1
|
Gattu R, Ramesh SS, Ramesh S. Role of small molecules and nanoparticles in effective inhibition of microbial biofilms: A ray of hope in combating microbial resistance. Microb Pathog 2024; 188:106543. [PMID: 38219923 DOI: 10.1016/j.micpath.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Microbial biofilms pose a severe threat to global health, as they are associated with deadly chronic infections and antibiotic resistance. To date, very few drugs are in clinical practice that specifically target microbial biofilms. Therefore, there is an urgent need for the development of novel therapeutic options targeting biofilm-related infections. In this review, we discuss nearly seventy-five different molecular scaffolds published over the last decade (2010-2023) which have exhibited their biofilm inhibition potential. For convenience, we have classified these into five different sub-groups based on their origin and design (excluding peptides as they are placed in between small molecules and biologics), namely, heterocycles; inorganic small molecules & metal complexes; small molecules decorated nanoparticles; small molecules derived from natural products (both plant and marine sources); and small molecules designed by in-silico approach. These antibiofilm agents are capable of disrupting microbial biofilms and can offer a promising avenue for future developments in human medicine. A hitherto review of this kind will lay a platform for the researchers to find new molecular entities to curb the serious menace of antimicrobial resistance especially caused by biofilms.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Sanjay S Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India.
| |
Collapse
|
2
|
Fiore C, Lekhan A, Bordignon S, Chierotti MR, Gobetto R, Grepioni F, Turner RJ, Braga D. Mechanochemical Preparation, Solid-State Characterization, and Antimicrobial Performance of Copper and Silver Nitrate Coordination Polymers with L- and DL-Arginine and Histidine. Int J Mol Sci 2023; 24:ijms24065180. [PMID: 36982258 PMCID: PMC10049651 DOI: 10.3390/ijms24065180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The antimicrobial activity of the novel coordination polymers obtained by co-crystallizing the amino acids arginine or histidine, as both enantiopure L and racemic DL forms, with the salts Cu(NO3)2 and AgNO3 has been investigated to explore the effect of chirality in the cases of enantiopure and racemic forms. The compounds [Cu·AA·(NO3)2]CPs and [Ag·AA·NO3]CPs (AA = L-Arg, DL-Arg, L-His, DL-His) were prepared by mechanochemical, slurry, and solution methods and characterized by X-ray single-crystal and powder diffraction in the cases of the copper coordination polymers, and by powder diffraction and by solid-state NMR spectroscopy in the cases of the silver compounds. The two pairs of coordination polymers, [Cu·L-Arg·(NO3)2·H2O]CP and [Cu·DL-Arg·(NO3)2·H2O]CP, and [Cu·L-Hys·(NO3)2·H2O]CP and [Cu·DL-His·(NO3)2·H2O]CP, have been shown to be isostructural in spite of the different chirality of the amino acid ligands. A similar structural analogy could be established for the silver complexes on the basis of SSNMR. The activity against the bacterial pathogens Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus was assessed by carrying out disk diffusion assays on lysogeny agar media showing that, while there is no significant effect arising from the use of enantiopure or chiral amino acids, the coordination polymers exert an appreciable antimicrobial activity comparable, when not superior, to that of the metal salts alone.
Collapse
Affiliation(s)
- Cecilia Fiore
- Dipartimento di Chimica “Giacomo Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Andrii Lekhan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Simone Bordignon
- Dipartimento di Chimica and NIS Centre, University of Torino, Via P. Giuria, 7, 10125 Torino, Italy
| | - Michele R. Chierotti
- Dipartimento di Chimica and NIS Centre, University of Torino, Via P. Giuria, 7, 10125 Torino, Italy
| | - Roberto Gobetto
- Dipartimento di Chimica and NIS Centre, University of Torino, Via P. Giuria, 7, 10125 Torino, Italy
| | - Fabrizia Grepioni
- Dipartimento di Chimica “Giacomo Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- Correspondence: (R.J.T.); (D.B.)
| | - Dario Braga
- Dipartimento di Chimica “Giacomo Ciamician”, University of Bologna, Via Selmi, 2, 40126 Bologna, Italy
- Correspondence: (R.J.T.); (D.B.)
