1
|
Shafqat A, Li M, Zakirullah, Liu F, Tong Y, Fan J, Fan H. A comprehensive review of research advances in the study of lactoferrin to treat viral infections. Life Sci 2024; 361:123340. [PMID: 39730037 DOI: 10.1016/j.lfs.2024.123340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Lactoferrin (Lf) is a naturally occurring glycoprotein known for its antiviral and antibacterial properties and is present in various physiological fluids. Numerous studies have demonstrated its antiviral effectiveness against multiple viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza virus (IFV), herpes simplex virus (HSV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV). Lf, a vital component of the mucosal defense system, plays a crucial role in inhibiting viral infection by binding to both host cells and viral particles, such as the Hepatitis C virus (HCV). This interaction enables Lf to keep viral particles away from their target cells, emphasizing its significance as a fundamental element of mucosal defense against viral infections. Additionally, Lf has the ability to modulate cytokine expression and enhance cellular immune responses. In the innate immune system, Lf serves as a unique iron transporter and helps suppress various pathogens like bacteria, fungi, and viruses. This article summarises the potential antiviral properties of Lf against various viruses, along with its other mentioned functions. The advancement of Lf-based therapies supports the homology of food and medicine, providing a promising avenue to address viral infections and other public health challenges.
Collapse
Affiliation(s)
- Amna Shafqat
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Feitong Liu
- H&H Group, H&H Research, China Research and Innovation, Guangzhou, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Junfen Fan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Kobatake E, Iwama Y, Arai T, Tsukisaka Y, Kabuki T. Lactobacillus paragasseri SBT2055 Activates Plasmacytoid Dendritic Cells and Improves Subjective Symptoms of Common Cold in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Parallel-Group Comparative Trial. Nutrients 2023; 15:4458. [PMID: 37892533 PMCID: PMC10610513 DOI: 10.3390/nu15204458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigated whether Lactobacillus paragasseri SBT2055 (LG2055) activates plasmacytoid dendritic cells (pDCs) and suppresses common cold symptoms in healthy adults. Cell-based experiments showed that a LG2055 treatment upregulated CD86 and HLA-DR expression in pDCs, indicating that LG2055 activates pDCs in vitro. In a subsequent randomized, double-blind, placebo-controlled, parallel-group comparative trial, 200 participants were randomly divided into two groups and consumed three capsules with or without LG2055 once daily for 12 weeks. The primary outcome was the score on a daily physical health questionnaire survey of common cold symptoms. Three participants discontinued the trial and six participants were excluded from the analysis, thus 191 participants (95 in the LG2055 group and 96 in the placebo group) were analyzed. The LG2055 group showed a significantly higher ratio of "without symptoms" responses for runny nose, plugged nose, sneezing, sore throat, hoarseness, and chill than the placebo group. Furthermore, a stratified analysis revealed that LG2055 intake enhanced CD86 and HLA-DR expression in the pDCs of the participants with low secretion rates of salivary secretory immunoglobulin A. These data suggest that LG2055 suppresses the subjective symptoms of the common cold by activating pDCs and improving the host's immune system in healthy adults, especially in immune-weakened individuals (UMIN000049183).
Collapse
Affiliation(s)
- Eiji Kobatake
- Milk Science Research Institute, MEGMILK SNOW BRAND Co., Ltd., Kawagoe 350-1165, Japan
| | | | - Toshinobu Arai
- Research and Development Planning Department, MEGMILK SNOW BRAND Co., Ltd., Tokyo 160-8575, Japan
| | | | - Toshihide Kabuki
- Milk Science Research Institute, MEGMILK SNOW BRAND Co., Ltd., Kawagoe 350-1165, Japan
| |
Collapse
|
3
|
Oda H, Kubo S, Tada A, Yago T, Sugita C, Yoshida H, Toida T, Tanaka M, Kurokawa M. Effects of Bovine Lactoferrin on the Maintenance of Respiratory and Systemic Physical Conditions in Healthy Adults-A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023; 15:3959. [PMID: 37764743 PMCID: PMC10537451 DOI: 10.3390/nu15183959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVES We investigated the effects of bovine lactoferrin (LF) on the maintenance of the respiratory and systemic physical conditions. METHODS A randomized, double-blind, placebo-controlled trial was conducted. Healthy adults at Kyushu University of Health and Welfare ingested a placebo or bovine LF (200 mg/day) for 12 weeks. The primary endpoints were the total respiratory and systemic symptom scores. The secondary endpoint was the activity of plasmacytoid dendritic cells (pDCs) in peripheral blood. RESULTS A total of 157 subjects were randomized (placebo, n = 79; LF, n = 78), of whom, 12 dropped out. The remaining 145 participants were included in the full analysis set (placebo group, n = 77; LF group, n = 68). The total scores for respiratory and systemic symptoms during the intervention were significantly lower in the LF group than in the placebo group. The expression of CD86 and HLA-DR on pDCs was significantly higher in the LF group than in the placebo group at week 12. Adverse events were comparable between the groups, and no adverse drug reactions were observed. CONCLUSIONS These results suggest that orally ingested LF supports the normal immune system via maintaining pDC activity, and maintains respiratory and systemic physical conditions in healthy adults.
