1
|
Washbourne P. Can we model autism using zebrafish? Dev Growth Differ 2023; 65:453-458. [PMID: 37623916 DOI: 10.1111/dgd.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Autism spectrum disorder (ASD) is one of the most common, heritable neuropsychiatric disorders in the world, affecting almost 1% of the population. The core symptoms used to diagnose ASD are decreased social interaction and increased repetitive behaviors. Despite the large number of affected individuals, the precise mechanisms that cause this disorder remain unclear. The identification of genes and environmental factors associated with ASD allows the study of the underlying mechanisms in animal models. Although ASD presents as a human disorder, based on recent advances in understanding their brain anatomy, physiology, behavior, and evolutionary conservation of neuronal cell types, I propose that zebrafish may provide novel insights into the etiology.
Collapse
Affiliation(s)
- Philip Washbourne
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
2
|
Li Y, Xiang H, Xue X, Chen Y, He Z, Yu Z, Zhang L, Miao X. Dual Antimelanogenic Effect of Nicotinamide-Stabilized Phloretin Nanocrystals in Larval Zebrafish. Pharmaceutics 2022; 14:1825. [PMID: 36145574 PMCID: PMC9502130 DOI: 10.3390/pharmaceutics14091825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/26/2022] Open
Abstract
Melanin is a kind of dark insoluble pigment that can cause pigmentation and free-radical clearance, inducing melasma, freckles, and chloasma, affecting the quality of life of patients. Due to poor water solubility and low safety, the absorption of poorly water-soluble drugs is limited by the hinderance of a skin barrier. Therefore, it is necessary to develop new, safe, and highly efficient drugs to improve their transdermal absorption efficiency and thus to inhibit the production of melanin. To address these issues, we developed a new nicotinamide (NIC)-stabilized phloretin nanocrystals (PHL-NCs). First, NC technology significantly increased the solubility of PHL. The in vitro release results indicated that at 6 h, the dissolution of the PHL-NIC-NCs was 101.39% ± 2.40% and of the PHL-NCs was 84.92% ± 4.30%, while that of the physical mixture of the two drugs was only 64.43% ± 0.02%. Second, NIC acted not only as a stabilizer to enlarge the storage time of PHL-NIC-NCs (improved to 10-day in vitro stability) but also as a melanin transfer inhibitor to inhibit melanin production. Finally, we verified the melanin inhibition effect of PHL-NIC-NCs evaluated by the zebrafish model. It showed that 0.38 mM/L PHL-NIC-NCs have a lower tyrosinase activity at 62.97% ± 0.52% and have less melanin at 36.57% ± 0.44%. The inhibition effect of PHL-NCs and PHL-NIC-NCs was stronger compared to the positive control arbutin. In conclusion, the combination of NIC and PHL achieves better inhibition of tyrosinase and inhibition of melanin production through synergism. This will provide a direction to the subsequent development of melanin-inhibiting drugs and the combined use of pharmaceutical agents.
Collapse
Affiliation(s)
- Yixuan Li
- Marine College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China
| | - Xinyue Xue
- Marine College, Shandong University, Weihai 264209, China
| | - Yilan Chen
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Zhiyuan He
- Marine College, Shandong University, Weihai 264209, China
| | - Zhongrui Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Li Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
3
|
Nie Y, Yang J, Zhou L, Yang Z, Liang J, Liu Y, Ma X, Qian Z, Hong P, Kalueff AV, Song C, Zhang Y. Marine fungal metabolite butyrolactone I prevents cognitive deficits by relieving inflammation and intestinal microbiota imbalance on aluminum trichloride-injured zebrafish. J Neuroinflammation 2022; 19:39. [PMID: 35130930 PMCID: PMC8822793 DOI: 10.1186/s12974-022-02403-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/30/2022] Open
Abstract
Background Mounting evidences indicate that oxidative stress, neuroinflammation, and dysregulation of gut microbiota are related to neurodegenerative disorders (NDs). Butyrolactone I (BTL-I), a marine fungal metabolite, was previously reported as an in vitro neuroprotectant and inflammation inhibitor. However, little is known regarding its in vivo effects, whereas zebrafish (Danio rerio) could be used as a convenient in vivo model of toxicology and central nervous system (CNS) diseases.
Methods Here, we employed in vivo and in silico methods to investigate the anti-NDs potential of BTL-I. Specifically, we established a cognitive deficit model in zebrafish by intraperitoneal (i.p.) injection of aluminum trichloride (AlCl3) (21 μg) and assessed their behaviors in the T-maze test. The proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) as well as acetylcholinesterase (AChE) activity or glutathione (GSH) levels were assayed 24 h after AlCl3 injection. The intestinal flora variation of the zebrafish was investigated by 16S rDNA high-throughput analysis. The marine fungal metabolite, butyrolactone I (BTL-I), was used to modulate zebrafish cognitive deficits evoked by AlCl3 and evaluated about its effects on the above inflammatory, cholinergic, oxidative stress, and gut floral indicators. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of BTL-I were studied by the in silico tool ADMETlab. Results BTL-I dose-dependently ameliorated AlCl3-induced cognitive deficits in zebrafish. While AlCl3 treatment elevated the levels of central and peripheral proinflammatory cytokines, increased AChE activity, and lowered GSH in the brains of zebrafish, these effects, except GSH reduction, were reversed by 25–100 mg/kg BTL-I administration. Besides, 16S rDNA high-throughput sequencing of the intestinal flora of zebrafish showed that AlCl3 decreased Gram-positive bacteria and increased proinflammatory Gram-negative bacteria, while BTL-I contributed to maintaining the predominance of beneficial Gram-positive bacteria. Moreover, the in silico analysis indicated that BTL-I exhibits acceptable drug-likeness and ADMET profiles. Conclusions The present findings suggest that BTL-I is a potential therapeutic agent for preventing CNS deficits caused by inflammation, neurotoxicity, and gut flora imbalance. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02403-3.
Collapse
Affiliation(s)
- Yingying Nie
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingming Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Longjian Zhou
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 30072, China
| | - Zhiyou Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jinyue Liang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yayue Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxiang Ma
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhongji Qian
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Allan V Kalueff
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400715, China.,Ural Federal University, Ekaterinburg, 620002, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg, 199034, Russia
| | - Cai Song
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yi Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Research Institute for Marine Drugs and Nutrition, Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Zhanjiang, 524088, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
4
|
Molina B, Chavez J, Grainger S. Zebrafish models of acute leukemias: Current models and future directions. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e400. [PMID: 33340278 PMCID: PMC8213871 DOI: 10.1002/wdev.400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemias (AML) and acute lymphoid leukemias (ALL) are heterogenous diseases encompassing a wide array of genetic mutations with both loss and gain of function phenotypes. Ultimately, these both result in the clonal overgrowth of blast cells in the bone marrow, peripheral blood, and other tissues. As a consequence of this, normal hematopoietic stem cell function is severely hampered. Technologies allowing for the early detection of genetic alterations and understanding of these varied molecular pathologies have helped to advance our treatment regimens toward personalized targeted therapies. In spite of this, both AML and ALL continue to be a major cause of morbidity and mortality worldwide, in part because molecular therapies for the plethora of genetic abnormalities have not been developed. This underscores the current need for better model systems for therapy development. This article reviews the current zebrafish models of AML and ALL and discusses how novel gene editing tools can be implemented to generate better models of acute leukemias. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Technologies > Perturbing Genes and Generating Modified Animals.
Collapse
Affiliation(s)
- Brandon Molina
- Biology Department, San Diego State University, San Diego, California, USA
| | - Jasmine Chavez
- Biology Department, San Diego State University, San Diego, California, USA
| | - Stephanie Grainger
- Biology Department, San Diego State University, San Diego, California, USA
| |
Collapse
|
5
|
Amawi H, Aljabali AAA, Boddu SHS, Amawi S, Obeid MA, Ashby CR, Tiwari AK. The use of zebrafish model in prostate cancer therapeutic development and discovery. Cancer Chemother Pharmacol 2021; 87:311-325. [PMID: 33392639 DOI: 10.1007/s00280-020-04211-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
Zebrafish is now among the leading in vivo model for cancer research, including prostate cancer. They are an alternative economic model being used to study cancer development, proliferation, and metastasis. They can also be effectively utilized for the development of cancer drugs at all levels, including target validation, and high-throughput screening for possible lead molecules. In this review, we provide a comprehensive overview of the role of zebrafish as an in vivo model in prostate cancer research. Globally, prostate cancer is a leading cause of death in men. Although many molecular mechanisms have been identified as playing a role in the pathogenesis of prostate cancer, there is still a significant need to understand the initial events of the disease. Furthermore, current treatments are limited by the emergence of severe toxicities and multidrug resistance. There is an essential need for economical and relevant research tools to improve our understanding and overcome these problems. This review provides a comprehensive summary of studies that utilized zebrafish for different aims in prostate cancer research. We discuss the use of zebrafish in prostate cancer cell proliferation and metastasis, defining signaling pathways, drug discovery and therapeutic development against prostate cancer, and toxicity studies. Finally, this review highlights limitations in this field and future directions to efficiently use zebrafish as a robust model for prostate cancer therapeutics development.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, P.O.BOX 566, Irbid, 21163, Jordan.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
| | - Sadam Amawi
- Department of Urology and General Surgery, Faculty of Medicine, King Abdullah University Hospital, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
6
|
The effect of ginsenoside Rg5, isolated from black ginseng, on heart failure in zebrafish based on untargeted metabolomics. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Liu J, Liu Y, Yu H, Zhang Y, Hsu ACY, Zhang M, Gou Y, Sun W, Wang F, Li P, Liu J. Design, synthesis and biological evaluation of novel pyxinol derivatives with anti-heart failure activity. Biomed Pharmacother 2020; 133:111050. [PMID: 33378957 DOI: 10.1016/j.biopha.2020.111050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 01/20/2023] Open
Abstract
Heart failure (HF) is an important and leading cause of substantial morbidity and mortality globally. The angiotensin-converting enzymatic (ACE) is the causative source for congestive heart failure. Natural products and its derivatives play a vital role in drug discovery and development owing to their efficacy and low toxicity. Pyxinol is a potent natural agent for cardiovascular disease. Thus we investigated the effect on ACE and HF of pyxinol derivatives. We designed and synthesized 32 novel fatty acid ester derivatives of pyxinol via esterification. Among them, compounds 2e (IC50=105 nM) and 3b (IC50=114 nM) displayed excellent ACE inhibitory activity in vitro, and exhibited non-toxic to H9c2 cells. The interactions between ACE and compounds were predicted by molecular docking respectively. In verapamil-induced zebrafish HF model, the activity assay showed that these two derivatives could improve cardiovascular physiological indexes including heart beats, venous congestion, heart dilation, cardiac output, ejection fraction and fractional shortening in a dose-dependent manner. A UPLC-QTOF-MS-based serum metabolomics approach was applied to explore the latent mechanism. A total of 25 differentiated metabolites and 8 perturbed metabolic pathways were identified. These results indicated that pyxinol fatty acid ester derivatives 2e and 3b might be considered as potent drug candidates against heart failure and deserved further research and development.