| |
Collapse
|
3
|
Saporiti T, Cabrera M, Bentancur J, Ferrari ME, Cabrera N, Pérez-Montfort R, Aguirre-Crespo FJ, Gil J, Cuore U, Matiadis D, Sagnou M, Alvarez G. Phenotypic and Target-Directed Screening Yields New Acaricidal Alternatives for the Control of Ticks. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248863. [PMID: 36557996 PMCID: PMC9781803 DOI: 10.3390/molecules27248863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Rhipicephalus microplus, the "common cattle tick", is the most important ectoparasite in livestock worldwide due to the economic and health losses it produces. This tick is a vector for pathogens of several tick-borne diseases. In Latin American countries, damages reach approximately USD 500 million annually due to tick infections, as well as tick-borne diseases. Currently, resistant populations for every chemical group of acaricides have been reported, posing a serious problem for tick control. This study aims to find new alternatives for controlling resistant ticks with compounds derived from small synthetic organic molecules and natural origins. Using BME26 embryonic cells, we performed phenotypic screening of 44 natural extracts from 10 Mexican plants used in traditional medicine, and 33 compounds selected from our chemical collection. We found 10 extracts and 13 compounds that inhibited cell growth by 50% at 50 µg/mL and 100 µM, respectively; the dose-response profile of two of them was characterized, and these compounds were assayed in vitro against different life stages of Rhipicephalus microplus. We also performed a target-directed screening of the activity of triosephosphate isomerase, using 86 compounds selected from our chemical collection. In this collection, we found the most potent and selective inhibitor of tick triosephosphate isomerase reported until now. Two other compounds had a potent acaricidal effect in vitro using adults and larvae when compared with other acaricides such as ivermectin and Amitraz. Those compounds were also selective to the ticks compared with the cytotoxicity in mammalian cells like macrophages or bovine spermatozoids. They also had a good toxicological profile, resulting in promising acaricidal compounds for tick control in cattle raising.
Collapse
Affiliation(s)
- Tatiana Saporiti
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Mauricio Cabrera
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
- Correspondence: (M.C.); (G.A.)
| | - Josefina Bentancur
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - María Elisa Ferrari
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | | | - Jorge Gil
- Laboratorio de Reproducción Animal, Producción y Reproducción de Rumiantes, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Ulises Cuore
- División de Laboratorios Veterinarios “Miguel C. Rubino”, Ministerio de Ganadería, Agricultura y Pesca, Montevideo 91600, Uruguay
| | - Dimitris Matiadis
- National Center for Scientific Research ‘Demokritos’, Institute of Biosciences & Applications, 15310 Athens, Greece
| | - Marina Sagnou
- National Center for Scientific Research ‘Demokritos’, Institute of Biosciences & Applications, 15310 Athens, Greece
| | - Guzmán Alvarez
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
- Correspondence: (M.C.); (G.A.)
| |
Collapse
|
4
|
Frei A, Elliott AG, Kan A, Dinh H, Bräse S, Bruce AE, Bruce MR, Chen F, Humaidy D, Jung N, King AP, Lye PG, Maliszewska HK, Mansour AM, Matiadis D, Muñoz MP, Pai TY, Pokhrel S, Sadler PJ, Sagnou M, Taylor M, Wilson JJ, Woods D, Zuegg J, Meyer W, Cain AK, Cooper MA, Blaskovich MAT. Metal Complexes as Antifungals? From a Crowd-Sourced Compound Library to the First In Vivo Experiments. JACS AU 2022; 2:2277-2294. [PMID: 36311838 PMCID: PMC9597602 DOI: 10.1021/jacsau.2c00308] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
There are currently fewer than 10 antifungal drugs in clinical development, but new fungal strains that are resistant to most current antifungals are spreading rapidly across the world. To prevent a second resistance crisis, new classes of antifungal drugs are urgently needed. Metal complexes have proven to be promising candidates for novel antibiotics, but so far, few compounds have been explored for their potential application as antifungal agents. In this work, we report the evaluation of 1039 metal-containing compounds that were screened by the Community for Open Antimicrobial Drug Discovery (CO-ADD). We show that 20.9% of all metal compounds tested have antimicrobial activity against two representative Candida and Cryptococcus strains compared with only 1.1% of the >300,000 purely organic molecules tested through CO-ADD. We identified 90 metal compounds (8.7%) that show antifungal activity while not displaying any cytotoxicity against mammalian cell lines or hemolytic properties at similar concentrations. The structures of 21 metal complexes that display high antifungal activity (MIC ≤1.25 μM) are discussed and evaluated further against a broad panel of yeasts. Most of these have not been previously tested for antifungal activity. Eleven of these metal complexes were tested for toxicity in the Galleria mellonella moth larva model, revealing that only one compound showed signs of toxicity at the highest injected concentration. Lastly, we demonstrated that the organo-Pt(II) cyclooctadiene complex Pt1 significantly reduces fungal load in an in vivo G. mellonella infection model. These findings showcase that the structural and chemical diversity of metal-based compounds can be an invaluable tool in the development of new drugs against infectious diseases.
