1
|
Hakim Khalili M, Zhang R, Wilson S, Goel S, Impey SA, Aria AI. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers (Basel) 2023; 15:2341. [PMID: 37242919 PMCID: PMC10221499 DOI: 10.3390/polym15102341] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to achieve desirable functionalities. Unlike previous reviews that focused solely on material design and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical, chemical, bulk, and localized mechanical characteristics, including their composition, fabrication methods, experimental conditions, and reported mechanical properties of bulk and 3D printed PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer (LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices.
Collapse
Affiliation(s)
- Mohammad Hakim Khalili
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Rujing Zhang
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Sandra Wilson
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Saurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK;
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Susan A. Impey
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Adrianus Indrat Aria
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| |
Collapse
|
2
|
Symons HE, Galanti A, Surmon JC, Trask RS, Rochat S, Gobbo P. Automated analysis of soft material microindentation. SOFT MATTER 2022; 18:8302-8314. [PMID: 36286486 DOI: 10.1039/d2sm00857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An understanding of the mechanical properties of soft hydrogel materials over multiple length scales is important for their application in many fields. Typical measurement methods provide either bulk mechanical properties (compression, tensile, rheology) or probing of nano or microscale properties and heterogeneity (nanoindentation, AFM). In this work we demonstrate the complementarity of instrumented microindentation to these techniques, as it provides representative Young's moduli for soft materials with minimal influence of the experimental parameters chosen, and allows mechanical property mapping across macroscopic areas. To enable automated analysis of the large quantities of data required for these measurements, we develop a new fitting algorithm to process indentation data. This method allows for the determination of Young's moduli from imperfect data by automatic selection of a region of the indentation curve which does not display inelastic deformation or substrate effects. We demonstrate the applicability of our approach with a range of hydrogels, including materials with patterns and gradients in stiffness, and expect the techniques described here to be useful developments for the mechanical analysis of a wide range of soft and biological systems.
Collapse
Affiliation(s)
- Henry E Symons
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Agostino Galanti
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy.
| | - Joseph C Surmon
- Department of Aerospace Engineering and Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Richard S Trask
- Department of Aerospace Engineering and Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Sebastien Rochat
- School of Chemistry, Department of Engineering Mathematics, and Bristol Composites Institute, University of Bristol, Bristol, BS8 1TS, UK
| | - Pierangelo Gobbo
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
3
|
van den Brink B, Alijani F, Ghatkesar MK. Experimental Setup for Dynamic Analysis of Micro- and Nano-Mechanical Systems in Vacuum, Gas, and Liquid. MICROMACHINES 2019; 10:E162. [PMID: 30813623 PMCID: PMC6471390 DOI: 10.3390/mi10030162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
An experimental setup to perform dynamic analysis of a micro- and nano-mechanical system in vacuum, gas, and liquid is presented. The setup mainly consists of a piezoelectric excitation part and the chamber that can be either evacuated for vacuum, or filled with gas or water. The design of the piezoelectric actuator was based on a Langevin transducer. The chamber is made out of materials that can sustain: vacuum, variety of gases and different types of liquids (mild acids, alkalies, common alcohols and oils). All the experiments were performed on commercial cantilevers used for contact and tapping mode Atomic Force Microscopy (AFM) with stiffness 0.2 N/m and 48 N/m, respectively, in vacuum, air and water. The performance of the setup was evaluated by comparing the measured actuator response to a finite element model. The frequency responses of the two AFM cantilevers measured were compared to analytical equations. A vacuum level of 0.6 mbar was obtained. The setup has a bandwidth of 10⁻550 kHz in vacuum and air, and a bandwidth of 50⁻550 kHz in liquid. The dynamic responses of the cantilevers show good agreement with theory in all media.