Collapse
Affiliation(s)
- Junli Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China
| | - Hui Yu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; The First Hospital of Jilin University, Changchun 130021, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Mingming Zhang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yawei Gou
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wei Sun
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| |
Collapse
|
8
|
Hoeksma J, van der Zon GCM, Ten Dijke P, den Hertog J. Cercosporamide inhibits bone morphogenetic protein receptor type I kinase activity in zebrafish. Dis Model Mech 2020; 13:dmm045971. [PMID: 32820031 PMCID: PMC7522027 DOI: 10.1242/dmm.045971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Zebrafish models are well-established tools for investigating the underlying mechanisms of diseases. Here, we identified cercosporamide, a metabolite from the fungus Ascochyta aquiliqiae, as a potent bone morphogenetic protein receptor (BMPR) type I kinase inhibitor through a zebrafish embryo phenotypic screen. The developmental defects in zebrafish, including lack of the ventral fin, induced by cercosporamide were strikingly similar to the phenotypes caused by renowned small-molecule BMPR type I kinase inhibitors and inactivating mutations in zebrafish BMPRs. In mammalian cell-based assays, cercosporamide blocked BMP/SMAD-dependent transcriptional reporter activity and BMP-induced SMAD1/5-phosphorylation. Biochemical assays with a panel of purified recombinant kinases demonstrated that cercosporamide directly inhibited kinase activity of type I BMPRs [also called activin receptor-like kinases (ALKs)]. In mammalian cells, cercosporamide selectively inhibited constitutively active BMPR type I-induced SMAD1/5 phosphorylation. Importantly, cercosporamide rescued the developmental defects caused by constitutively active Alk2 in zebrafish embryos. We believe that cercosporamide could be the first of a new class of molecules with potential to be developed further for clinical use against diseases that are causally linked to overactivation of BMPR signaling, including fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jelmer Hoeksma
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Gerard C M van der Zon
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Oncode Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Oncode Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Institute Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
9
|
Kang DM, Shin JI, Kim JB, Lee K, Chung JH, Yang HW, Kim KN, Han YS. Detection of 8-oxoguanine and apurinic/apyrimidinic sites using a fluorophore-labeled probe with cell-penetrating ability. BMC Mol Cell Biol 2019; 20:54. [PMID: 31775627 PMCID: PMC6881995 DOI: 10.1186/s12860-019-0236-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) produce different lesions in DNA by ROS-induced DNA damage. Detection and quantification of 8-oxo-7,8-dihydroguanine (8-oxoG) within cells are important for study. Human ribosomal protein S3 (hRpS3) has a high binding affinity to 8-oxoG. In this study, we developed an imaging probe to detect 8-oxoG using a specific peptide from hRpS3. Transactivator (TAT) proteins are known to have cell-penetrating properties. Therefore, we developed a TAT-S3 probe by attaching a TAT peptide to our imaging probe. RESULTS A DNA binding assay was conducted to confirm that our probe bound to 8-oxoG and apurinic/apyrimidinic (AP) sites. We confirmed that the TAT-S3 probe localized in the mitochondria, without permeabilization, and fluoresced in H2O2-treated HeLa cells and zebrafish embryos. Treatment with Mitoquinone (MitoQ), a mitochondria-targeted antioxidant, reduced TAT-S3 probe fluorescence. Additionally, treatment with O8, an inhibitor of OGG1, increased probe fluorescence. A competition assay was conducted with an aldehyde reaction probe (ARP) and methoxyamine (MX) to confirm binding of TAT-S3 to the AP sites. The TAT-S3 probe showed competitive binding to AP sites with ARP and MX. CONCLUSIONS These results revealed that the TAT-S3 probe successfully detected the presence of 8-oxoG and AP sites in damaged cells. The TAT-S3 probe may have applications for the detection of diseases caused by reactive oxygen species.
Collapse
Affiliation(s)
- Dong Min Kang
- Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jong-Il Shin
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Ji Beom Kim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Kyungho Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, Pocheon, 11160, South Korea
| | - Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju, 63243, South Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, South Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
10
|
Hoeksma J, Misset T, Wever C, Kemmink J, Kruijtzer J, Versluis K, Liskamp RMJ, Boons GJ, Heck AJR, Boekhout T, den Hertog J. A new perspective on fungal metabolites: identification of bioactive compounds from fungi using zebrafish embryogenesis as read-out. Sci Rep 2019; 9:17546. [PMID: 31772307 PMCID: PMC6879544 DOI: 10.1038/s41598-019-54127-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/09/2019] [Indexed: 11/15/2022] Open
Abstract
There is a constant need for new therapeutic compounds. Fungi have proven to be an excellent, but underexplored source for biologically active compounds with therapeutic potential. Here, we combine mycology, embryology and chemistry by testing secondary metabolites from more than 10,000 species of fungi for biological activity using developing zebrafish (Danio rerio) embryos. Zebrafish development is an excellent model for high-throughput screening. Development is rapid, multiple cell types are assessed simultaneously and embryos are available in high numbers. We found that 1,526 fungal strains produced secondary metabolites with biological activity in the zebrafish bioassay. The active compounds from 39 selected fungi were purified by liquid-liquid extraction and preparative HPLC. 34 compounds were identified by a combination of chemical analyses, including LCMS, UV-Vis spectroscopy/ spectrophotometry, high resolution mass spectrometry and NMR. Our results demonstrate that fungi express a wide variety of biologically active compounds, consisting of both known therapeutic compounds as well as relatively unexplored compounds. Understanding their biological activity in zebrafish may provide insight into underlying biological processes as well as mode of action. Together, this information may provide the first step towards lead compound development for therapeutic drug development.
Collapse
Affiliation(s)
- Jelmer Hoeksma
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tim Misset
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christie Wever
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan Kemmink
- Utrecht University, Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
- Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - John Kruijtzer
- Utrecht University, Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Kees Versluis
- Utrecht University, Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Rob M J Liskamp
- Utrecht University, Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Geert Jan Boons
- Utrecht University, Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Albert J R Heck
- Utrecht University, Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Institute for Fungal Biodiversity - KNAW, Utrecht, The Netherlands
- Institute of Biodynamics and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
11
|
Konantz M, Müller JS, Lengerke C. Zebrafish Xenografts for the In Vivo Analysis of Healthy and Malignant Human Hematopoietic Cells. Methods Mol Biol 2019; 2017:205-217. [PMID: 31197779 DOI: 10.1007/978-1-4939-9574-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The zebrafish is a powerful vertebrate model for genetic studies on embryonic development and organogenesis. In the last decades, zebrafish were furthermore increasingly used for disease modeling and investigation of cancer biology. Zebrafish are particularly used for mutagenesis and small molecule screens, as well as for live imaging assays that provide unique opportunities to monitor cell behavior, both on a single cell and whole organism level in real time. Zebrafish have been also used for in vivo investigations of human cells transplanted into embryos or adult animals; this zebrafish xenograft model can be considered as an intermediate assay between in vitro techniques and more time-consuming and expensive mammalian models.Here, we present a protocol for transplantation of healthy and malignant human hematopoietic cells into larval zebrafish; transplantation into adult zebrafish and possible advantages and limitations of the zebrafish compared to murine xenograft models are discussed.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Joëlle S Müller
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Liu L, Fu M, Pei S, Zhou L, Shang J. R-Fluoxetine Increases Melanin Synthesis Through a 5-HT1A/2A Receptor and p38 MAPK Signaling Pathways. Int J Mol Sci 2018; 20:ijms20010080. [PMID: 30585252 PMCID: PMC6337216 DOI: 10.3390/ijms20010080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/02/2022] Open
Abstract
Fluoxetine, a member of the class of selective serotonin reuptake inhibitors, is a racemic mixture and has an anxiolytic effect in rodents. Previously, we have shown that fluoxetine can up-regulate melanin synthesis in B16F10 melanoma cells and normal human melanocytes (NMHM). However, the role of r-fluoxetine and s-fluoxetine, in the regulation of melanin synthesis, is still unknown. Here, we show how r-fluoxetine plays a critical role in fluoxetine enhancing melanogenesis, both in vivo and vitro, by up-regulating tyrosinase (TYR) and the microphthalmia-associated transcription factor (MITF) expression, whereas, s-fluoxetine does not show any effect in the vivo and vitro systems. In addition, we found that r-fluoxetine induced melanin synthesis through the serotonin1A receptor (5-HT1A) and serotonin 2A receptor (5-HT2A). Furthermore, r-fluoxetine increased the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), without affecting the phosphorylation of extracellularly responsive kinase (ERK1/2) and c-Jun N-terminal kinase (JNK). These data suggest that r-fluoxetine may be used as a drug for skin hypopigmentation disorders.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China.
