1
|
Yang Q, Enríquez Á, Devathasan D, Thompson CA, Nayee D, Harris R, Satoski D, Obeng-Gyasi B, Lee A, Bentley RT, Lee H. Application of magnetically actuated self-clearing catheter for rapid in situ blood clot clearance in hemorrhagic stroke treatment. Nat Commun 2022; 13:520. [PMID: 35082280 PMCID: PMC8791973 DOI: 10.1038/s41467-022-28101-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/06/2022] [Indexed: 11/08/2022] Open
Abstract
Maintaining the patency of indwelling drainage devices is critical in preventing further complications following an intraventricular hemorrhage (IVH) and other chronic disease management. Surgeons often use drainage devices to remove blood and cerebrospinal fluid but these catheters frequently become occluded with hematoma. Using an implantable magnetic microactuator, we created a self-clearing catheter that can generate large enough forces to break down obstructive blood clots by applying time-varying magnetic fields. In a blood-circulating model, our self-clearing catheters demonstrated a > 7x longer functionality than traditional catheters (211 vs. 27 min) and maintained a low pressure for longer periods (239 vs. 79 min). Using a porcine IVH model, the self-clearing catheters showed a greater survival rate than control catheters (86% vs. 0%) over the course of 6 weeks. The treated animals also had significantly smaller ventricle sizes 1 week after implantation compared to the control animals with traditional catheters. Our results suggest that these magnetic microactuator-embedded smart catheters can expedite the removal of blood from the ventricles and potentially improve the outcomes of critical patients suffering from often deadly IVH.
Collapse
Affiliation(s)
- Qi Yang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ángel Enríquez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Dillon Devathasan
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Craig A Thompson
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Dillan Nayee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| | - Ryan Harris
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| | - Douglas Satoski
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| | - Barnabas Obeng-Gyasi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA
| | - Albert Lee
- Goodman Campbell Brain and Spine, Indianapolis, IN, 46202, USA
| | - R Timothy Bentley
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Hoff MN, McKinney A, Shellock FG, Rassner U, Gilk T, Watson RE, Greenberg TD, Froelich J, Kanal E. Safety Considerations of 7-T MRI in Clinical Practice. Radiology 2019; 292:509-518. [PMID: 31310177 DOI: 10.1148/radiol.2019182742] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although 7-T MRI has recently received approval for use in clinical patient care, there are distinct safety issues associated with this relatively high magnetic field. Forces on metallic implants and radiofrequency power deposition and heating are safety considerations at 7 T. Patient bioeffects such as vertigo, dizziness, false feelings of motion, nausea, nystagmus, magnetophosphenes, and electrogustatory effects are more common and potentially more pronounced at 7 T than at lower field strengths. Herein the authors review safety issues associated with 7-T MRI. The rationale for safety concerns at this field strength are discussed as well as potential approaches to mitigate risk to patients and health care professionals.
Collapse
Affiliation(s)
- Michael N Hoff
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Alexander McKinney
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Frank G Shellock
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Ulrich Rassner
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Tobias Gilk
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Robert E Watson
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Todd D Greenberg
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Jerry Froelich
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| | - Emanuel Kanal
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195-7117 (M.N.H.); Department of Radiology, University of Minnesota, Minneapolis, Minn (A.M., J.F.); Department of Clinical Physical Therapy, University of Southern California, Los Angeles, Calif (F.G.S.); Department of Radiology, University of Utah Health Sciences Center, Salt Lake City, Utah (U.R.); RADIOLOGY-Planning, Kansas City, Mo (T.G.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.E.W.); G3 Global Group, Boulder, Colo, Mo (T.D.G.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.)
| |
Collapse
|
5
|
Yang Q, Park H, Nguyen TN, Rhoads JF, Lee A, Bentley RT, Judy JW, Lee H. Anti-biofouling implantable catheter using thin-film magnetic microactuators. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 273:1694-1704. [PMID: 34276138 PMCID: PMC8281922 DOI: 10.1016/j.snb.2018.07.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Here we report on the development of polyimide-based flexible magnetic actuators for actively combating biofouling that occurs in many chronically implanted devices. The thin-film flexible devices are microfabricated and integrated into a single-pore silicone catheter to demonstrate a proof-of-concept for a self-clearing smart catheter. The static and dynamic mechanical responses of the thin-film magnetic microdevices were quantitatively measured and compared to theoretical values. The mechanical fatigue properties of these polyimide-based microdevices were also characterized up to 300 million cycles. Finally, the biofouling removal capabilities of magnetically powered microdevices were demonstrated using bovine serum albumin and bioconjugated microbeads. Our results indicate that these thin-film microdevices are capable of significantly reducing the amount of biofouling. At the same time, we demonstrated that these microdevices are mechanically robust enough to withstand a large number of actuation cycles during its chronic implantation.
Collapse
Affiliation(s)
- Qi Yang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Hyunsu Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Tran N.H. Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
| | - Jeffrey F. Rhoads
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA
| | - Albert Lee
- Goodman Campbell Brain and Spine Department of Neurological Surgery Indiana University, Indianapolis, IN 46202, USA
| | - R. Timothy Bentley
- College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Jack W. Judy
- Department of Electrical and Computer Engineering Nanoscience Institute for Medical and Engineering Technologies University of Florida, Gainesville, FL 32611, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
- Corresponding author at: Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN 47907, USA. (H. Lee)
| |
Collapse
|
8
|
Lee H, Kolahi K, Bergsneider M, Judy JW. Mechanical Evaluation of Unobstructing Magnetic Microactuators for Implantable Ventricular Catheters. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2014; 23:795-802. [PMID: 29151776 PMCID: PMC5693250 DOI: 10.1109/jmems.2014.2321377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Here, we report on the development and evaluation of novel unobstructing magnetic microactuators for maintaining the patency of implantable ventricular catheters used in hydrocephalus application. The treatment of hydrocephalus requires chronic implantation of a shunt system to divert excess cerebrospinal fluid from the brain. These shunt systems suffer from a high failure rate (>40%) within the first year of implantation, often due to biological accumulation. Previously, we have shown that magnetic microactuators can be used to remove biological blockage. The new cantilever-based magnetic microactuator presented in this paper improves upon the previous torsional design using a bimorph to induce a postrelease out-of-plane deflection that will prevent the device from occluding the pore at rest. The mechanical evaluations (i.e., postrelease deflection, static and dynamic responses) of fabricated devices are reported and compared with theoretical values.
Collapse
Affiliation(s)
- Hyowon Lee
- NeuroEngineering Training Program, Biomedical Engineering Interdepartmental Program, University of California at Los Angeles, Los Angeles, CA 90095 USA. He is now with the St. Jude Medical, Implantable Electronic Systems Division, Plano, TX 75024 USA
| | - Kameran Kolahi
- Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90095 USA
| | - Marvin Bergsneider
- NeuroEngineering Training Program, Biomedical Engineering Interdepartmental Program, Neurosurgery, School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 USA
| | - Jack W Judy
- NeuroEngineering Training Program, Biomedical Engineering Interdepartmental Program, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095 USA. He is now with the Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|