1
|
Shanmughan P, Subrahmaniyan P, Bhatnagar D, Ranganathan S, Lele PP. Urea-Loaded PLGA Microspheres as Chemotaxis Stimulants for Helicobacter pylori. Biotechnol Bioeng 2024. [PMID: 39491522 DOI: 10.1002/bit.28870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Helicobacter pylori cells undergo chemotaxis toward several small molecules, called chemo-attractants, including urea produced by the epithelial cells of the stomach. The biophysical mechanisms of chemotaxis are not well understood in H. pylori. Here, we developed point sources of urea by encapsulating it in Poly(lactic-co-glycolic acid) or PLGA microbeads for H. pylori chemotaxis studies. Microscopy and Dynamic Light Scattering characterization indicated that the PLGA particles had an average diameter of < 0.8 μm. The particles were relatively stable and had a net negative surface charge. Absorbance measurements indicated that the beads released ~70% of the urea over a 2-week period, with most of the release occurring within the first 24-h period. Varying pH (2.0-7.0) had little effect on the rate of urea release. A diffusion model predicted that such beads could generate sufficient urea gradients to chemotactically attract H. pylori cells. Single-bead single-cell chemotaxis assays confirmed the predictions, revealing that H. pylori continued to be attracted to beads even after most of the urea had been released in the first 24 h. Our work highlights a novel use of PLGA microbeads as delivery vehicles for stimulating a chemotaxis response in H. pylori, with potential applications in bacterial eradication strategies.
Collapse
Affiliation(s)
- Prasanth Shanmughan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Pravin Subrahmaniyan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Dhruv Bhatnagar
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin, USA
| | | | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Xu Q, Ali S, Afzal M, Nizami AS, Han S, Dar MA, Zhu D. Advancements in bacterial chemotaxis: Utilizing the navigational intelligence of bacteria and its practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172967. [PMID: 38705297 DOI: 10.1016/j.scitotenv.2024.172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.
Collapse
Affiliation(s)
- Qi Xu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shehbaz Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Afzal
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Song Han
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mudasir A Dar
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Xia X, Li Y, Xiao X, Zhang Z, Mao C, Li T, Wan M. Chemotactic Micro/Nanomotors for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306191. [PMID: 37775935 DOI: 10.1002/smll.202306191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Indexed: 10/01/2023]
Abstract
In nature, many organisms respond chemotactically to external chemical stimuli in order to extract nutrients or avoid danger. Inspired by this natural chemotaxis, micro/nanomotors with chemotactic properties have been developed and applied to study a variety of disease models. This chemotactic strategy has shown promising results and has attracted the attention of an increasing number of researchers. This paper mainly reviews the construction methods of different types of chemotactic micro/nanomotors, the mechanism of chemotaxis, and the potential applications in biomedicine. First, based on the classification of materials, the construction methods and therapeutic effects of chemotactic micro/nanomotors based on natural cells and synthetic materials in cellular and animal experiments will be elaborated in detail. Second, the mechanism of chemotaxis of micro/nanomotors is elaborated in detail: chemical reaction induced chemotaxis and physical process driven chemotaxis. In particular, the main differences and significant advantages between chemotactic micro/nanomotors and magnetic, electrical and optical micro/nanomotors are described. The applications of chemotactic micro/nanomotors in the biomedical fields in recent years are then summarized, focusing on the mechanism of action and therapeutic effects in cancer and cardiovascular disease. Finally, the authors are looking forward to the future development of chemotactic micro/nanomotors in the biomedical fields.