| | - Mengsi Fu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China.
| | - Siran Pei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China.
| | - Liangliang Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Li JJ, Zhang Y, Han LW, Tian QP, He QX, Wang XM, Sun C, Han J, Liu KC. Tenacissoside H exerts an anti-inflammatory effect by regulating the nf-κb and p38 pathways in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 83:205-212. [PMID: 30213642 DOI: 10.1016/j.fsi.2018.09.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 08/26/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Marsdenia tenacissima exhibits biological activity with heat-clearing and detoxifying properties, relieving coughs and asthma and exerting anticancer and anti-HIV effects. Tenacissioside H (TH) is a Chinese medicine monomer extracted from the dried stem of Marsdenia tenacissima. We investigated the in vivo anti-inflammatory activity of TH using three different zebrafish inflammation models: local inflammation induced by tail cutting, acute inflammation induced by CuSO4, and systemic inflammation induced by lipopolysaccharide (LPS). Real time-polymerase chain reaction (RT-PCR) was used to elucidate the mechanism of TH action against LPS-induced inflammatory responses. Our results showed TH significantly reduced the number of macrophages in the injured zebrafish tail, inhibited CuSO4-induced migration of macrophages toward the neural mound, and decreased the distribution of macrophages in tail fin compared to LPS-treated group. Furthermore, TH inhibits LPS-induced inflammation responses in zebrafish by modulating the nuclear factor κB (nf-κb) and p38 pathways to regulate inflammatory cytokines, such as tumor necrosis factor-α (tnf-α), cyclooxygenase (cox-2), interleukin-1b (il-1b), interleukin-8 (il-8), interleukin-10 (il-10), nitric oxide synthase (nos2b) and prostaglandin E synthase (ptges). In conclusion, TH possesses anti-inflammation activity via the regulation of the nf-κb and p38 pathways. This finding provides a reference for the clinical application of Xiaoaiping (the trade name of Marsdenia tenacissima extract).
Collapse
Affiliation(s)
- Juan-Juan Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Shanxi Medical University, 56 Xinjiannan Road, Yingze District, Taiyuan, 030001, Shanxi Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| | - Li-Wen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Qing-Ping Tian
- Shanxi Medical University, 56 Xinjiannan Road, Yingze District, Taiyuan, 030001, Shanxi Province, PR China
| | - Qiu-Xia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xi-Min Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Jian Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboaratory for Biosensor of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
14
|
Han EJ, Um JH, Kim EA, Lee W, Kang N, Oh JY, Park SY, Jeon YJ, Ahn CB, Lee SH, Ahn G. Protective Effects of An Water Extracts Prepared from Loliolus beka Gray Meat Against H 2O 2-Induced Oxidative Stress in Chang Liver Cells and Zebrafish Embryo Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:585-601. [PMID: 28849484 DOI: 10.1007/978-94-024-1079-2_46] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we first evaluated protective effects of Loliolus beka in a human liver cell line and zebrafish embryo model with its anti-oxidant activity. First, we prepared the water extract from L. beka meat (LBMW) at room temperature for 24 h and revealed it consisted of a rich taurine. LBMW exhibited the scavenging effects against 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and hydrogen peroxide (H2O2) as well as the high value of oxygen radical absorbance capacity (ORAC). Also, the hydroxyl radical-induced DNA damage was dose-dependently reduced by the treatment of LBMW. In addition, LBMW showed no cytotoxicity and reduced the production of reactive oxygen species (ROS) in H2O2-treated hepatocytes. Moreover, LBMW regulated the expression of an anti-apoptotic molecule, Bcl-2 and the expression of pro-apoptotic molecules, Bax and PARP in H2O2-treated hepatocytes as well as the increment of antioxidant mediated-HO-1 and Nrf2 protein expression. In further study, LBMW improved the survival rate and decreased the production of ROS in H2O2-treated zebrafish embryo model. Therefore, our results suggest that Loliolus beka has protective effects against H2O2-induced oxidative stress and may be used as a potential source for functional foods.
Collapse
Affiliation(s)
- Eui Jeong Han
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Ju Hyung Um
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Eun A Kim
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - WonWoo Lee
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Nalae Kang
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - Jae Young Oh
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Soo Yeon Park
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Chang-Bum Ahn
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwang ju, Republic of Korea
| | - Seung Hong Lee
- Division of Food Bioscience and Korea Nokyong Research Center, Konkuk University, Chungju, Republic of Korea
| | - Ginnae Ahn
- Deparment of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea.
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
15
|
Lee W, Kim EA, Um JH, Kang N, Oh JY, Park SY, Han EJ, Cheong SH, Chang KJ, Kim SH, Ahn CB, Jeon YJ, Ahn G. Protective Effects of Xylose-Taurine Reduced against Damages Caused by Oxidative Stress in Zebrafish Embryos In Vivo Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:643-653. [PMID: 28849488 DOI: 10.1007/978-94-024-1079-2_50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The zebrafish (Danio rerio) is useful and convenient vertebrate models in various studies in human disease and drug discovery. In this present study, we first evaluated whether Xylose-Taurine reduced (X-T-R), a taurine derivate protects zebrafish embryos against oxidative stress caused by AAPH (2,2'-Azobis(2-amidinopropane) dihydrochloride). First of all, we selected the concentration of X-T-R showing no toxicity in zebrafish embryos. We identified that X-T-R significantly increased the survival of zebrafish embryo reduced by treatment of AAPH. Also, X-T-R effectively inhibited the productions of reactive oxygen species (ROS) and nitric oxide (NO) as well as the formation of cell death in zebrafish embryos. Moreover, X-T-R down-regulated the expression levels of Bax, caspase-3, caspase-9 and p53 known as pro-apoptotic molecules, whereas up-regulated those of Bcl-2, an anti-apoptotic molecule in AAPH-treated zebrafish embryos. From these results, this study reveals that X-T-R, a taurine derivate might be a potential protector against various damages caused by oxidative stress.
Collapse
Affiliation(s)
- WonWoo Lee
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Eun-A Kim
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - Ju Hyung Um
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Nalae Kang
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - Jae Young Oh
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| | - Soo Yeon Park
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - Sun Hee Cheong
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea
| | - Kyung Ja Chang
- Department of Food and Nutrition, Inha University, Incheon, Republic of Korea
| | - Sung Hoon Kim
- Department of Chemistry, Konkuk University, Seoul, Republic of Korea
| | - Chang-Bum Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, Republic of Korea.
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, Republic of Korea.
| |
Collapse
|
16
|
Kim EA, Ding Y, Yang HW, Heo SJ, Lee SH. Soft Coral Dendronephthya puetteri Extract Ameliorates Inflammations by Suppressing Inflammatory Mediators and Oxidative Stress in LPS-Stimulated Zebrafish. Int J Mol Sci 2018; 19:E2695. [PMID: 30201926 PMCID: PMC6163588 DOI: 10.3390/ijms19092695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022] Open
Abstract
Marine-derived extract and/or bioactive compounds have attracted increasing demand due to their unique and potential uses as cures for various inflammation-based diseases. Several studies revealed anti-inflammatory candidates found in soft corals. However, the effects of soft corals on inflammation in an in vivo model remain to be determined. Therefore, the extract of soft coral Dendronephthya puetteri (DPE) was investigated for an in vivo anti-inflammatory effect in a lipopolysaccharide (LPS)-stimulated zebrafish model to determine its potential use as a natural anti-inflammatory agent. We also investigated whether DPE has toxic effects in a zebrafish model. No significant changes were observed in terms of survival, heart beat rate, or developmental abnormalities in the zebrafish embryos exposed to a concentration below 100 µg/mL of DPE. Treating the zebrafish model with LPS-treatment significantly increased the ROS, NO generation, and cell death. However, DPE inhibited this LPS-stimulated ROS, NO generation, and cell death in a dose-dependent manner. In addition, DPE significantly reduced the mRNA expression of both iNOS and COX-2 and markedly suppressed the expression levels of the proinflammatory cytokines, TNF-α and IL-6, in an LPS-stimulated zebrafish model. These findings demonstrate that DPE has profound anti-inflammatory effect in vivo, suggesting that DPE might be a strong natural anti-inflammatory agent.
Collapse
Affiliation(s)
- Eun-A Kim
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea.
| | - Yuling Ding
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Korea.
| | - Hye-Won Yang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea.
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea.