Collapse
Affiliation(s)
- Bram van den Brink
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands
| | - Farbod Alijani
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands.
| | - Murali Krishna Ghatkesar
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands.
| |
Collapse
|
4
|
Li H, Ma T, Zhang M, Zhu J, Liu J, Tan F. Fabrication of sulphonated poly(ethylene glycol)-diacrylate hydrogel as a bone grafting scaffold. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:187. [PMID: 30535592 DOI: 10.1007/s10856-018-6199-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
To improve the biological performance of poly(ethylene glycol)-diacrylate (PEGDA) hydrogel as an injectable bone grafting scaffold, sodium methallyl sulphonate (SMAS) was incorporated into PEGDA hydrogel. The physiochemical properties of the resultant polymers were assessed via Fourier transform infrared spectroscopy (FTIR), swelling ratio, zeta potential, surface morphology, and protein adsorption analysis. MC3T3-E1 cells were seeded on the hydrogel to evaluate the effect of the sulphonated modification on their attachment, proliferation, and differentiation. The results of FTIR and zeta potential evaluations revealed that SMAS was successfully incorporated into PEGDA. With increasing concentrations of SMAS, the swelling ratio of the hydrogels increased in deionized water but stayed constant in phosphate buffered saline. The protein adsorption also increased with increasing concentration of SMAS. Moreover, the sulphonated modification of PEGDA hydrogel not only enhanced the attachment and proliferation of osteoblast-like MC3T3-E1 cells but also up-regulated alkaline phosphatase activity as well as gene expression of osteogenic markers and related growth factors, including collagen type I, osteocalcin, runt related transcription factor 2, bone morphogenetic protein 2, and transforming growth factor beta 1. These findings indicate that the sulphonated modification could significantly improve the biological performance of PEGDA hydrogel. Thus, the sulphonated PEGDA is a promising scaffold candidate for bone grafting.
Collapse
Affiliation(s)
- Hao Li
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China
| | - Tingting Ma
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China
| | - Man Zhang
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China
| | - Jiani Zhu
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China
| | - Jie Liu
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China
| | - Fei Tan
- Department of Prosthodontics, the Affiliated Hospital of Qingdao University, Qingdao University, 266003, Qingdao, People's Republic of China.
| |
Collapse
|
5
|
Adeniba OO, Corbin EA, Ewoldt RH, Bashir R. Optomechanical microrheology of single adherent cancer cells. APL Bioeng 2018; 2:016108. [PMID: 31069293 PMCID: PMC6481704 DOI: 10.1063/1.5010721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 01/04/2023] Open
Abstract
There is a close relationship between the mechanical properties of cells and their physiological function. Non-invasive measurements of the physical properties of cells, especially of adherent cells, are challenging to perform. Through a non-contact optical interferometric technique, we measure and combine the phase, amplitude, and frequency of vibrating silicon pedestal micromechanical resonant sensors to quantify the "loss tangent" of individual adherent human colon cancer cells (HT-29). The loss tangent, a dimensionless ratio of viscoelastic energy loss and energy storage - a measure of the viscoelasticity of soft materials, obtained through an optical path length model, was found to be 1.88 ± 0.08 for live cells and 4.32 ± 0.13 for fixed cells, revealing significant changes (p < 0.001) in mechanical properties associated with estimated nanoscale cell membrane fluctuations of 3.86 ± 0.2 nm for live cells and 2.87 ± 0.1 nm for fixed cells. By combining these values with the corresponding two-degree-of-freedom Kelvin-Voigt model, we obtain the elastic stiffness and viscous loss associated with each individual cell rather than estimations from a population. The technique is unique as it decouples the heterogeneity of individual cells in our population and further refines the viscoelastic solution space.
