1
|
Ulyashova MM, Presnova GV, Filippova AA, Grigorenko VG, Egorov AM, Rubtsova MY. Multiplex Microarrays in 96-Well Plates Photoactivated with 4-Azidotetrafluorobenzaldehyde for the Identification and Quantification of β-Lactamase Genes and Their RNA Transcripts. Curr Issues Mol Biol 2023; 46:53-66. [PMID: 38275665 PMCID: PMC10814224 DOI: 10.3390/cimb46010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Antibiotic-resistant bacteria represent a global issue that calls for novel approaches to diagnosis and treatment. Given the variety of genetic factors that determine resistance, multiplex methods hold promise in this area. We developed a novel method to covalently attach oligonucleotide probes to the wells of polystyrene plates using photoactivation with 4-azidotetrafluorobenzaldehyde. Then, it was used to develop the technique of microarrays in the wells. It consists of the following steps: activating polystyrene, hybridizing the probes with biotinylated target DNA, and developing the result using a streptavidin-peroxidase conjugate with colorimetric detection. The first microarray was designed to identify 11 different gene types and 16 single-nucleotide polymorphisms (SNPs) of clinically relevant ESBLs and carbapenemases, which confer Gram-negative bacteria resistance to β-lactam antibiotics. The detection of bla genes in 65 clinical isolates of Enterobacteriaceae demonstrated the high sensitivity and reproducibility of the technique. The highly reproducible spot staining of colorimetric microarrays allowed us to design a second microarray that was intended to quantify four different types of bla mRNAs in order to ascertain their expressions. The combination of reliable performance, high throughput in standard 96-well plates, and inexpensive colorimetric detection makes the microarrays suitable for routine clinical application and for the study of multi-drug resistant bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | - Maya Yu. Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.M.U.); (G.V.P.); (A.A.F.); (V.G.G.); (A.M.E.)
| |
Collapse
|
2
|
Riester O, Laufer S, Deigner HP. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system. J Nanobiotechnology 2022; 20:540. [PMID: 36575530 PMCID: PMC9793564 DOI: 10.1186/s12951-022-01737-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In vivo-mimicking conditions are critical in in vitro cell analysis to obtain clinically relevant results. The required conditions, comparable to those prevalent in nature, can be provided by microfluidic dynamic cell cultures. Microfluidics can be used to fabricate and test the functionality and biocompatibility of newly developed nanosystems or to apply micro- and nanoelectromechanical systems embedded in a microfluidic system. However, the use of microfluidic systems is often hampered by their accessibility, acquisition cost, or customization, especially for scientists whose primary research focus is not microfluidics. RESULTS Here we present a method for 3D printing that can be applied without special prior knowledge and sophisticated equipment to produce various ready-to-use microfluidic components with a size of 100 µm. Compared to other available methods, 3D printing using fused deposition modeling (FDM) offers several advantages, such as time-reduction and avoidance of sophisticated equipment (e.g., photolithography), as well as excellent biocompatibility and avoidance of toxic, leaching chemicals or post-processing (e.g., stereolithography). We further demonstrate the ease of use of the method for two relevant applications: a cytotoxicity screening system and an osteoblastic differentiation assay. To our knowledge, this is the first time an application including treatment, long-term cell culture and analysis on one chip has been demonstrated in a directly 3D-printed microfluidic chip. CONCLUSION The direct 3D printing method is tested and validated for various microfluidic components that can be combined on a chip depending on the specific requirements of the experiment. The ease of use and production opens up the potential of microfluidics to a wide range of users, especially in biomedical research. Our demonstration of its use as a cytotoxicity screening system and as an assay for osteoblastic differentiation shows the methods potential in the development of novel biomedical applications. With the presented method, we aim to disseminate microfluidics as a standard method in biomedical research, thus improving the reproducibility and transferability of results to clinical applications.