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Korea.
| |
Collapse
|
17
|
Yang Z, Chen S, Xue S, Li X, Hu J, Sun Z, Cui H. Injection of an SV40 transcriptional terminator causes embryonic lethality: a possible zebrafish model for screening nonhomologous end-joining inhibitors. Onco Targets Ther 2018; 11:4945-4953. [PMID: 30154663 PMCID: PMC6103608 DOI: 10.2147/ott.s153576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction DNA repair by the nonhomologous end joining (NHEJ) pathway promotes tumor recurrence after chemotherapy and radiotherapy. Discovery of rapid and high-throughput techniques to screen for an effective NHEJ inhibitor drug is imperative for the suppression of NHEJ during tumor treatment. However, traditional screening methods are too cumbersome to meet the current need. Zebrafish is an ideal model for drug screening due to the specificity of its early embryonic development and similarity of tumor cell generation. By exploiting the high frequency of NHEJ in early embryonic development, we established a model that uses a transcriptional terminator signal fragment from the Simian virus 40 (SV40) to cause embryonic lethality. SV40 fragment-induced embryonic lethality was alleviated by 5,6-bis ((E)-benzylideneamino)-2-mercaptopyrimidin-4-ol or C18H14N4OS (SCR7), an NHEJ inhibitor. Materials and methods A 122 bp SV40 terminator fragment (10 ng/µL) was microinjected into zebrafish zygotes. SV40 fragment integration into the zebrafish embryonic genome was detected by Southern blot using a DNA probe for the SV40 terminator. Embryonic lethality rates were observed 24 and 48 h after microinjection. A nonhomologous recombinant inhibitor, SCR7 (5 µM), was used to alleviate embryonic lethality. Results Microinjection of zebrafish embryos with the SV40 terminator fragment (10 ng/µL) caused a progressive increase in mortality over time. Using Southern blots, we confirmed that SV40 terminator sequences were integrated into the zebrafish embryonic genome. This phenomenon was effectively alleviated by addition of SCR7. Conclusion Injection of an SV40 terminator into zebrafish embryos may cause embryonic lethality due to NHEJ during early zebrafish development. The high mortality of zebrafish embryos could be alleviated by using the NHEJ inhibitor, SCR7. The zebrafish model presented here is simpler and more convenient than traditional methods of screening for NHEJ inhibitors and can be utilized in large-scale drug screens for NHEJ inhibitors and for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- Zhe Yang
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Shihao Chen
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Songlei Xue
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Xinxiu Li
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Jiang Hu
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Zhen Sun
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China, .,Joint International Research Laboratory of Agricultural & Agri-Product Safety of Educational Ministry of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China,
| |
Collapse
|
18
|
Saydmohammed M, Vollmer LL, Onuoha EO, Maskrey TS, Gibson G, Watkins SC, Wipf P, Vogt A, Tsang M. A High-Content Screen Reveals New Small-Molecule Enhancers of Ras/Mapk Signaling as Probes for Zebrafish Heart Development. Molecules 2018; 23:molecules23071691. [PMID: 29997348 PMCID: PMC6099644 DOI: 10.3390/molecules23071691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Zebrafish is the preferred vertebrate model for high throughput chemical screens to discover modulators of complex biological pathways. We adapted a transgenic zebrafish line, Tg(dusp6:EGFP), which reports on fibroblast growth factor (Fgf)/Ras/Mapk activity, into a quantitative, high-content chemical screen to identify novel Fgf hyperactivators as chemical probes for zebrafish heart development and regeneration. We screened 10,000 compounds from the TimTec ActiProbe library, and identified several structurally distinct classes of molecules that enhanced Fgf/Ras/Mapk signaling. We chose three agents—ST020101, ST011282, and ST006994—for confirmatory and functional studies based on potency, repeatability with repurchased material, favorable whole organism toxicity, and evidence of structure–activity relationships. Functional follow-up assays confirmed that all three compounds induced the expression of Fgf target genes during zebrafish embryonic development. Moreover, these compounds increased cardiac progenitor populations by effecting a fate change from endothelial to cardiac progenitors that translated into increased numbers of cardiomyocytes. Interestingly, ST006994 augmented Fgf/Ras/Mapk signaling without increasing Erk phosphorylation, suggesting a molecular mechanism of action downstream of Erk. We posit that the ST006994 pharmacophore could become a unique chemical probe to uncover novel mechanisms of Fgf signaling during heart development and regeneration downstream of the Mapk signaling node.
Collapse
Affiliation(s)
- Manush Saydmohammed
- Department of Developmental Biology, University of Pittsburgh, BST3, 3501 5th Avenue, Pittsburgh, PA 15213, USA.
| | - Laura L Vollmer
- The University of Pittsburgh Drug Discovery Institute, 200 Lothrop Street, Pittsburgh, PA 15260, USA.
| | - Ezenwa O Onuoha
- Department of Developmental Biology, University of Pittsburgh, BST3, 3501 5th Avenue, Pittsburgh, PA 15213, USA.
| | - Taber S Maskrey
- Department of Chemistry, 219 University Drive, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Gregory Gibson
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA 15213, USA.
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA 15213, USA.
| | - Peter Wipf
- Department of Chemistry, 219 University Drive, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Andreas Vogt
- The University of Pittsburgh Drug Discovery Institute, 200 Lothrop Street, Pittsburgh, PA 15260, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, BST3, 3501 5th Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Compound K Inhibits the Lipopolysaccharide-Induced Inflammatory Responses in Raw 264.7 Cell Line and Zebrafish. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Kim D, Lee TS. Photoswitchable Emission Color Change in Nanodots Containing Conjugated Polymer and Photochrome. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34770-34776. [PMID: 27936536 DOI: 10.1021/acsami.6b12277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A simple approach for the preparation of conjugated polymer (CP)-based fluorescent nanodots containing photochrome (dithienylethene, DTE) is reported. The CP in the nanodots was designed to exhibit dual emissions of blue and green. The photochromic, fluorescent, composite nanodots (PNDs) were able to tune the emission color from green to blue using selective energy transfer from the CP to DTE under ultraviolet (UV) irradiation. The UV-irradiation-induced ring closure of the DTE within the PNDs provided a spectral overlap between the green emission of the CP and the absorption of DTE, leading to quenching of the green emission and, concomitantly, maintaining of the blue emission. The photoswitchable fluorescent PNDs with high on-off green fluorescence contrast were successfully applied in a living zebrafish imaging. Our design strategy provided a versatile tool for constructing a special photomodulated color-changeable nanostructure in bioimaging.
Collapse
Affiliation(s)
- Daigeun Kim
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University , Daejeon 34134, Korea
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University , Daejeon 34134, Korea
| |
Collapse
|
21
|
Bhushan B, Nandhagopal S, Rajesh Kannan R, Gopinath P. Biomimetic nanomaterials: Development of protein coated nanoceria as a potential antioxidative nano-agent for the effective scavenging of reactive oxygen species in vitro and in zebrafish model. Colloids Surf B Biointerfaces 2016; 146:375-86. [PMID: 27388966 DOI: 10.1016/j.colsurfb.2016.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/05/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) induced oxidative stress is one of the major factors responsible for initiation of several intracellular toxic events that leads to cell death. Antioxidant enzymes defence system of the body is responsible for maintaining the oxidative balance and cellular homeostasis. Several diseases are promoted by the excessive oxidative stress caused by the impaired antioxidant defence system that leads to oxidant/antioxidant imbalance in the body. In order to restore or precise the aberrant antioxidant system, a large number of catalytic nanoparticles has been screened so far. Exceptional antioxidative activity of nanoceria made it as a potential antioxidative nano-agent for the effective scavenging of toxic ROS. In this work albumin coated nanoceria (ANC) was synthesized and further characterised by various physicochemical techniques. The antioxidant and superoxide dismutase (SOD) assay confirm that the albumin coating do not alter the antioxidant potential of ANC. The biocompatibility and protective efficacy of ANC against oxidative stress was investigated both in vitro and in vivo in human lung epithelial (L-132) cells and zebrafish embryos, respectively. The inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and field emission scanning electron microscope (FE-SEM) analysis corroborates the uptake of ANC by the cells. Furthermore, the semi-quantitative gene expression studies confirmed that the ANC successfully defend the cells against oxidative stress by preserving the antioxidant system of the cells. Thus, the current work open up a new avenue for the development of improved antioxidant nano-drug therapies.