Collapse
Affiliation(s)
- Hirotsugu Oda
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Shutaro Kubo
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Asuka Tada
- International BtoB Business Department, International Division, Morinaga Milk Industry Co., Ltd., 5-33-1, Shiba, Minato 108-8384, Japan
| | - Takumi Yago
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Chihiro Sugita
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1, Yoshino, Nobeoka 882-8508, Japan
| | - Hiroki Yoshida
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1, Yoshino, Nobeoka 882-8508, Japan
| | - Tatsunori Toida
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1, Yoshino, Nobeoka 882-8508, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Masahiko Kurokawa
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1, Yoshino, Nobeoka 882-8508, Japan
| |
Collapse
|
4
|
Wang J, Yang N, Vogel HJ. Lactoferrin, a Great Wall of host-defence? Biometals 2023; 36:385-390. [PMID: 37171688 PMCID: PMC10127966 DOI: 10.1007/s10534-023-00502-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 05/13/2023]
Affiliation(s)
- Jianhua Wang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs; Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Na Yang
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Gene Engineering Laboratory; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs; Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
5
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
6
|
Fu Y, Li P, Xu W, Liu Z, Wang C, Wang Q, Tang J, Li W, Lu L, Jiang S. Chemically Modified Bovine β-Lactoglobulin as a Broad-Spectrum Influenza Virus Entry Inhibitor with the Potential to Combat Influenza Outbreaks. Viruses 2022; 14:v14092055. [PMID: 36146861 PMCID: PMC9506557 DOI: 10.3390/v14092055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Frequent outbreaks of the highly pathogenic influenza A virus (AIV) infection, together with the lack of broad-spectrum influenza vaccines, call for the development of broad-spectrum prophylactic agents. Previously, 3-hydroxyphthalic anhydride-modified bovine β-lactoglobulin (3HP-β-LG) was proven to be effective against human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been used in the clinical control of cervical human papillomavirus (HPV) infections. Here, we show its efficacy in potently inhibiting infection by divergent influenza A and B viruses. Mechanistic studies suggest that 3HP-β-LG binds, possibly through its negatively charged residues, to the receptor-binding domain in the hemagglutinin 1 (HA1) subunit in the HA of the influenza virus, thus inhibiting the attachment of the HA to sialic acid on host cells. The intranasal administration of 3HP-β-LG led to the protection of mice against challenges by influenza A(H1N1)/PR8, A(H3N2), and A(H7N9) viruses. Furthermore, 3HP-β-LG is highly stable when stored at 50 °C for 30 days and it shows excellent safety in vitro and in vivo. Collectively, our findings suggest that 3HP-β-LG could be successfully repurposed as an intranasal prophylactic agent to prevent influenza virus infections during influenza outbreaks.
Collapse
Affiliation(s)
- Yuhong Fu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Peiyu Li
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People’s Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen 518052, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Zezhong Liu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Jiayi Tang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xie Tu Rd., Xuhui District, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
- Correspondence: (L.L.); (S.J.); Tel.: +86-21-5423-7671 (L.L.); +86-21-5423-7673 (S.J.)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People’s Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen 518052, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xie Tu Rd., Xuhui District, Shanghai 200032, China
- Correspondence: (L.L.); (S.J.); Tel.: +86-21-5423-7671 (L.L.); +86-21-5423-7673 (S.J.)
| |
Collapse
|