overcome the difficulties presented by approved antiparasitic agents. The study of late transition metal-based drugs as chemotherapeutics is an exciting research field in chemistry, biology, and medicine due to the ability to develop multitarget antiparasitic agents. The evaluation of the late transition metal complexes for the treatment of trypanosomatid diseases is provided here, as well as some insights about their mechanism of action.
Collapse
Affiliation(s)
- Maribel Navarro
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Rodrigo M S Justo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Giset Y Sánchez Delgado
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Gonzalo Visbal
- Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil
| |
Collapse
|
5
|
Huentupil Y, Chung P, Novoa N, Arancibia R, Roussel P, Oyarzo J, Klahn AH, Silva C, Calvis C, Messeguer R, Bosque R, López C. Novel multifunctional and multitarget homo- (Fe 2) and heterobimetallic [(Fe,M) with M = Re or Mn] sulfonyl hydrazones. Dalton Trans 2020; 49:12249-12265. [PMID: 32832967 DOI: 10.1039/d0dt01756f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis and characterization of the novel ferrocenyl sulfonyl hydrazide [Fe(η5-C5H5){(η5-C5H4)-S(O)2-NH-NH2}] (2) is reported. Additional studies on its reactivity using acetone or the ferrocenyl-, cyrhetrenyl- or cymantrenyl-aldehydes have allowed us to isolate and characterize [Fe(η5-C5H5){(η5-C5H4)-S(O)2-NH-N[double bond, length as m-dash]CMe2}] (3), the bis(ferrocenyl) derivative [Fe(η5-C5H5){[(η5-C5H4)-S(O)2-NH-N[double bond, length as m-dash]CH-(η5-C5H4)]Fe(η5-C5H5)}] (4) and the heterodimetallic compounds [Fe(η5-C5H5){[(η5-C5H4)-S(O)2-NH-N[double bond, length as m-dash]CH-(η5-C5H4)]M(CO)3}] with M = Re (5a) or Mn (5b). The X-ray crystal structures of compounds 3, 5a and 5b are also reported. A comparative study of their electrochemical and spectroscopic properties is also described. Additional computational calculations based on the DFT methodology have allowed us to elucidate the effect produced by the replacement of the terminal -NH2 (in 2) by the -N[double bond, length as m-dash]CMe2 (in 3) and -N[double bond, length as m-dash]CHR (in 4, 5a and 5b) moieties on the electronic distribution and to explain the differences detected in their electrochemical properties and absorption spectra. In vitro cytotoxicity studies of compounds 2, 4, 5a and 5b on the HCT-116 (colon), MCF7 and MDA-MB231 (breast) cancer cell lines reveal that compound 2 has no significant activity (IC50 > 100 μM), while its derivatives 4, 5a and 5b proved to be active in the three cancer cell lines selected in this study. The growth inhibition potency of compounds 5a and 5b against the triple negative MDA-MB231 breast cancer cell line is similar (or slightly) greater than that of cisplatin. Moreover, compounds 2, 4, 5a and 5b are less toxic than cisplatin in the normal and non-tumoral BJ fibroblasts, and the heterodimetallic complexes 5a and 5b with selective index >2.1 show an outstanding selective toxicity towards the MDA-MB231 cancer cells.
Collapse
Affiliation(s)
- Yosselin Huentupil
- Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-c, Concepción, Chile.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Paucar R, Martín-Escolano R, Moreno-Viguri E, Cirauqui N, Rodrigues CR, Marín C, Sánchez-Moreno M, Pérez-Silanes S, Ravera M, Gabano E. A step towards development of promising trypanocidal agents: Synthesis, characterization and in vitro biological evaluation of ferrocenyl Mannich base-type derivatives. Eur J Med Chem 2019; 163:569-582. [DOI: 10.1016/j.ejmech.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023]
|
7
|
Oyarzo J, Bosque R, Toro P, Silva CP, Arancibia R, Font-Bardía M, Artigas V, Calvis C, Messeguer R, Klahn AH, López C. A novel type of organometallic 2-R-2,4-dihydro-1H-3,1-benzoxazine with R = [M(η5-C5H4)(CO)3] (M = Re or Mn) units. Experimental and computational studies of the effect of substituent R on ring-chain tautomerism. Dalton Trans 2019; 48:1023-1039. [DOI: 10.1039/c8dt03265c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Novel 2-cyrhetrenyl and cymantrenyl-2,4-dihydro-1H-3,1-benzoxazines.
Collapse
|
8
|
Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases. Eur J Med Chem 2018; 155:459-482. [PMID: 29908440 DOI: 10.1016/j.ejmech.2018.05.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/21/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022]
Abstract
The development of safe and affordable antiparasitic agents effective against neglected tropical diseases is a big challenge of the drug discovery. The drugs currently employed have limitations such as poor efficacy, drug resistance or side effects. Thus, the search for new promising drugs is more and more crucial. Metal complexes and, in particular, organometallic compounds may expand the list of the drug candidates due to the peculiar attributes that the presence of the metal core add to the organic fragment (e.g., redox and structural features, ability to interact with DNA or protein targets, etc.). To date, most organometallic compounds tested as anti-neglected tropical diseases are based on similarities or activity of the organic ligands against other diseases or parasites and/or consist in modification of existing drugs combining the features of the metal moiety and the organic ligands. This review focuses on recent studies (2012-2017) on organometallic compounds in treating kinetoplastid-caused diseases such as Human African trypanosomiasis, Chagas disease and leishmaniasis. This field of research, however, still lacks exhaustive studies to identify of parasitic targets and quantitative structure-activity relationships for a rational drug design.
Collapse
|
9
|
Design of prospective antiparasitic metal-based compounds including selected organometallic cores. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Oyarzo J, Acuña A, Klahn H, Arancibia R, Silva CP, Bosque R, López C, Font-Bardía M, Calvis C, Messeguer R. Isomeric and hybrid ferrocenyl/cyrhetrenyl aldimines: a new family of multifunctional compounds. Dalton Trans 2018; 47:1635-1649. [DOI: 10.1039/c7dt04142j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Comparative experimental and theoretical studies of the properties and biological activities of the new aldimines 1 and 2 are reported.
Collapse
|
11
|
Quintana C, Silva G, Klahn AH, Artigas V, Fuentealba M, Biot C, Halloum I, Kremer L, Novoa N, Arancibia R. New cyrhetrenyl and ferrocenyl sulfonamides: Synthesis, characterization, X-ray crystallography, theoretical study and anti- Mycobacterium tuberculosis activity. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|