Collapse
Affiliation(s)
- Bharat Bhushan
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, India
| | - Soundharapandiyan Nandhagopal
- Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama University, Rajiv Gandhi Salai, Chennai 600119, TN, India
| | - Rajaretinam Rajesh Kannan
- Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama University, Rajiv Gandhi Salai, Chennai 600119, TN, India
| | - P Gopinath
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, India; Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
22
|
Li L, Huang T, Tian C, Xiao Y, Kou S, Zhou X, Liu S, Ye X, Li X. The defensive effect of phellodendrine against AAPH-induced oxidative stress through regulating the AKT/NF-κB pathway in zebrafish embryos. Life Sci 2016; 157:97-106. [PMID: 27234894 DOI: 10.1016/j.lfs.2016.05.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/11/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
AIMS This study is to investigate the effect of phellodendrine (PHE) against AAPH-induced oxidative stress and find out the biological mechanism of PHE by using the zebrafish embryo model. MAIN METHODS After treatments by AAPH or PHE, the mortality and heartbeat of zebrafish embryos were recorded and the production of reactive oxygen species (ROS), lipid-peroxidation and the rate of cell death were detected by fluorescence spectrophotometry respectively. Whereafter, the pathways of PHE against AAPH-induced oxidative stress were screened by inhibitors to explore its biological mechanism. The related genes and proteins expressions were analyzed by real-time quantitative reverse-transcription polymerase-chain-reaction (qRT-PCR) and western blotting. KEY FINDINGS The PHE obviously improved the decreased survival rate and abnormally elevated heart-beating rate of zebrafish embryos caused by AAPH. Especially 200μg/mL of PHE make the survival rate increased to 90.26±1.40% at 72hfp and the heartbeat back to normal. Besides, AAPH caused a significant increase in the production of reactive oxygen species (ROS), lipid-peroxidation and cell death rate, all of which could be decreased after PHE treatment dose-dependently. And PHE exerted the protective activity against AAPH-induced oxidative stress through down-regulating AKT phosphorylation and NF-kB3 expression, which associate with modulation of IKK phosphorylation in zebrafish embryos. SIGNIFICANCE The PHE showed a good antioxidant effect in vivo, and the mechanism has been stated that the PHE can down-regulating AKT, IKK, NF-kB phosphorylation and COX-2 expression induced by AAPH. Moreover, the PHE also ameliorated the ROS-mediated inflammatory response.
Collapse
Affiliation(s)
- Ling Li
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Tao Huang
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Cheng Tian
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yubo Xiao
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Shuming Kou
- Chongqing Engineering Research Centre for Sweet Potato, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xia Zhou
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Shanshan Liu
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiaoli Ye
- Chongqing Engineering Research Centre for Sweet Potato, School of Life Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, China
| | - Xuegang Li
- Chongqing Productivity Promotion Center for the Modernization of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China; Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, China
| |
Collapse
|
23
|
Abstract
Protein-tyrosine phosphatases (PTPs) are a large family of signal transduction regulators that have an essential role in normal development and physiology. Aberrant activation or inactivation of PTPs is at the basis of many human diseases. The zebrafish, Danio rerio, is being used extensively to model major aspects of development and disease as well as the mechanism of regeneration of limbs and vital organs, and most classical PTPs have been identified in zebrafish. Zebrafish is an excellent model system for biomedical research because the genome is sequenced, zebrafish produce a large number of offspring, the eggs develop outside the mother and are transparent, facilitating intravital imaging, and transgenesis and (site-directed) mutagenesis are feasible. Together, these traits make zebrafish amenable for the analysis of gene and protein function. In this chapter we cover three manipulations of zebrafish embryos that we have used to study the effects of PTPs in development, regeneration, and biochemistry. Microinjection at the one-cell stage is at the basis of many zebrafish experiments and is described first. This is followed by a description for measuring regeneration of the embryonic caudal fin, a powerful and robust physiological assay. Finally, the considerable but manageable troubleshooting of several complications associated with preparing zebrafish embryos for immunoblotting is explained. Overall, this chapter provides detailed protocols for manipulating zebrafish embryo samples with a compilation of tips collected through extensive experience from the zebrafish research community.
Collapse
Affiliation(s)
- Alexander James Hale
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands. .,Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
24
|
Lipscomb L, Piggott RW, Emmerson T, Winder SJ. Dasatinib as a treatment for Duchenne muscular dystrophy. Hum Mol Genet 2015; 25:266-74. [PMID: 26604135 PMCID: PMC4706114 DOI: 10.1093/hmg/ddv469] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
Identification of a systemically acting and universal small molecule therapy for Duchenne muscular dystrophy would be an enormous advance for this condition. Based on evidence gained from studies on mouse genetic models, we have identified tyrosine phosphorylation and degradation of β-dystroglycan as a key event in the aetiology of Duchenne muscular dystrophy. Thus, preventing tyrosine phosphorylation and degradation of β-dystroglycan presents itself as a potential therapeutic strategy. Using the dystrophic sapje zebrafish, we have investigated the use of tyrosine kinase and other inhibitors to treat the dystrophic symptoms in this model of Duchenne muscular dystrophy. Dasatinib, a potent and specific Src tyrosine kinase inhibitor, was found to decrease the levels of β-dystroglycan phosphorylation on tyrosine and to increase the relative levels of non-phosphorylated β-dystroglycan in sapje zebrafish. Furthermore, dasatinib treatment resulted in the improved physical appearance of the sapje zebrafish musculature and increased swimming ability as measured by both duration and distance of swimming of dasatinib-treated fish compared with control animals. These data suggest great promise for pharmacological agents that prevent the phosphorylation of β-dystroglycan on tyrosine and subsequent steps in the degradation pathway as therapeutic targets for the treatment of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Leanne Lipscomb
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Robert W Piggott
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tracy Emmerson
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
25
|
Ryu SJ, Choi HS, Yoon KY, Lee OH, Kim KJ, Lee BY. Oleuropein suppresses LPS-induced inflammatory responses in RAW 264.7 cell and zebrafish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2098-2105. [PMID: 25613688 DOI: 10.1021/jf505894b] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oleuropein is one of the primary phenolic compounds present in olive leaf. In this study, the anti-inflammatory effect of oleuropein was investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 and a zebrafish model. The inhibitory effect of oleuropein on LPS-induced NO production in macrophages was supported by the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, our enzyme immunoassay showed that oleuropein suppressed the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-6 (IL-6). Oleuropein inhibited the translocation of p65 by suppressing phosphorylation of inhibitory kappa B-α (IκB-α). Oleuropein also decreased activation of ERK1/2 and JNK, which are associated with LPS-induced inflammation, and its downstream gene of AP-1. Furthermore, oleuropein inhibited LPS-stimulated NO generation in a zebrafish model. Taken together, our results demonstrated that oleuropein could reduce inflammatory responses by inhibiting TLR and MAPK signaling, and may be used as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Su-Jung Ryu
- Department of Biomedical Science, CHA University , Kyonggi 463-836, South Korea
| | | | | | | | | | | |
Collapse
|
26
|
Roy P, Periasamy AP, Lin CY, Her GM, Chiu WJ, Li CL, Shu CL, Huang CC, Liang CT, Chang HT. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. NANOSCALE 2015; 7:2504-2510. [PMID: 25569453 DOI: 10.1039/c4nr07005d] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with the GQDs exhibiting high biocompatibility as they were excreted from the zebrafish's body without affecting its growth significantly at a concentration lower than 2 mg mL(-1) over a period of 4 to 72 hour post fertilization. The GQDs have further been used to image human breast adenocarcinoma cell line (MCF-7 cells), human cervical cancer cell line (HeLa cells), and normal human mammary epithelial cell line (MCF-10A). These results are indispensable to further the advance of graphene-based nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Prathik Roy
- Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, Bae H, Kaji H, Khademhosseini A. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. TISSUE ENGINEERING. PART B, REVIEWS 2014; 20:403-36. [PMID: 24320971 PMCID: PMC4193686 DOI: 10.1089/ten.teb.2013.0534] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022]
Abstract
Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Toshinori Fujie
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg Cedex, France
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
van der Ent W, Jochemsen AG, Teunisse AFAS, Krens SFG, Szuhai K, Spaink HP, Hogendoorn PCW, Snaar-Jagalska BE. Ewing sarcoma inhibition by disruption of EWSR1-FLI1 transcriptional activity and reactivation of p53. J Pathol 2014; 233:415-24. [DOI: 10.1002/path.4378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/14/2014] [Accepted: 05/18/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Wietske van der Ent
- Institute of Biology; Leiden University; The Netherlands
- Department of Pathology; Leiden University Medical Center; The Netherlands
| | - Aart G Jochemsen
- Department of Molecular Cell Biology; Leiden University Medical Center; The Netherlands
| | - Amina FAS Teunisse
- Department of Molecular Cell Biology; Leiden University Medical Center; The Netherlands
| | | | - Karoly Szuhai
- Department of Molecular Cell Biology; Leiden University Medical Center; The Netherlands
| | | | | | | |
Collapse
|
29
|
Kim EA, Lee SH, Ko CI, Cha SH, Kang MC, Kang SM, Ko SC, Lee WW, Ko JY, Lee JH, Kang N, Oh JY, Ahn G, Jee YH, Jeon YJ. Protective effect of fucoidan against AAPH-induced oxidative stress in zebrafish model. Carbohydr Polym 2014; 102:185-91. [DOI: 10.1016/j.carbpol.2013.11.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 10/31/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022]
|
30
|
Paardekooper Overman J, den Hertog J. Zebrafish as a model to study PTPs during development. Methods 2014; 65:247-53. [PMID: 23974070 DOI: 10.1016/j.ymeth.2013.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022] Open
|
31
|
Ko JY, Kim EA, Lee JH, Kang MC, Lee JS, Kim JS, Jung WK, Jeon YJ. Protective effect of aquacultured flounder fish-derived peptide against oxidative stress in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2014; 36:320-323. [PMID: 24333583 DOI: 10.1016/j.fsi.2013.11.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/24/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
This study investigates the protective effect of aquacultured flounder fish-derived peptide (AFFP) against 2,2-azobis-(2-amidinopropane) hydrochloride (AAPH)-induced oxidative damage in a zebrafish model. Zebrafish embryos were evaluated for the protective effect by heartbeat rate, survival rate, ROS generation, lipid peroxidation, and cell death. In the results, the AAPH group showed a low survival rate, whereas the AFFP and AAPH co-treated group increased a survival rate. Also, AFFP dose-dependently reduced AAPH-induced intracellular ROS and lipid peroxidation, and decreased cell death in AAPH-induced zebrafish. These results revealed that AFFP could be used as a natural antioxidant, and that the zebrafish provides an alternative in vivo model to efficiently evaluate the antioxidative effects of peptides on fishes.