Collapse
Affiliation(s)
| | | | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
6
|
Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration. IEEE Trans Biomed Eng 2017; 64:2771-2780. [DOI: 10.1109/tbme.2017.2674663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Pawłowska S, Nakielski P, Pierini F, Piechocka IK, Zembrzycki K, Kowalewski TA. Lateral migration of electrospun hydrogel nanofilaments in an oscillatory flow. PLoS One 2017; 12:e0187815. [PMID: 29141043 PMCID: PMC5687761 DOI: 10.1371/journal.pone.0187815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
The recent progress in bioengineering has created great interest in the dynamics and manipulation of long, deformable macromolecules interacting with fluid flow. We report experimental data on the cross-flow migration, bending, and buckling of extremely deformable hydrogel nanofilaments conveyed by an oscillatory flow into a microchannel. The changes in migration velocity and filament orientation are related to the flow velocity and the filament's initial position, deformation, and length. The observed migration dynamics of hydrogel filaments qualitatively confirms the validity of the previously developed worm-like bead-chain hydrodynamic model. The experimental data collected may help to verify the role of hydrodynamic interactions in molecular simulations of long molecular chains dynamics.
Collapse
Affiliation(s)
- Sylwia Pawłowska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Izabela K. Piechocka
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Zembrzycki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz A. Kowalewski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres. Biomed Microdevices 2017; 18:107. [PMID: 27830453 DOI: 10.1007/s10544-016-0133-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) is a common hydrogel that has been actively investigated for various tissue engineering applications owing to its biocompatibility and excellent mechanical properties. However, the native PEGDA films are known for their bio-inertness which can hinder cell adhesion, thereby limiting their applications in tissue engineering and biomedicine. Recently, nano composite technology has become a particularly hot topic, and has led to the development of new methods for delivering desired properties to nanomaterials. In this study, we added polystyrene nano-spheres (PS) into a PEGDA solution to synthesize a nano-composite film and evaluated its characteristics. The experimental results showed that addition of the nanospheres to the PEGDA film not only resulted in modification of the mechanical properties and surface morphology but further improved the adhesion of cells on the film. The tensile modulus showed clear dependence on the addition of PS, which enhanced the mechanical properties of the PEGDA-PS film. We attribute the high stiffness of the hybrid hydrogel to the formation of additional cross-links between polymeric chains and the nano-sphere surface in the network. The effect of PS on cell adhesion and proliferation was evaluated in L929 mouse fibroblast cells that were seeded on the surface of various PEGDA-PS films. Cells density increased with a larger PS concentration, and the cells displayed a spreading morphology on the hybrid films, which promoted cell proliferation. Impressively, cellular stiffness could also be modulated simply by tuning the concentration of nano-spheres. Our results indicate that the addition of PS can effectively tailor the physical and biological properties of PEGDA as well as the mechanical properties of cells, with benefits for biomedical and biotechnological applications.
Collapse
|
9
|
Evidence of differential mass change rates between human breast cancer cell lines in culture. Biomed Microdevices 2017; 19:10. [DOI: 10.1007/s10544-017-0151-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Abstract
Molecular diffusive membranes or materials are important for biological applications in microfluidic systems. Hydrogels are typical materials that offer several advantages, such as free diffusion for small molecules, biocompatibility with most cells, temperature sensitivity, relatively low cost, and ease of production. With the development of microfluidic applications, hydrogels can be integrated into microfluidic systems by soft lithography, flow-solid processes or UV cure methods. Due to their special properties, hydrogels are widely used as fluid control modules, biochemical reaction modules or biological application modules in different applications. Although hydrogels have been used in microfluidic systems for more than ten years, many hydrogels' properties and integrated techniques have not been carefully elaborated. Here, we systematically review the physical properties of hydrogels, general methods for gel-microfluidics integration and applications of this field. Advanced topics and the outlook of hydrogel fabrication and applications are also discussed. We hope this review can help researchers choose suitable methods for their applications using hydrogels.
