1
|
Jawaharlal S, Subramanian S, Palanivel V, Devarajan G, Veerasamy V. Cyclodextrin-based nanosponges as promising carriers for active pharmaceutical ingredient. J Biochem Mol Toxicol 2024; 38:e23597. [PMID: 38037252 DOI: 10.1002/jbt.23597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Effective drug distribution at the intended or particular location is a critical issue that researchers are now dealing. Nanosponges have significantly increased in importance in medication delivery using nanotechnology in recent years. An important step toward solving these problems has been the development of nanosponges. Recently created and proposed for use in drug delivery, nanosponge is a unique type of hyper-crosslinked polymer-based colloidal structures made up of solid nanoparticles with colloidal carriers. Nanosponges are solid porous particles that may hold pharmaceuticals and other actives in their nanocavities. They can be made into dosage forms for oral, parenteral, topical, or inhalation use. The targeted distribution of drugs in a regulated manner is greatly aided by nanosponge. The utilization of nanosponges, their benefits, their production processes, the polymers they are made of, and their characterization have all been covered in this review article.
Collapse
Affiliation(s)
- Saranya Jawaharlal
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | | | - Venkatesan Palanivel
- Department of Pharmacy, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Geetha Devarajan
- Department of Physics, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
2
|
Abstract
Polyanhydrides (PAs) are a class of synthetic biodegradable polymers employed as controlled drug delivery vehicles. They can be synthesized and scaled up from low-cost starting materials. The structure of PAs can be manipulated synthetically to meet desirable characteristics. PAs are biocompatible, biodegradable, and generate nontoxic metabolites upon degradation, which are easily eliminated from the body. The rate of water penetrating into the polyanhydride (PA) matrix is slower than the anhydride bond cleavage. This phenomenon sets PAs as "surface-eroding drug delivery carriers." Consequently, a variety of PA-based drug delivery carriers in the form of solid implants, pasty injectable formulations, microspheres, nanoparticles, etc. have been developed for the sustained release of small molecule drugs, and vaccines, peptide drugs, and nucleic acid-based active agents. The rate of drug delivery is often controlled by the polymer erosion rate, which is influenced by the polymer structure and composition, crystallinity, hydrophobicity, pH of the release medium, device size, configuration, etc. Owing to the above-mentioned interesting physicochemical and mechanical properties of PAs, the present review focuses on the advancements made in the domain of synthetic biodegradable biomedical PAs for therapeutic delivery applications. Various classes of PAs, their structures, their unique characteristics, their physicochemical and mechanical properties, and factors influencing surface erosion are discussed in detail. The review also summarizes various methods involved in the synthesis of PAs and their utility in the biomedical domain as drug, vaccine, and peptide delivery carriers in different formulations are reviewed.
Collapse
Affiliation(s)
- Pulikanti Guruprasad Reddy
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem 9112002, Israel
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem 9112002, Israel
| |
Collapse
|
3
|
Rupérez D, Gracia-Vallés N, Clavero E, Silva F, Nerín C. Mechanochemically Scaled-Up Alpha Cyclodextrin Nanosponges: Their Safety and Effectiveness as Ethylene Scavenger. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2900. [PMID: 36079937 PMCID: PMC9457843 DOI: 10.3390/nano12172900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Aiming at the development of a greener ethylene removal alternative, the goal of this study was to scale up and ensure the safety of α-cyclodextrin nanosponges (α-CD-NS) for further use as ethylene scavengers. The solvent-free synthesis of α-CD-NS was successfully scaled up using α-cyclodextrin and N,N'-carbonyldiimidazole as cross-linkers (1:4 molar ratio) by means of mechanical alloying using a PM 100 ball mill by focusing on varying the rotation frequency, as determined by FTIR-ATR, X-ray diffraction, and TGA. α-CD-NS washing optimization was performed in water by monitoring the imidazole concentration in the washing solution through the validation of a fast and sensitive HPLC-DAD method. After 6 h at 40 °C, all imidazole was extracted, allowing a faster and less energy-dependent extraction. α-CD-NS absorbent capacity and porosity were also evaluated through BET isotherms and ethylene absorption experiments using α-CD-NS and commercially available absorbents (zeolite and bentonite) were performed by means of gas chromatography (GC) coupled to a flame ionization detector (FID). With a 93 µL h-1 kgadsorbent-1 ethylene removal capacity, α-CD-NS revealed the best ethylene scavenging activity when compared to the other absorbents, opening the doors for a safer, innovative, and eco-friendlier ethylene removal active packaging.