Collapse
Affiliation(s)
- Oliver Riester
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Laufer
- grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Hans-Peter Deigner
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Faculty of Science, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,grid.418008.50000 0004 0494 3022EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
| |
Collapse
|
3
|
Kim TY, Lim MC, Lim JA, Choi SW, Woo MA. Microarray detection method for pathogen genes by on-chip signal amplification using terminal deoxynucleotidyl transferase. MICRO AND NANO SYSTEMS LETTERS 2022. [DOI: 10.1186/s40486-022-00153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractA microarray detection method based on on-chip signal amplification using terminal deoxynucleotidyl transferase (TdT) was developed to visualize pathogenic genes. Cyclic olefin copolymer (COC) substrate for microarrays was treated with oxygen plasma to induce hydrophilic surface properties. The capture probe DNA was immobilized on the COC surface by UV irradiation. The 3ʹ end of the capture probe DNA immobilized on the COC surface was modified with a phosphate group to provide resistance against the TdT reaction. Therefore, the TdT reaction was triggered only when the capture probe DNA acquired the target gene, and biotin-11-deoxyuridine triphosphate (b-dUTP) was continuously added to the 3ʹ end of the target gene. Thereafter, streptavidin-conjugated gold nanoparticles (s-AuNPs) tagged the poly uridine tails by the biotin–streptavidin interaction. The visual signal was amplified by silver enhancement in the presence of the s-AuNPs. The usefulness of this detection method was confirmed by analyzing four pathogens and allowing their visual identification.
Collapse
|
4
|
Loyez M, DeRosa MC, Caucheteur C, Wattiez R. Overview and emerging trends in optical fiber aptasensing. Biosens Bioelectron 2022; 196:113694. [PMID: 34637994 DOI: 10.1016/j.bios.2021.113694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Optical fiber biosensors have attracted growing interest over the last decade and quickly became a key enabling technology, especially for the detection of biomarkers at extremely low concentrations and in small volumes. Among the many and recent fiber-optic sensing amenities, aptamers-based sensors have shown unequalled performances in terms of ease of production, specificity, and sensitivity. The immobilization of small and highly stable bioreceptors such as DNA has bolstered their use for the most varied applications e.g., medical diagnosis, food safety and environmental monitoring. This review highlights the recent advances in aptamer-based optical fiber biosensors. An in-depth analysis of the literature summarizes different fiber-optic structures and biochemical strategies for molecular detection and immobilization of receptors over diverse surfaces. In this review, we analyze the features offered by those sensors and discuss about the next challenges to be addressed. This overview investigates both biochemical and optical parameters, drawing the guiding lines for forthcoming innovations and prospects in this ever-growing field of research.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium; Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium.
| | - Maria C DeRosa
- Department of Chemistry, 203 Steacie Building, Carleton University, 1125, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium
| |
Collapse
|
5
|
Ray PG, Roy S. Eggshell membrane: A natural substrate for immobilization and detection of DNA. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:404-410. [PMID: 26652390 DOI: 10.1016/j.msec.2015.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/24/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
Abstract
Chemically modified eggshell membranes (ESM) have been explored as potentially novel platforms for immobilization of oligonucleotides and subsequent detection of target DNA. The fibrous network of the native ESM as well those functionalized with acetic acid or n-butyl acetate has been examined by field-emission scanning electron microscopy (FESEM). The formation of surface functional moieties has been confirmed by Fourier-transform infrared spectroscopy (FTIR). DNA molecules, with an end terminal -NH2 group (at 5' end) have been immobilized on the chemically modified ESM surface. The effect of surface modification on the DNA immobilization efficiency has been investigated using fluorescence microscopy and atomic force microscopy (AFM). The above studies concurrently suggest that functionalization of ESM with n-butyl acetate causes a better homogeneity of the DNA probes on the membrane surface. On-chip hybridization of the target DNA with the surface bound capture probes has been performed on the functionalized membranes. It is observed that n-butyl acetate modification of ESM pushes the limit of detection (LOD) of the DNA sensors by at least an order of magnitude compared to the other modification method.
Collapse
Affiliation(s)
- Preetam Guha Ray
- Sensor & Actuator Division, CSIR - Central Glass and Ceramic Research Institute, Kolkata 700032, India
| | - Somenath Roy
- Sensor & Actuator Division, CSIR - Central Glass and Ceramic Research Institute, Kolkata 700032, India.
| |
Collapse
|
6
|
Jang HJ, Lee JT, Yoon HJ. Aziridine in polymers: a strategy to functionalize polymers by ring-opening reaction of aziridine. Polym Chem 2015. [DOI: 10.1039/c5py00266d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aziridine-containing polymers were synthesized, and post-modification of polymers was demonstrated through ring-opening reaction of aziridine.