Collapse
Affiliation(s)
- Xuanqi Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | | | | |
Collapse
|
11
|
Application of reference point indentation for micro-mechanical surface characterization of calcium silicate based dental materials. Biomed Microdevices 2016; 18:25. [DOI: 10.1007/s10544-016-0047-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Chevalier NR, Dantan P, Gazquez E, Cornelissen AJM, Fleury V. Water jet indentation for local elasticity measurements of soft materials. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:10. [PMID: 26830759 DOI: 10.1140/epje/i2016-16010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
We present a novel elastography method for soft materials (100Pa-100kPa) based on indentation by a μm-sized water jet. We show that the jet creates a localized deformation ("cavity") of the material that can be easily visualized. We study experimentally how cavity width and depth depend on jet speed, height, incidence angle and sample elasticity. We describe how to calibrate the indenter using gels of known stiffness. We then demonstrate that the indenter yields quantitative elasticity values within 10% of those measured by shear rheometry. We corroborate our experimental findings with fluid-solid finite-element simulations that quantitatively predict the cavity profile and fluid flow lines. The water jet indenter permits in situ local stiffness measurements of 2D or 3D gels used for cell culture in physiological buffer, is able to assess stiffness heterogeneities with a lateral resolution in the range 50-500μm (at the tissue scale) and can be assembled at low cost with standard material from a biology laboratory. We therefore believe it will become a valuable method to measure the stiffness of a wide range of soft, synthetic or biological materials.
Collapse
Affiliation(s)
- N R Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France.
| | - Ph Dantan
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - E Gazquez
- CNRS-Institut Curie, UMR144, 26, rue d'Ulm, 75248, Paris cedex 05, France
- Present address: INSERM U955, Equipe 6, F-94000, Créteil, France
| | - A J M Cornelissen
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| | - V Fleury
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013, Paris, France
| |
Collapse
|
13
|
Onses MS, Sutanto E, Ferreira PM, Alleyne AG, Rogers JA. Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4237-4266. [PMID: 26122917 DOI: 10.1002/smll.201500593] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/20/2015] [Indexed: 06/04/2023]
Abstract
This review gives an overview of techniques used for high-resolution jet printing that rely on electrohydrodynamically induced flows. Such methods enable the direct, additive patterning of materials with a resolution that can extend below 100 nm to provide unique opportunities not only in scientific studies but also in a range of applications that includes printed electronics, tissue engineering, and photonic and plasmonic devices. Following a brief historical perspective, this review presents descriptions of the underlying processes involved in the formation of liquid cones and jets to establish critical factors in the printing process. Different printing systems that share similar principles are then described, along with key advances that have been made in the last decade. Capabilities in terms of printable materials and levels of resolution are reviewed, with a strong emphasis on areas of potential application.
Collapse
Affiliation(s)
- M Serdar Onses
- Department of Materials Science and Engineering, Nanotechnology Research Center (ERNAM), Erciyes University, Kayseri, 38039, Turkey
| | - Erick Sutanto
- The Dow Chemical Company, Collegeville, PA, 19426, USA
| | - Placid M Ferreira
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew G Alleyne
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Rogers
- Departments of Materials Science and Engineering, Beckman Institute and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
14
|
Corbin EA, Kong F, Lim CT, King WP, Bashir R. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. LAB ON A CHIP 2015; 15:839-47. [PMID: 25473785 DOI: 10.1039/c4lc01179a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biophysical studies on individual cells can help to establish the relationship between mechanics and biological function. In the case of cancer, mechanical properties of cells have been linked to metastatic activity and disease progression and can be crucial for understanding cellular physiology and metabolism. In this study, we report measurements of the stiffness of breast cancer cells using a novel silicon MEMS resonant sensor and validated the results with atomic force microscopy (AFM). We measured the mass and stiffness of individual benign (MCF-10A), non-invasive malignant (MCF-7), and highly-invasive malignant (MDA-MB-231) breast cancer cells using the silicon resonant MEMS sensors. The sensor extracts the average stiffness value of the whole cell and allows comparison of stiffness of different cell types. We found differences between the cell lines in both elasticity and viscosity, and confirmed our observations through independent measurements with atomic force microscopy (AFM). Coupled with measurements over time, this approach could lead to a multimodal investigation of both growth and physical properties of single cells. The mechanical property sensitivity and resolution of these pedestal sensors were investigated to understand the significance of the frequency shift during operation. The lowest achievable spring constant and damping constant resolutions have a range of 0.06 to 17.10 mN m(-1) and 1.63 to 1.96 nN s m(-1), respectively, measured across the range of physiological cell mechanical properties.