Collapse
Affiliation(s)
- Ju-Young Ko
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Eun-A Kim
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Ji-Hyeok Lee
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Min-Cheol Kang
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jung-Suck Lee
- Industry-Academy Cooperation Foundation, Jeju National University, Jeju 690-756, Republic of Korea
| | - Jin-Soo Kim
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 650-160, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus) Pukyong National University, Busan 608-737, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
32
|
Lee KJ, Browning LM, Nallathamby PD, Osgood CJ, Xu XHN. Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish. NANOSCALE 2013; 5:11625-36. [PMID: 24056877 PMCID: PMC3833826 DOI: 10.1039/c3nr03210h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.
Collapse
Affiliation(s)
- Kerry J Lee
- Department of Chemistry, Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | | | | | | | | |
Collapse
|
33
|
Browning LM, Lee KJ, Nallathamby PD, Xu XHN. Silver nanoparticles incite size- and dose-dependent developmental phenotypes and nanotoxicity in zebrafish embryos. Chem Res Toxicol 2013; 26:1503-13. [PMID: 24024906 DOI: 10.1021/tx400228p] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomaterials possess distinctive physicochemical properties and promise a wide range of applications, from advanced technology to leading-edge medicine. However, their effects on living organisms remain largely unknown. Here we report that the purified silver nanoparticles (Ag NPs) (97 ± 13 nm) incite specific developmental stage embryonic phenotypes and nanotoxicity in a dose-dependent manner, upon acute exposure of given stage embryos to the NPs (0-24 pM) for only 2 h. The critical concentrations of the NPs that cause 50% of embryos to develop normally for cleavage, early gastrula, early segmentation, late segmentation, and hatching stage zebrafish embryos are 3.5, 4, 6, 6, and 8 pM, respectively, showing that the earlier developmental stage embryos are much more sensitive to the effects of the NPs than the later stage embryos. Interestingly, distinctive phenotypes (head abnormality and no eyes) are observed only in cleavage and early gastrula stage embryos treated with the NPs, showing the stage-specific effects of the NPs. By comparing these Ag NPs with smaller Ag NPs (13.1 ± 2.5 nm), we found that the embryonic phenotypes strikingly depend upon the sizes of Ag NPs and embryonic developmental stages. These notable findings suggest that the Ag NPs are unlike any conventional chemicals or ions. They can potentially enable target-specific study and therapy for early embryonic development in size-, stage-, dose-, and exposure duration-dependent manners.
Collapse
Affiliation(s)
- Lauren M Browning
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | | | | | | |
Collapse
|
34
|
Zhao X, Ong KJ, Ede JD, Stafford JL, Ng KW, Goss GG, Loo SCJ. Evaluating the toxicity of hydroxyapatite nanoparticles in catfish cells and zebrafish embryos. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1734-1741. [PMID: 22887936 DOI: 10.1002/smll.201200639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/12/2012] [Indexed: 06/01/2023]
Abstract
The toxicity of needle-(nHA-ND) and rod-shaped (nHA-RD) hydroxyapatite (HA) nanoparticles is evaluated in vitro on catfish B-cells (3B11) and catfish T-cells (28s.3) and in vivo on zebrafish embryos to determine if biological effects are similar to the effects seen in mammalian in vitro systems. Neither nHA-ND nor nHA-RD affect cell viability at concentrations of 10 to 300 μg mL(-1) . However, 30 μg mL(-1) needle-shaped nHA lower metabolic activity of the cells. Axial deformations are seen in zebrafish exposed to 300 μg mL(-1) needle shaped nHA after 120 h. For the first time, nHA is reported to cause zebrafish hatching delay. The lowest concentration (3 μg mL(-1) ) of both types of nHA cause the highest hatching inhibition and needle-shaped nHA exposed zebrafish exhibit the lowest hatch at 72 h post fertilization.
Collapse
Affiliation(s)
- Xinxin Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | | | | | | | | | | | | |
Collapse
|
35
|
Lee KJ, Browning LM, Nallathamby PD, Xu XHN. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem Res Toxicol 2013; 26:904-17. [PMID: 23621491 DOI: 10.1021/tx400087d] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nanomaterials possess unusually high surface area-to-volume ratios and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameter) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs(+ζ)), negatively (Ag-CALNNS NPs(-2ζ)), and more negatively charged NPs (Ag-CALNNE NPs(-4ζ)), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral, and negative charges on the surface of the NPs at pH 4-10. We have studied their charge-dependent transport into early developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs(+ζ) (positively charged) are the most biocompatible while the Ag-CALNNE NPs(-4ζ) (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups, and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs in vivo and in tissues, and reveals the possibility of rational design of biocompatible NPs.
Collapse
Affiliation(s)
- Kerry J Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA
| | | | | | | |
Collapse
|
36
|
Truong L, Tilton SC, Zaikova T, Richman E, Waters KM, Hutchison JE, Tanguay RL. Surface functionalities of gold nanoparticles impact embryonic gene expression responses. Nanotoxicology 2013; 7:192-201. [PMID: 22263968 PMCID: PMC3399027 DOI: 10.3109/17435390.2011.648225] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Incorporation of gold nanoparticles (AuNPs) into consumer products is increasing; however, there is a gap in available toxicological data to determine the safety of AuNPs. In this study, we utilised the embryonic zebrafish to investigate how surface functionalisation and charge influence molecular responses. Precisely engineered AuNPs with 1.5 nm cores were synthesised and functionalized with three ligands: 2-mercaptoethanesulfonic acid (MES), N,N,N-trimethylammoniumethanethiol (TMAT), or 2-(2-(2-mercaptoethoxy)ethoxy)ethanol. Developmental assessments revealed differential biological responses when embryos were exposed to the functionalised AuNPs at the same concentration. Using inductively coupled plasma-mass spectrometry, AuNP uptake was confirmed in exposed embryos. Following exposure to MES- and TMAT-AuNPs from 6 to 24 or 6 to 48 h post fertilisation, pathways involved in inflammation and immune response were perturbed. Additionally, transport mechanisms were misregulated after exposure to TMAT and MES-AuNPs, demonstrating that surface functionalisation influences many molecular pathways.
Collapse
Affiliation(s)
- Lisa Truong
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center at Oregon State University , Corvallis, OR 97333, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Lee SH, Ko CI, Jee Y, Jeong Y, Kim M, Kim JS, Jeon YJ. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydr Polym 2013; 92:84-9. [PMID: 23218269 DOI: 10.1016/j.carbpol.2012.09.066] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/24/2012] [Accepted: 09/24/2012] [Indexed: 12/01/2022]
Abstract
Fucoidan extracted from Ecklonia cava had strong anti-inflammatory activities. However, the direct effects of fucoidan of E. cava on anti-inflammatory activities in vivo model remained to be determined. Therefore, the present study was designed to assess in vivo anti-inflammatory effect of fucoidan extracted from E. cava (ECF) using tail-cutting-induced and lipopolysaccharide (LPS)-stimulated zebrafish model. Treating zebrafish model with tail-cutting and LPS-treatment significantly increased the ROS and NO level. However, ECF inhibited this tail-cutting-induced and LPS-stimulated ROS and NO generation. These results show that ECF alleviated inflammation by inhibiting the ROS and NO generation induced by tail-cutting and LPS-treatment. In addition, ECF has a protective effect against the toxicity induced by LPS exposure in zebrafish embryos. This outcome could explain the potential anti-inflammatory activity of ECF, which might have a beneficial effect during the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Seung-Hong Lee
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Lai K, Selinger DW, Solomon JM, Wu H, Schmitt E, Serluca FC, Curtis D, Benson JD. Integrated compound profiling screens identify the mitochondrial electron transport chain as the molecular target of the natural products manassantin, sesquicillin, and arctigenin. ACS Chem Biol 2013; 8:257-67. [PMID: 23138533 DOI: 10.1021/cb300495e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phenotypic compound screens can be used to identify novel targets in signaling pathways and disease processes, but the usefulness of these screens depends on the ability to quickly determine the target and mechanism of action of the molecules identified as hits. One fast route to discovering the mechanism of action of a compound is to profile its properties and to match this profile with those of compounds of known mechanism of action. In this work, the Novartis collection of over 12,000 pure natural products was screened for effects on early zebrafish development. The largest phenotypic class of hits, which caused developmental arrest without necrosis, contained known electron transport chain inhibitors and many compounds of unknown mechanism of action. High-throughput transcriptional profiling revealed that these compounds are mechanistically related to one another. Metabolic and biochemical assays confirmed that all of the molecules that induced developmental arrest without necrosis inhibited the electron transport chain. These experiments demonstrate that the electron transport chain is the target of the natural products manassantin, sesquicillin, and arctigenin. The overlap between the zebrafish and transcriptional profiling screens was not perfect, indicating that multiple profiling screens are necessary to fully characterize molecules of unknown function. Together, zebrafish screening and transcriptional profiling represent sensitive and scalable approaches for identifying bioactive compounds and elucidating their mechanism of action.