Collapse
Affiliation(s)
- Angelo Frei
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
- Department
of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012Bern, Switzerland
| | - Alysha G. Elliott
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Alex Kan
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Hue Dinh
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute
of Technology, Fritz-Haber-Weg 6, 76131Karlsruhe, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - Alice E. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Mitchell R. Bruce
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Feng Chen
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Dhirgam Humaidy
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Nicole Jung
- Karlsruhe
Nano Micro Facility (KNMF), Karlsruhe Institute
of Technology, Hermann-von-Helmholtz-Platz 1, 76344Eggenstein-Leopoldshafen, Germany
- Institute
of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - A. Paden King
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Peter G. Lye
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Hanna K. Maliszewska
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Ahmed M. Mansour
- Chemistry
Department, Faculty of Science, Cairo University, Giza12613, Egypt
| | - Dimitris Matiadis
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - María Paz Muñoz
- School
of Chemistry, University of East Anglia, Norwich Research Park, NorwichNR4 7TJ, U.K.
| | - Tsung-Yu Pai
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Shyam Pokhrel
- Department
of Chemistry, University of Maine, Orono, Maine04469, United States
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CoventryCV4 7AL, U.K.
| | - Marina Sagnou
- Institute
of Biosciences & Applications, National
Centre for Scientific Research “Demokritos”, 15310Athens, Greece
| | - Michelle Taylor
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Justin J. Wilson
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14853, United States
| | - Dean Woods
- School
of Science and Technology, University of
New England, Armidale, NSW2351, Australia
| | - Johannes Zuegg
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Wieland Meyer
- Molecular
Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology,
Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical
School, Sydney Institute for Infectious Diseases, Westmead Hospital-Research
and Education Network, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW2145, Australia
| | - Amy K. Cain
- School
of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW2109, Australia
| | - Matthew A. Cooper
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland4072, Australia
| |
Collapse
|
5
|
Synthesis, Physicochemical, Thermal and Antioxidative Properties of Zn(II) Coordination Compounds with Pyrazole-Type Ligand. INORGANICS 2022. [DOI: 10.3390/inorganics10020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The reactions of pyrazole derivative, i.e., ethyl-5-amino-1-methyl-1H-pyrazole-4-carboxylate (L) with zinc halogenides in methanolic solution and zinc nitrate and zinc acetate in acetonic solution are described. The formulae of synthesized compounds are ZnL2Cl2 (1), [ZnL2Br2] (2), ZnL2I2·0.5MeOH (3), [Zn(L)2(H2O)4](NO3)2 (4), and {ZnL(OAc)2}2 (5). Two complexes are obtained in form of single crystals: [ZnL2Br2] (2) and [Zn(L)2(H2O)4](NO3)2 (4). Their crystal and molecular structure were determined by single-crystal X-ray structure analysis. The FTIR spectra of compounds prove the complex formation with all five zinc salts. The complexes are characterized by conductometric and thermoanalytical measurements, and their antioxidative activity was also tested by the scavenging effect on the DPPH radical. Conductometric results, solvolytic stability, and antioxidative activity of the compounds are in correlation.