Collapse
Affiliation(s)
- David Rupérez
- I3A—Aragon Institute of Engineering Research, University of Zaragoza, 50018 Zaragoza, Spain
| | - Nicolás Gracia-Vallés
- I3A—Aragon Institute of Engineering Research, University of Zaragoza, 50018 Zaragoza, Spain
| | - Eva Clavero
- I3A—Aragon Institute of Engineering Research, University of Zaragoza, 50018 Zaragoza, Spain
| | - Filomena Silva
- I3A—Aragon Institute of Engineering Research, University of Zaragoza, 50018 Zaragoza, Spain
- ARAID—Agencia Aragonesa para la Investigación y el Desarrollo, 50018 Zaragoza, Spain
- Faculty of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain
| | - Cristina Nerín
- I3A—Aragon Institute of Engineering Research, University of Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
4
|
Huarte J, Espuelas S, Martínez-Oharriz C, Irache JM. Nanoparticles from Gantrez-based conjugates for the oral delivery of camptothecin. Int J Pharm X 2021; 3:100104. [PMID: 34825166 PMCID: PMC8604667 DOI: 10.1016/j.ijpx.2021.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
Camptothecin (CPT) exhibits a number of challenges for its oral administration, including a low aqueous solubility, a lactone ring susceptible to hydrolysis, and an affinity to the intestinal P-gp. The aim of this work was to evaluate nanoparticles from Gantrez-based conjugates as carriers for the oral delivery of CPT. For this purpose two different conjugates (G-mPEG and G-HPCD), obtained by the covalent binding of either HP-β-CD or methoxy-PEG (m-PEG) to the polymer backbone of Gantrez™ AN, were synthetized and characterized. Both excipients (m-PEG and HPCD) were selected due to their reported abilities to stabilize the lactone ring of CPT and disturb the effect of intestinal P-gp. The resulting nanoparticles (G-mPEG-NP and G-HPCD-NP) presented a similar size (about 200 nm) and zeta potential (close to −35 mV); although, G-mPEG-NP presented a higher CPT payload than G-HPCD-NP. On the contrary, in rats, nanoparticles based on Gantrez conjugates appeared to be capable of crossing the protective mucus layer and reach the intestinal epithelium, whereas conventional Gantrez nanoparticles displayed a mucoadhesive profile. Finally, the pharmacokinetic study revealed that both formulations were able to enhance the relative oral bioavailability of CPT; although this value was found to be 2.6-times higher for G-mPEG-NP than for G-HPCD-NP.
Collapse
Affiliation(s)
- Judit Huarte
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Socorro Espuelas
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | | | - Juan M Irache
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| |
Collapse
|
5
|
Exploiting Current Understanding of Hypoxia Mediated Tumour Progression for Nanotherapeutic Development. Cancers (Basel) 2019; 11:cancers11121989. [PMID: 31835751 PMCID: PMC6966647 DOI: 10.3390/cancers11121989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is one of the most common phenotypes of malignant tumours. Hypoxia leads to the increased activity of hypoxia-inducible factors (HIFs), which regulate the expression of genes controlling a raft of pro-tumour phenotypes. These include maintenance of the cancer stem cell compartment, epithelial-mesenchymal transition (EMT), angiogenesis, immunosuppression, and metabolic reprogramming. Hypoxia can also contribute to the tumour progression in a HIF-independent manner via the activation of a complex signalling network pathway, including JAK-STAT, RhoA/ROCK, NF-κB and PI3/AKT. Recent studies suggest that nanotherapeutics offer a unique opportunity to target the hypoxic microenvironment, enhancing the therapeutic window of conventional therapeutics. In this review, we summarise recent advances in understanding the impact of hypoxia on tumour progression, while outlining possible nanotherapeutic approaches for overcoming hypoxia-mediated resistance.