Collapse
Affiliation(s)
- Elise A Corbin
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
15
|
Poellmann MJ, Johnson AJW. Multimaterial polyacrylamide: fabrication with electrohydrodynamic jet printing, applications, and modeling. Biofabrication 2014; 6:035018. [DOI: 10.1088/1758-5082/6/3/035018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Corbin EA, Millet LJ, Keller KR, King WP, Bashir R. Measuring physical properties of neuronal and glial cells with resonant microsensors. Anal Chem 2014; 86:4864-72. [PMID: 24734874 PMCID: PMC4033632 DOI: 10.1021/ac5000625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microelectromechanical systems (MEMS) resonant sensors provide a high degree of accuracy for measuring the physical properties of chemical and biological samples. These sensors enable the investigation of cellular mass and growth, though previous sensor designs have been limited to the study of homogeneous cell populations. Population heterogeneity, as is generally encountered in primary cultures, reduces measurement yield and limits the efficacy of sensor mass measurements. This paper presents a MEMS resonant pedestal sensor array fabricated over through-wafer pores compatible with vertical flow fields to increase measurement versatility (e.g., fluidic manipulation and throughput) and allow for the measurement of heterogeneous cell populations. Overall, the improved sensor increases capture by 100% at a flow rate of 2 μL/min, as characterized through microbead experiments, while maintaining measurement accuracy. Cell mass measurements of primary mouse hippocampal neurons in vitro, in the range of 0.1-0.9 ng, demonstrate the ability to investigate neuronal mass and changes in mass over time. Using an independent measurement of cell volume, we find cell density to be approximately 1.15 g/mL.
Collapse
Affiliation(s)
- Elise A Corbin
- Department of Mechanical Engineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
17
|
Corbin EA, Dorvel BR, Millet LJ, King WP, Bashir R. Micro-patterning of mammalian cells on suspended MEMS resonant sensors for long-term growth measurements. LAB ON A CHIP 2014; 14:1401-4. [PMID: 24535001 PMCID: PMC4024477 DOI: 10.1039/c3lc51217g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
MEMS resonant mass sensors can measure the mass of individual cells, though long-term growth measurements are limited by the movement of cells off the sensor area. Micro-patterning techniques are a powerful approach to control the placement of individual cells in an arrayed format. In this work we present a method for micro-patterning cells on fully suspended resonant sensors through select functionalization and passivation of the chip surface. This method combines high-resolution photolithography with a blanket transfer technique for applying photoresist to avoid damaging the sensors. Cells are constrained to the patterned collagen area on the sensor by pluronic acting as a cell adhesion blocker. This micro-patterning method enables long-term growth measurements, which is demonstrated by a measurement of the change in mass of a human breast cancer cell over 18 h.
Collapse
Affiliation(s)
- Elise A. Corbin
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Micro and Nanotechnology Lab, University of Illinois Urbana-Champaign, Urbana, 61801, Illinois, USA
| | - Brian R. Dorvel
- Micro and Nanotechnology Lab, University of Illinois Urbana-Champaign, Urbana, 61801, Illinois, USA
- Department of Biophysics, University of Illinois Urbana-Champaign, Urbana, 61801, Illinois, USA
| | - Larry J. Millet
- Micro and Nanotechnology Lab, University of Illinois Urbana-Champaign, Urbana, 61801, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, 61801, Illinois, USA. Fax: +1-217-244-6375; Tel: +1-217-333-3097
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, 61801, Illinois, USA
| | - William P. King
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Micro and Nanotechnology Lab, University of Illinois Urbana-Champaign, Urbana, 61801, Illinois, USA
| | - Rashid Bashir
- Micro and Nanotechnology Lab, University of Illinois Urbana-Champaign, Urbana, 61801, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, 61801, Illinois, USA. Fax: +1-217-244-6375; Tel: +1-217-333-3097
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, 61801, Illinois, USA
| |
Collapse
|