Collapse
Affiliation(s)
| | - Jae Tak Lee
- Department of Chemistry
- Sogang University
- Seoul
- Korea
| | - Hyo Jae Yoon
- Department of Chemistry
- Korea University
- Seoul
- Korea
| |
Collapse
|
7
|
Advances in miniaturized instruments for genomics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:734675. [PMID: 25114919 PMCID: PMC4119693 DOI: 10.1155/2014/734675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 12/23/2022]
Abstract
In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices.
Collapse
|
8
|
Rosati G, Daprà J, Cherré S, Rozlosnik N. Performance Improvement by Layout Designs of Conductive Polymer Microelectrode Based Impedimetric Biosensors. ELECTROANAL 2014. [DOI: 10.1002/elan.201400062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Ohlander A, Zilio C, Hammerle T, Zelenin S, Klink G, Chiari M, Bock K, Russom A. Genotyping of single nucleotide polymorphisms by melting curve analysis using thin film semi-transparent heaters integrated in a lab-on-foil system. LAB ON A CHIP 2013; 13:2075-2082. [PMID: 23592049 DOI: 10.1039/c3lc50171j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The recent technological advances in micro/nanotechnology present new opportunities to combine microfluidics with microarray technology for the development of small, sensitive, single-use, point-of-care molecular diagnostic devices. As such, the integration of microarray and plastic microfluidic systems is an attractive low-cost alternative to glass based microarray systems. This paper presents the integration of a DNA microarray and an all-polymer microfluidic foil system with integrated thin film heaters, which demonstrate DNA analysis based on melting curve analysis (MCA). A novel micro-heater concept using semi-transparent copper heaters manufactured by roll-to-roll and lift-off on polyethylene naphthalate (PEN) foil has been developed. Using a mesh structure, heater surfaces have been realized in only one single metallization step, providing more efficient and homogenous heating characteristics than conventional meander heaters. A robust DNA microarray spotting protocol was adapted on Parylene C coated heater-foils, using co-polymer poly(DMA-NAS-MAPS) to enable covalent immobilization of DNA. The heaters were integrated in a microfluidic channel using lamination foils and MCA of the spotted DNA duplexes showed single based discrimination of mismatched over matched target DNA-probes. Finally, as a proof of principle, we perform MCA on PCR products to detect the Leu7Pro polymorphism of the neutropeptide Y related to increased risk of Type II diabetes, BMI and depression.
Collapse
Affiliation(s)
- Anna Ohlander
- Fraunhofer EMFT, Hansastrasse 27d, 80686 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sabourin D, Skafte-Pedersen P, Søe MJ, Hemmingsen M, Alberti M, Coman V, Petersen J, Emnéus J, Kutter JP, Snakenborg D, Jørgensen F, Clausen C, Holmstrøm K, Dufva M. The MainSTREAM component platform: a holistic approach to microfluidic system design. ACTA ACUST UNITED AC 2012; 18:212-28. [PMID: 23015520 DOI: 10.1177/2211068212461445] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A microfluidic component library for building systems driving parallel or serial microfluidic-based assays is presented. The components are a miniaturized eight-channel peristaltic pump, an eight-channel valve, sample-to-waste liquid management, and interconnections. The library of components was tested by constructing various systems supporting perfusion cell culture, automated DNA hybridizations, and in situ hybridizations. The results showed that the MainSTREAM components provided (1) a rapid, robust, and simple method to establish numerous fluidic inputs and outputs to various types of reaction chips; (2) highly parallel pumping and routing/valving capability; (3) methods to interface pumps and chip-to-liquid management systems; (4) means to construct a portable system; (5) reconfigurability/flexibility in system design; (6) means to interface to microscopes; and (7) compatibility with tested biological methods. It was found that LEGO Mindstorms motors, controllers, and software were robust, inexpensive, and an accessible choice as compared with corresponding custom-made actuators. MainSTREAM systems could operate continuously for weeks without leaks, contamination, or system failures. In conclusion, the MainSTREAM components described here meet many of the demands on components for constructing and using microfluidics systems.