Collapse
|
6
|
Lucio D, Martínez-Ohárriz MC, Gu Z, He Y, Aranaz P, Vizmanos JL, Irache JM. Cyclodextrin-grafted poly(anhydride) nanoparticles for oral glibenclamide administration. In vivo evaluation using C. elegans. Int J Pharm 2018; 547:97-105. [PMID: 29842888 DOI: 10.1016/j.ijpharm.2018.05.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 10/16/2022]
Abstract
The aim of this work was to prepare and evaluate cyclodextrins-modified poly(anhydride) nanoparticles to enhance the oral administration of glibenclamide. A conjugate polymer was synthesized by incorporating hydroxypropyl-β-cyclodextrin to the backbone of poly(methylvinyl ether-co-maleic anhydride) via Steglich reaction. The degree of substitution of anhydride rings by cyclodextrins molecules was calculated to be 4.9% using H-NMR spectroscopy. A central composite design of experiments was used to optimize the preparative process. Under the optimal conditions, nanoparticles displayed a size of about 170 nm, a surface charge of -47 mV and a drug loading of 69 µg GB/mg. X-ray diffraction studies confirmed the loss of the crystalline structure of GB due to its dispersion into the nanoparticles, either included into cyclodextrin cavities or entrapped in the polymer chains. Glibenclamide was mainly release by Fickian-diffusion in simulated intestinal fluid. GB-loaded nanoparticles produced a hypolipidemic effect over C. elegans N2 wild-type and daf-2 mutant. The action mechanism included daf-2 and daf-28 genes, both implicated in the insulin signaling pathway of C. elegans. In summary, the covalent linkage of cyclodextrin to the poly(anhydride) backbone could be an interesting strategy to prepare nanoparticles for the oral administration of glibenclamide.
Collapse
Affiliation(s)
- David Lucio
- Department of Chemistry, School of Sciences, University of Navarra, Irunlarrea s/n, Pamplona 31080, Navarra, Spain.
| | | | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Yiyan He
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Paula Aranaz
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea s/n, Pamplona 31080 Navarra, Spain.
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Irunlarrea s/n, Pamplona 31080, Navarra and Navarra Institute for Health Research (IdiSNA), Spain.
| | - Juan M Irache
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea s/n, Pamplona 31080 Navarra, Spain.
| |
Collapse
|
7
|
Liu W, Pan H, Zhang C, Zhao L, Zhao R, Zhu Y, Pan W. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs. Int J Mol Sci 2016; 17:ijms17071171. [PMID: 27455239 PMCID: PMC4964542 DOI: 10.3390/ijms17071171] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
- Department of Pharmaceutics, School of Pharmacy, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| | - Hao Pan
- School of Pharmacy, Queen's University Belfast, Belfast BT7 1NN, UK.