Collapse
Affiliation(s)
- Kevin Lai
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139,
United States
| | - Douglas W. Selinger
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139,
United States
| | - Jonathan M. Solomon
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139,
United States
| | - Hua Wu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139,
United States
| | - Esther Schmitt
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Fabrizio C. Serluca
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139,
United States
| | - Daniel Curtis
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139,
United States
| | - John D. Benson
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
39
|
Adenuga AA, Truong L, Tanguay RL, Remcho VT. Preparation of water soluble carbon nanotubes and assessment of their biological activity in embryonic zebrafish. INTERNATIONAL JOURNAL OF BIOMEDICAL NANOSCIENCE AND NANOTECHNOLOGY 2013; 3:38-51. [PMID: 25750663 PMCID: PMC4349379 DOI: 10.1504/ijbnn.2013.054514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carbon nanotubes (CNTs) are currently one of the most important classes of nanomaterials with unique properties sparking off numerous applications in many fields, including electronics, material science and medicine. However, applications of CNTs in medicine and other biological fields are hampered by their insolubility in aqueous media and concerns regarding toxicity. In this study, seven types of CNTs, including two single-walled, one double-walled, and four multi-walled, were evaluated for possible toxicological effects. Soluble CNTs were prepared by treatment with a mixture of acids (D2SO4 and DNO3), washed with Milli-Q water and oven dried. Transmission electron microscopy, thermal gravimetric analysis, and other techniques were used to characterize the prepared CNTs. CNT toxicity was assessed using the embryonic zebrafish. Results showed that none of the CNTs studied caused significant adverse developmental effects. These results support the potential safe use of CNTs as components of indwelling medical devices and drug delivery tools.
Collapse
Affiliation(s)
- Adeniyi A Adenuga
- Department of Chemistry, Oregon State University, Corvallis, OR 97331 ; Safer Nanomaterials Nanomanufacturing Initiative, Oregon Nanoscience and Microtechnologies Institute, Eugene, OR 97403
| | - Lisa Truong
- Safer Nanomaterials Nanomanufacturing Initiative, Oregon Nanoscience and Microtechnologies Institute, Eugene, OR 97403 ; Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Robert L Tanguay
- Safer Nanomaterials Nanomanufacturing Initiative, Oregon Nanoscience and Microtechnologies Institute, Eugene, OR 97403 ; Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Vincent T Remcho
- Department of Chemistry, Oregon State University, Corvallis, OR 97331 ; Safer Nanomaterials Nanomanufacturing Initiative, Oregon Nanoscience and Microtechnologies Institute, Eugene, OR 97403
| |
Collapse
|
40
|
Ozel RE, Hayat A, Wallace KN, Andreescu S. Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish. RSC Adv 2013; 3:15298-15309. [PMID: 24015353 DOI: 10.1039/c3ra41739e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cerium oxide nanoparticles or nanoceria are emerging as a new and promising class of nanoparticle technology for biomedical applications. The safe implementation of these particles in clinical applications requires evaluation of their redox properties and reactivity that might cause neurotoxic effects by interacting with redox components of the physiological environment. We report in vitro and in vivo studies to evaluate the impact of nanoceria exposure on serotonin (5-HT), an important neurotransmitter that plays a critical role in various physiological processes including motility and secretion in the digestive system. In vitro studies of 5-HT in the presence of nanoceria using spectroscopic, electrochemical and surface characterization methods demonstrate that nanoceria interacts with 5-HT and forms a surface adsorbed 5-HT-nanoceria complex. Further in vivo studies in live zebrafish embryos indicate depletion of the 5-HT level in the intestine for exposure periods longer than three days. Intestinal 5-HT was assessed quantitatively in live embryos using implantable carbon fiber microelectrodes and the results were compared to immunohistochemistry of the dissected intestine. 20 and 50 ppm nanoparticle exposure decreased the 5-HT level to 20.5 (±1.3) and 5.3 (±1.5) nM respectively as compared to 30.8 (±3.4) nM for unexposed control embryos. The results suggest that internalized nanoceria particles can concentrate 5-HT at the nanoparticle accumulation site depleting it from the surrounding tissue. This finding might have long term implications in the neurophysiology and functional development of organisms exposed to these particles through intended or unintended exposure.
Collapse
Affiliation(s)
- Rıfat Emrah Ozel
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam, NY 13699-5810, USA
| | | | | | | |
Collapse
|
41
|
Park MJ, Lee KR, Shin DS, Chun HS, Kim CH, Ahn SH, Bae MA. Predicted drug-induced bradycardia related cardio toxicity using a zebrafish in vivo model is highly correlated with results from in vitro tests. Toxicol Lett 2013; 216:9-15. [DOI: 10.1016/j.toxlet.2012.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 11/30/2022]
|
42
|
Konantz M, Balci TB, Hartwig UF, Dellaire G, André MC, Berman JN, Lengerke C. Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 2012; 1266:124-37. [PMID: 22901264 DOI: 10.1111/j.1749-6632.2012.06575.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish has become a powerful vertebrate model for genetic studies of embryonic development and organogenesis and increasingly for studies in cancer biology. Zebrafish facilitate the performance of reverse and forward genetic approaches, including mutagenesis and small molecule screens. Moreover, several studies report the feasibility of xenotransplanting human cells into zebrafish embryos and adult fish. This model provides a unique opportunity to monitor tumor-induced angiogenesis, invasiveness, and response to a range of treatments in vivo and in real time. Despite the high conservation of gene function between fish and humans, concern remains that potential differences in zebrafish tissue niches and/or missing microenvironmental cues could limit the relevance and translational utility of data obtained from zebrafish human cancer cell xenograft models. Here, we summarize current data on xenotransplantation of human cells into zebrafish, highlighting the advantages and limitations of this model in comparison to classical murine models of xenotransplantation.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Hematology and Oncology, University of Tübingen Medical Center II, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Metabolism of tanshinone IIA, cryptotanshinone and tanshinone I from Radix Salvia miltiorrhiza in zebrafish. Molecules 2012; 17:8617-32. [PMID: 22810195 PMCID: PMC6269062 DOI: 10.3390/molecules17078617] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/02/2023] Open
Abstract
The study aimed to investigate the potential of zebrafish in imitating mammal phase I metabolism of natural compounds. Three diterpenoid quinones from Radix Salvia miltiorrhiza, namely tanshinone IIA (TIIA), cryptotanshinone (Cry) and tanshinone I (TI) were selected as model compounds, and their metabolites mediated by zebrafish were characterized using a high-performance liquid chromatography coupled ion-trap mass spectrometry (HPLC/IT-MSn) method with electrospray ionization in positive mode. The separation was performed with a Zorbax C-18 column using a binary gradient elution of 0.05% formic acid acetonitrile/0.05% formic acid water. According to the MS spectra and after comparison with reference standards and literature reports, hydroxylation, dehydrogenation or D-ring hydrolysis metabolites of TIIA and Cry but not of TI were characterized, which coincided with those reported using regular in vivo or in vitro metabolic analysis methods, thus verifying that zebrafish can successfully imitate mammalian phase I metabolism which instills further confidence in using zebrafish as a novel and prospective metabolism model.
Collapse
|
44
|
Lee KJ, Nallathamby PD, Browning LM, Desai T, Cherukuri PK, Xu XHN. Single nanoparticle spectroscopy for real-time in vivo quantitative analysis of transport and toxicity of single nanoparticles in single embryos. Analyst 2012; 137:2973-86. [PMID: 22563577 DOI: 10.1039/c2an35293a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nanomaterials exhibit distinctive physicochemical properties and promise a wide range of applications from nanotechnology to nanomedicine, which raise serious concerns about their potential environmental impacts on ecosystems. Unlike any conventional chemicals, nanomaterials are highly heterogeneous, and their properties can alter over time. These unique characteristics underscore the importance of study of their properties and effects on living organisms in real time at single nanoparticle (NP) resolution. Here we report the development of single-NP plasmonic microscopy and spectroscopy (dark-field optical microscopy and spectroscopy, DFOMS) and ultrasensitive in vivo assay (cleavage-stage zebrafish embryos, critical aquatic species) to study transport and toxicity of single silver nanoparticles (Ag NPs, 95.4 ± 16.0 nm) on embryonic developments. We synthesized and characterized purified and stable (non-aggregation) Ag NPs, determined their sizes and doses (number), and their transport mechanisms and effects on embryonic development in vivo in real time at single-NP resolution. We found that single Ag NPs passively entered the embryos through their chorionic pores via random Brownian diffusion and stayed inside the embryos throughout their entire development (120 h), suggesting that the embryos can bio-concentrate trace NPs from their environment. Our studies show that higher doses and larger sizes of Ag NPs cause higher toxic effects on embryonic development, demonstrating that the embryos can serve as ultrasensitive in vivo assays to screen biocompatibility and toxicity of the NPs and monitor their potential release into aquatic ecosystems.