Collapse
Affiliation(s)
- David Sabourin
- DTU Nanotech, Dept. of Micro- and Nanotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tsougeni K, Koukouvinos G, Petrou PS, Tserepi A, Kakabakos SE, Gogolides E. High-capacity and high-intensity DNA microarray spots using oxygen-plasma nanotextured polystyrene slides. Anal Bioanal Chem 2012; 403:2757-64. [DOI: 10.1007/s00216-012-6058-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
12
|
Sun Y, Perch-Nielsen I, Dufva M, Sabourin D, Bang DD, Høgberg J, Wolff A. Direct immobilization of DNA probes on non-modified plastics by UV irradiation and integration in microfluidic devices for rapid bioassay. Anal Bioanal Chem 2011; 402:741-8. [PMID: 22028019 PMCID: PMC3249165 DOI: 10.1007/s00216-011-5459-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 11/24/2022]
Abstract
DNA microarrays have become one of the most powerful tools in the field of genomics and medical diagnosis. Recently, there has been increased interest in combining microfluidics with microarrays since this approach offers advantages in terms of portability, reduced analysis time, low consumption of reagents, and increased system integration. Polymers are widely used for microfluidic systems, but fabrication of microarrays on such materials often requires complicated chemical surface modifications, which hinders the integration of microarrays into microfluidic systems. In this paper, we demonstrate that simple UV irradiation can be used to directly immobilize poly(T)poly(C)-tagged DNA oligonucleotide probes on many different types of plastics without any surface modification. On average, five- and fourfold improvement in immobilization and hybridization efficiency have been achieved compared to surface-modified slides with aminated DNA probes. Moreover, the TC tag only costs 30% of the commonly used amino group modifications. Using this microarray fabrication technique, a portable cyclic olefin copolymer biochip containing eight individually addressable microfluidic channels was developed and used for rapid and parallel identification of Avian Influenza Virus by DNA hybridization. The one-step, cost-effective DNA-linking method on non-modified polymers significantly simplifies microarray fabrication procedures and permits great flexibility to plastic material selection, thus making it convenient to integrate microarrays into plastic microfluidic systems.
Collapse
Affiliation(s)
- Yi Sun
- DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
13
|
Kuo JS, Chiu DT. Disposable microfluidic substrates: transitioning from the research laboratory into the clinic. LAB ON A CHIP 2011; 11:2656-65. [PMID: 21727966 DOI: 10.1039/c1lc20125e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As more microfluidic applications emerge for clinical diagnostics, the choice of substrate and production method must be considered for eventual regulatory approval. In this review, we survey recent developments in disposable microfluidic substrates and their fabrication methods. We note regulatory approval for disposable microfluidic substrates will be more forthcoming if the substrates are developed with the United States Pharmacopeia's biocompatibility compliance guidelines in mind. We also review the recent trend in microfluidic devices constructed from a hybrid of substrates that takes advantage of each material's attributes.
Collapse
Affiliation(s)
- Jason S Kuo
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | |
Collapse
|
14
|
Sun Y, Dhumpa R, Bang DD, Høgberg J, Handberg K, Wolff A. A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR. LAB ON A CHIP 2011; 11:1457-63. [PMID: 21369571 DOI: 10.1039/c0lc00528b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The endemic of Avian Influenza Virus (AIV) in Asia and epizootics in some European regions have caused serious economic losses. Multiplex reverse-transcriptase (RT) PCR has been developed to detect and subtype AIV. However, the number of targets that can be amplified in a single run is limited because of uncontrollable primer-primer interferences. In this paper, we describe a lab-on-a-chip device for fast AIV screening by integrating DNA microarray-based solid-phase PCR on a microfluidic chip. A simple UV cross-linking method was used to immobilize the DNA probes on unmodified glass surface, which makes it convenient to integrate microarray with microfluidics. This solid-phase RT-PCR method combined RT amplification of extracted RNA in the liquid phase and species-specific nested PCR on the solid phase. Using the developed approach, AIV viruses and their subtypes were unambiguously identified by the distinct patterns of amplification products. The whole process was reduced to less than 1 hour and the sample volume used in the microfluidic chip was at least 10 times less than in the literature. By spatially separating the primers, highly multiplexed amplification can be performed in solid-phase PCR. Moreover, multiplex PCR and sequence detection were done in one step, which greatly simplified the assay and reduced the processing time. Furthermore, by incorporating the microarray into a microchamber-based PCR chip, the sample and the reagent consumption were greatly reduced, and the problems of bubble formation and solution evaporation were effectively prevented. This microarray-based PCR microchip can be widely employed for virus detection and effective surveillance in wild avian and in poultry productions.
Collapse
Affiliation(s)
- Yi Sun
- DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Kgs Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|