| | - Caiyun Zhang
- Department of Pharmaceutics, School of Pharmacy, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| | - Liling Zhao
- Department of Pharmaceutics, School of Pharmacy, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| | - Ruixia Zhao
- Department of Pharmaceutics, School of Pharmacy, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| | - Yongtao Zhu
- Department of Pharmaceutics, School of Pharmacy, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
8
|
Oral delivery of camptothecin using cyclodextrin/poly(anhydride) nanoparticles. Int J Pharm 2016; 506:116-28. [DOI: 10.1016/j.ijpharm.2016.04.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 11/17/2022]
|
9
|
Zhang D, Pan X, Wang S, Zhai Y, Guan J, Fu Q, Hao X, Qi W, Wang Y, Lian H, Liu X, Wang Y, Sun Y, He Z, Sun J. Multifunctional Poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin Amphiphilic Copolymer as an Oral High-Performance Delivery Carrier of Tacrolimus. Mol Pharm 2015; 12:2337-51. [PMID: 26024817 DOI: 10.1021/acs.molpharmaceut.5b00010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to improve oral bioavailability of tacrolimus (FK506), a novel poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-cyclodextrin amphiphilic copolymer (CD-PVM/MA) is developed, combining the bioadhesiveness of PVM/MA, P-glycoprotein (P-gp), and cytochrome P450-inhibitory effect of CD into one. The FK506-loaded nanoparticles (CD-PVM/MA-NPs) were obtained by solvent evaporation method. The physiochemical properties and intestinal absorption mechanism of FK506-loaded CD-PVM/MA-NPs were characterized, and the pharmacokinetic behavior was investigated in rats. FK506-loaded CD-PVM/MA-NPs exhibited nanometer-sized particles of 273.7 nm, with encapsulation efficiency as high as 73.3%. FK506-loaded CD-PVM/MA-NPs maintained structural stability in the simulated gastric fluid, and about 80% FK506 was released within 24 h in the simulated intestinal fluid. The permeability of FK506 was improved dramatically by CD-PVM/MA-NPs compared to its solution, probably due to the synergistic inhibition effect of P-gp and cytochrome P450 3A (CYP3A). The intestinal biodistribution of fluorescence-labeled CD-PVM/MA-NPs confirmed its good bioadhesion to the rat intestinal wall. Two endocytosis pathways, clathrin- and caveolae-mediated endocytosis, were involved in the cellular uptake of CD-PVM/MA-NPs. The important role of lymphatic transport in nanoparticles' access to the systemic circulation, about half of the contribution to oral bioavailability, was observed in mesenteric lymph duct ligated rats. The AUC0-24 of FK506 loaded in nanoparticles was enhanced up to 20-fold compared to FK506 solutions after oral administration. The present study suggested that the novel multifunctional CD-PVM/MA is a promising efficient oral delivery carrier for FK506, due to its ability in solubilization, inhibitory effects on both P-gp and CYP 3A, high bioadhesion, and sustained release capability.
Collapse
Affiliation(s)
- Dong Zhang
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaolei Pan
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.,‡Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23284-2526, United States
| | - Shang Wang
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yinglei Zhai
- ∥School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jibin Guan
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Qiang Fu
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaoli Hao
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Wanpeng Qi
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yingli Wang
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - He Lian
- ∥School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaohong Liu
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yongjun Wang
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yinghua Sun
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Zhonggui He
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jin Sun
- †Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.,⊥Municipal Key Laboratory of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
10
|
Lakkakula JR, Maçedo Krause RW. A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine (Lond) 2015; 9:877-94. [PMID: 24981652 DOI: 10.2217/nnm.14.41] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyclodextrins (CDs) have brought a revolution in the pharmaceutical field over the last decade. Natural and modified CDs (α-CD and β-CD) have been studied and some have gained US FDA approval or achieved 'Generally Regarded as Safe' (GRAS) status. Another characteristic of CDs is the ease with which they can be induced to form supramolecular structures for its use in drug delivery. CDs, grafted or crosslinked with polymers, are now being developed into 'smart' systems for efficient targeted drug delivery, especially for hydrophobic drugs. Amphiphilic CDs have the ability to form nanospheres or nanocapsules via a simple nanoprecipitation technique. This review deals with different types of CDs, and their efficacy, physicochemical properties and transformation into nanoparticles with interesting in vitro and in vivo applications.