Collapse
|
6
|
Metal Complexes—A Promising Approach to Target Biofilm Associated Infections. Molecules 2022; 27:molecules27030758. [PMID: 35164021 PMCID: PMC8838073 DOI: 10.3390/molecules27030758] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Microbial biofilms are represented by sessile microbial communities with modified gene expression and phenotype, adhered to a surface and embedded in a matrix of self-produced extracellular polymeric substances (EPS). Microbial biofilms can develop on both prosthetic devices and tissues, generating chronic and persistent infections that cannot be eradicated with classical organic-based antimicrobials, because of their increased tolerance to antimicrobials and the host immune system. Several complexes based mostly on 3D ions have shown promising potential for fighting biofilm-associated infections, due to their large spectrum antimicrobial and anti-biofilm activity. The literature usually reports species containing Mn(II), Ni(II), Co(II), Cu(II) or Zn(II) and a large variety of multidentate ligands with chelating properties such as antibiotics, Schiff bases, biguanides, N-based macrocyclic and fused rings derivatives. This review presents the progress in the development of such species and their anti-biofilm activity, as well as the contribution of biomaterials science to incorporate these complexes in composite platforms for reducing the negative impact of medical biofilms.
Collapse
|
7
|
Synthesis and Biological Evaluation of Hydroxylated Monocarbonyl Curcumin Derivatives as Potential Inducers of Neprilysin Activity. Biomedicines 2021; 9:biomedicines9080955. [PMID: 34440159 PMCID: PMC8394082 DOI: 10.3390/biomedicines9080955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) involves impairment of Aβ clearance. Neprilysin (NEP) is the most efficient Aβ peptidase. Enhancement of the activity or expression of NEP may provide a prominent therapeutic strategy against AD. AIMS Ten hydroxylated monocarbonyl curcumin derivatives were designed, synthesized and evaluated for their NEP upregulating potential using sensitive fluorescence-based Aβ digestion and inhibition assays. RESULTS Compound 4 was the most active one, resulting in a 50% increase in Aβ cleavage activity. Cyclohexanone-bearing derivatives exhibited higher activity enhancement compared to their acetone counterparts. Inhibition experiments with the NEP-specific inhibitor thiorphan resulted in dramatic cleavage reduction. Conclusion: The increased Aβ cleavage activity and the ease of synthesis of 4 renders it an extremely attractive lead compound.
Collapse
|
8
|
Vahedpour T, Hamzeh‐Mivehroud M, Hemmati S, Dastmalchi S. Synthesis of 2‐Pyrazolines from Hydrazines: Mechanisms Explained. ChemistrySelect 2021. [DOI: 10.1002/slct.202101467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Teymour Vahedpour
- Biotechnology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Medicinal Chemistry School of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Hamzeh‐Mivehroud
- Biotechnology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Medicinal Chemistry School of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Salar Hemmati
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Medicinal Chemistry School of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
- Faculty of Pharmacy Near East University Nicosia, North Cyprus, Mersin 10 Turkey
| |
Collapse
|
9
|
Matiadis D, Nowak KE, Alexandratou E, Hatzidimitriou A, Sagnou M, Papadakis R. Synthesis and (fluoro)solvatochromism of two 3-styryl-2-pyrazoline derivatives bearing benzoic acid moiety: A spectral, crystallographic and computational study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Pyrazol(in)e derivatives of curcumin analogs as a new class of anti- Trypanosoma cruzi agents. Future Med Chem 2021; 13:701-714. [PMID: 33648346 DOI: 10.4155/fmc-2020-0349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: We report the synthesis and biological evaluation of a small library of 15 functionalized 3-styryl-2-pyrazolines and pyrazoles, derived from curcuminoids, as trypanosomicidal agents. Methods & results: The compounds were prepared via a cyclization reaction between the corresponding curcuminoids and the appropriate hydrazines. All of the derivatives synthesized were investigated for their trypanosomicidal activities. Compounds 4a and 4e showed significant activity against epimastigotes of Trypanosoma cruzi, with IC50 values of 5.0 and 4.2 μM, respectively, accompanied by no toxicity to noncancerous mammalian cells. Compound 6b was found to effectively inhibit T. cruzi triosephosphate isomerase. Conclusion: The up to 16-fold higher potency of these derivatives compared with their curcuminoid precursors makes them a promising new family of T. cruzi inhibitors.
Collapse
|