Collapse
Affiliation(s)
- Kerry J Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lee KJ, Browning LM, Nallathamby PD, Desai T, Cherukuri PK, Xu XHN. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chem Res Toxicol 2012; 25:1029-46. [PMID: 22486336 DOI: 10.1021/tx300021u] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanomaterials possess distinctive physicochemical properties (e.g., small sizes and high surface area-to-volume ratios) and promise a wide variety of applications, ranging from the design of high quality consumer products to effective disease diagnosis and therapy. These properties can lead to toxic effects, potentially hindering advances in nanotechnology. In this study, we have synthesized and characterized purified and stable (nonaggregation) silver nanoparticles (Ag NPs, 41.6 ± 9.1 nm in average diameter) and utilized early developing (cleavage-stage) zebrafish embryos (critical aquatic and eco- species) as in vivo model organisms to probe the diffusion and toxicity of Ag NPs. We found that single Ag NPs (30-72 nm diameters) passively diffused into the embryos through chorionic pores via random Brownian motion and stayed inside the embryos throughout their entire development (120 hours-post-fertilization, hpf). Dose- and size-dependent toxic effects of the NPs on embryonic development were observed, showing the possibility of tuning biocompatibility and toxicity of the NPs. At lower concentrations of the NPs (≤0.02 nM), 75-91% of embryos developed into normal zebrafish. At the higher concentrations of NPs (≥0.20 nM), 100% of embryos became dead. At the concentrations in between (0.02-0.2 nM), embryos developed into various deformed zebrafish. Number and sizes of individual Ag NPs embedded in tissues of normal and deformed zebrafish at 120 hpf were quantitatively analyzed, showing deformed zebrafish with higher number of larger NPs than normal zebrafish and size-dependent nanotoxicity. By comparing with our previous studies of smaller Ag NPs (11.6 ± 3.5 nm), we found striking size-dependent nanotoxicity that, at the same molar concentration, the larger Ag NPs (41.6 ± 9.1 nm) are more toxic than the smaller Ag NPs (11.6 ± 3.5 nm).
Collapse
Affiliation(s)
- Kerry J Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, United States
| | | | | | | | | | | |
Collapse
|
46
|
Liu R, Lin S, Rallo R, Zhao Y, Damoiseaux R, Xia T, Lin S, Nel A, Cohen Y. Automated phenotype recognition for zebrafish embryo based in vivo high throughput toxicity screening of engineered nano-materials. PLoS One 2012; 7:e35014. [PMID: 22506062 PMCID: PMC3323610 DOI: 10.1371/journal.pone.0035014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/08/2012] [Indexed: 12/13/2022] Open
Abstract
A phenotype recognition model was developed for high throughput screening (HTS) of engineered Nano-Materials (eNMs) toxicity using zebrafish embryo developmental response classified, from automatically captured images and without manual manipulation of zebrafish positioning, by three basic phenotypes (i.e., hatched, unhatched, and dead). The recognition model was built with a set of vectorial descriptors providing image color and texture information. The best performing model was attained with three image descriptors (color histogram, representative color, and color layout) identified as most suitable from an initial pool of six descriptors. This model had an average recognition accuracy of 97.40±0.95% in a 10-fold cross-validation and 93.75% in a stress test of low quality zebrafish images. The present work has shown that a phenotyping model can be developed with accurate recognition ability suitable for zebrafish-based HTS assays. Although the present methodology was successfully demonstrated for only three basic zebrafish embryonic phenotypes, it can be readily adapted to incorporate more subtle phenotypes.
Collapse
Affiliation(s)
- Rong Liu
- Center for the Environmental Implications of Nanotechnology, California Nanosystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sijie Lin
- Center for the Environmental Implications of Nanotechnology, California Nanosystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Robert Rallo
- Center for the Environmental Implications of Nanotechnology, California Nanosystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Departament d'Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, Tarragona, Catalunya, Spain
| | - Yan Zhao
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Robert Damoiseaux
- Molecular Shared Screening Resources, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tian Xia
- Center for the Environmental Implications of Nanotechnology, California Nanosystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine - Division of NanoMedicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Andre Nel
- Center for the Environmental Implications of Nanotechnology, California Nanosystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine - Division of NanoMedicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yoram Cohen
- Center for the Environmental Implications of Nanotechnology, California Nanosystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
47
|
Saydmohammed M, Vollmer LL, Onuoha EO, Vogt A, Tsang M. A high-content screening assay in transgenic zebrafish identifies two novel activators of fgf signaling. ACTA ACUST UNITED AC 2012; 93:281-7. [PMID: 21932436 DOI: 10.1002/bdrc.20216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Zebrafish have become an invaluable vertebrate animal model to interrogate small molecule libraries for modulators of complex biological pathways and phenotypes. We have recently described the implementation of a quantitative, high-content imaging assay in multi-well plates to analyze the effects of small molecules on Fibroblast Growth Factor (FGF) signaling in vivo. Here we have evaluated the capability of the assay to identify compounds that hyperactivate FGF signaling from a test cassette of agents with known biological activities. Using a transgenic zebrafish reporter line for FGF activity, we screened 1040 compounds from an annotated library of known bioactive agents, including FDA-approved drugs. The assay identified two molecules, 8-hydroxyquinoline sulfate and pyrithione zinc, that enhanced FGF signaling in specific areas of the brain. Subsequent studies revealed that both compounds specifically expanded FGF target gene expression. Furthermore, treatment of early stage embryos with either compound resulted in dorsalized phenotypes characteristic of hyperactivation of FGF signaling in early development. Documented activities for both agents included activation of extracellular signal-related kinase (ERK), consistent with FGF hyperactivation. To conclude, we demonstrate the power of automated quantitative high-content imaging to identify small molecule modulators of FGF.
Collapse
Affiliation(s)
- Manush Saydmohammed
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, PA 15213, USA
| | | | | | | | | |
Collapse
|
48
|
Cha SH, Ko CI, Kim D, Jeon YJ. Protective effects of phlorotannins against ultraviolet B radiation in zebrafish (Danio rerio). Vet Dermatol 2012; 23:51-6, e12. [PMID: 22040269 DOI: 10.1111/j.1365-3164.2011.01009.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Exposure to ultraviolet B (UV-B) radiation has been associated with a variety of adverse effects in all forms of life, including micro-organisms, plants, animals and humans. Ultraviolet B induces cell damage at the molecular level and consequently organisms must employ strategies to protect themselves from sunlight and to repair UV-B-induced cellular damage. In this study, the UV-B protective effects of four different phlorotannins isolated from a brown alga (Ecklonia cava) were determined using zebrafish (Danio rerio) as an in vivo model. Zebrafish embryos were pretreated with phlorotannins and exposed to UV-B (50 mJ/cm(2)). The heart rate, generation of reactive oxygen species and nitric oxide, cell death and hyperpigmentation were assessed in order to evaluate UV-B-induced photo-damage. Treatment of the embryos with the algal phorotannins reduced UV-B-induced reactive oxygen species and nitric oxide levels, protected against UV-B-induced cell death and significantly reduced hyperpigmentation. We therefore suggest that phlorotannins isolated from E. cava can protect against UV-B radiation. Editor Note. Readers of the journal may be unfamiliar with the use of zebrafish embryos in research studies. There is no indication in this article of an ethical review of the study. This is because the use of fish embryos in research, at least in the UK, is not subject to a licensing procedure if they are less than 5 days post fertilization (dpf). In this study the embryos were 2 dpf.
Collapse
Affiliation(s)
- Seon-Heui Cha
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | | | | | | |
Collapse
|
49
|
Cowden J, Padnos B, Hunter D, MacPhail R, Jensen K, Padilla S. Developmental exposure to valproate and ethanol alters locomotor activity and retino-tectal projection area in zebrafish embryos. Reprod Toxicol 2012; 33:165-73. [PMID: 22244950 DOI: 10.1016/j.reprotox.2011.11.111] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/03/2011] [Accepted: 11/24/2011] [Indexed: 11/17/2022]
Abstract
Given the minimal developmental neurotoxicity data available for the large number of new and existing chemicals, there is a critical need for alternative methods to identify and prioritize chemicals for further testing. We outline a developmental neurotoxicity screening approach using zebrafish embryos. Embryos were exposed to nominal concentrations of either valproate or ethanol then examined for lethality, malformation, nervous system structure and locomotor activity. Developmental valproate exposure caused locomotor activity changes at concentrations that did not result in malformations and showed a concentration-dependent decrease in retino-tectal projection area in the optic tectum. Developmental ethanol exposure also affected retino-tectal projection area at concentrations below those concentrations causing malformations. As both valproate and ethanol are known human developmental neurotoxicants, these results add to the growing body of evidence showing the potential utility of zebrafish in screening compounds for mammalian developmental neurotoxicity.
Collapse
Affiliation(s)
- John Cowden
- Integrated Systems Toxicology Division United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Winder SJ, Lipscomb L, Angela Parkin C, Juusola M. The proteasomal inhibitor MG132 prevents muscular dystrophy in zebrafish. PLOS CURRENTS 2011; 3:RRN1286. [PMID: 22130468 PMCID: PMC3219425 DOI: 10.1371/currents.rrn1286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/17/2011] [Indexed: 12/12/2022]
Abstract
Using sapje zebrafish which lack dystrophin, we have assessed both the quantitation of muscle damage in dystrophic fish, and the efficacy of the proteasomal inhibitor MG132 in reducing the dystrophic symptoms. Fourier analysis of birefringence patterns in normal and dystrophic fish was found to be a simple and reliable quantitative measure of muscle damage. MG132, as in mdx mouse, was found to be effective in reducing muscle damage with an EC50 of 0.4µM. This study adds further to the utility of zebrafish as a model of choice for testing muscular dystrophy therapeutics.
Collapse
Affiliation(s)
- Steve J Winder
- Department of Biomedical Science, University of Sheffield and Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield
| | | | | | | |
Collapse
|