Collapse
Affiliation(s)
- Jaya Raju Lakkakula
- Department of Applied Chemistry, Center for Nanomaterials Science, University of Johannesburg, Doornfontein 2028, Gauteng, South Africa
| | | |
Collapse
|
11
|
Ma W, Long YT. Quinone/hydroquinone-functionalized biointerfaces for biological applications from the macro- to nano-scale. Chem Soc Rev 2014; 43:30-41. [DOI: 10.1039/c3cs60174a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Oral drug delivery research in Europe. J Control Release 2012; 161:247-53. [DOI: 10.1016/j.jconrel.2012.01.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 01/06/2023]
|
13
|
Toxicity studies of poly(anhydride) nanoparticles as carriers for oral drug delivery. Pharm Res 2012; 29:2615-27. [PMID: 22638871 DOI: 10.1007/s11095-012-0791-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE To evaluate the acute and subacute toxicity of poly(anhydride) nanoparticles as carriers for oral drug/antigen delivery. METHODS Three types of poly(anhydride) nanoparticles were assayed: conventional (NP), nanoparticles containing 2-hydroxypropyl-β-cyclodextrin (NP-HPCD) and nanoparticles coated with poly(ethylene glycol) 6000 (PEG-NP). Nanoparticles were prepared by a desolvation method and characterized in terms of size, zeta potential and morphology. For in vivo oral studies, acute and sub-acute toxicity studies were performed in rats in accordance to the OECD 425 and 407 guidelines respectively. Finally, biodistribution studies were carried out after radiolabelling nanoparticles with (99m)technetium. RESULTS Nanoparticle formulations displayed a homogeneous size of about 180 nm and a negative zeta potential. The LD(50) for all the nanoparticles tested was established to be higher than 2000 mg/kg bw. In the sub-chronic oral toxicity studies at two different doses (30 and 300 mg/kg bw), no evident signs of toxicity were found. Lastly, biodistribution studies demonstrated that these carriers remained in the gut with no evidences of particle translocation or distribution to other organs. CONCLUSIONS Poly(anhydride) nanoparticles (either conventional or modified with HPCD or PEG6000) showed no toxic effects, indicating that these carriers might be a safe strategy for oral delivery of therapeutics.
Collapse
|
14
|
Abstract
The oral route is preferred by patients for drug administration due to its convenience, resulting in improved compliance. Unfortunately, for a number of drugs (e.g., anticancer drugs), this route of administration remains a challenge. Oral chemotherapy may be an attractive option and especially appropriate for chronic treatment of cancer. However, this route of administration is particularly complicated for the administration of anticancer drugs ascribed to Class IV of the Biopharmaceutical Classification System. This group of compounds is characterized by low aqueous solubility and low intestinal permeability. This review focuses on the use of cyclodextrins alone or in combination with bioadhesive nanoparticles for oral delivery of drugs. The state-of-the-art technology and challenges in this area is also discussed.
Collapse
|
15
|
|
16
|
Kanwar JR, Kanwar RK, Mahidhara G, Cheung CHA. Cancer Targeted Nanoparticles Specifically Induce Apoptosis in Cancer Cells and Spare Normal Cells. Aust J Chem 2012. [DOI: 10.1071/ch11372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Curing cancer is the greatest challenge for modern medicine and finding ways to minimize the adverse effects caused by chemotherapeutic agents is of importance in improving patient’s physical conditions. Traditionally, chemotherapy can induce various adverse effects, and these effects are mostly caused by the non-target specific properties of the chemotherapeutic compounds. Recently, the use of nanoparticles has been found to be capable of minimizing these drug-induced adverse effects in animals and in patients during cancer treatment. The use of nanoparticles allows various chemotherapeutic drugs to be targeted to cancer cells with lower dosages. In addition to this, the use of nanoparticles also allows various drugs to be administered to the subjects by an oral route. Here, locked nucleic acid (LNA)-modified epithelial cell adhesion molecules (EpCAM), aptamers (RNA nucleotide), and nucleolin (DNA nucleotide) aptamers have been developed and conjugated on anti-cancer drug-loaded nanocarriers for specific delivery to cancer cells and spare normal cells. Significant amounts of the drug loaded nanocarriers (92 ± 6 %) were found to distribute to the cancer cells at the tumour site and more interestingly, normal cells were unaffected in vitro and in vivo. In this review, the benefits of using nanoparticle-coated drugs in various cancer treatments are discussed. Various nanoparticles that have been tried in improving the target specificity and potency of chemotherapeutic compounds are also described.
Collapse
|