Collapse
Affiliation(s)
- Xue Xia
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
4
|
Bader LPE, Klok HA. Chemical Approaches for the Preparation of Bacteria - Nano/Microparticle Hybrid Systems. Macromol Biosci 2023; 23:e2200440. [PMID: 36454518 DOI: 10.1002/mabi.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Bacteria represent a class of living cells that are very attractive carriers for the transport and delivery of nano- and microsized particles. The use of cell-based carriers, such as for example bacteria, may allow to precisely direct nano- or microsized cargo to a desired site, which would greatly enhance the selectivity of drug delivery and allow to mitigate side effects. One key step towards the use of such nano-/microparticle - bacteria hybrids is the immobilization of the cargo on the bacterial cell surface. To fabricate bacteria - nano-/microparticle biohybrid microsystems, a wide range of chemical approaches are available that can be used to immobilize the particle payload on the bacterial cell surface. This article presents an overview of the various covalent and noncovalent chemistries that are available for the preparation of bacteria - nano-/microparticle hybrids. For each of the different chemical approaches, an overview will be presented that lists the bacterial strains that have been modified, the type and size of nanoparticles that have been immobilized, as well as the methods that have been used to characterize the nanoparticle-modified bacteria.
Collapse
Affiliation(s)
- Lisa Patricia Elisabeth Bader
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
5
|
Wang T, Yin Q, Huang HY, Wang Z, Song H, Luo X. Probiotic Escherichia coli Nissle 1917 propelled micro-robot with pH sensitivity for hypoxia targeted intestinal tumor therapy. Colloids Surf B Biointerfaces 2023; 225:113277. [PMID: 36996630 DOI: 10.1016/j.colsurfb.2023.113277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Poor drug penetration in hypoxia area of solid tumor is a big challenge for intestinal tumor therapy and thus it is crucial to develop an effective strategy to overcome this challenge. Compared with other bacteria used for construction of hypoxia targeted bacteria micro-robot, the Escherichia coli Nissle 1917 (EcN) bacteria are nonpathogenic Gram-negative probiotic and can especially target and identify the signal molecules in the hypoxic region of tumor, and thus, in this study, we choose EcN to construct a bacteria propelled micro-robot for targeting intestinal tumor therapy. Firstly, the MSNs@DOX with average diameter of 200 nm were synthesized and conjugated with EcN bacteria using EDC/NHS chemical crosslinking method to construct a EcN propelled micro-robot. The motility of micro-robot was then evaluated and the motion velocity of EcN-pMSNs@DOX was 3.78 µm/s. Compared with pMSNs@DOX without EcN driven, EcN bacteria propelled micro-robot transported much more pMSNs@DOX into the inner of HCT-116 3D multicellular tumor spheroids. However, the EcN bacteria are non-intracelluar bacteria which lead to the micro-robot can not directly enter into tumor cells. Therefore, we utilized acid-labile linkers of cis-aconitic amido bone to link EcN with MSNs@DOX nanoparticles to achieve the pH sensitive separation of EcN with MSNs@DOX from the micro-robot. At 4 h of incubation, the isolated MSNs@DOX began to enter into the tumor cells through CLSM observation. In vitro live/dead staining results show that EcN-pMSNs@DOX induced much more cell death than pMSNs@DOX at 24 and 48 h of incubation with HCT-116 tumor cells in acid culture media (pH 5.3). For the validation of the therapeutic efficacy of the micro-robot for intestinal tumor, we established the HCT-116 subcutaneous transplantation tumor model. After 28 days of treatment, EcN-pMSNs@DOX dramatically inhibit tumor growth with tumor volume was around 689 mm3, induce much more tumor tissues necrosis and apoptosis. Finally, the toxicity of this micro-robot was investigated by pathological analysis the liver and heart tissues. We expect that the pH sensitive EcN propelled micro-robot here we constructed may be a safe and feasible strategy for intestinal tumor therapy.
Collapse
|
6
|
Webster-Wood VA, Guix M, Xu NW, Behkam B, Sato H, Sarkar D, Sanchez S, Shimizu M, Parker KK. Biohybrid robots: recent progress, challenges, and perspectives. BIOINSPIRATION & BIOMIMETICS 2022; 18:015001. [PMID: 36265472 DOI: 10.1088/1748-3190/ac9c3b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The past ten years have seen the rapid expansion of the field of biohybrid robotics. By combining engineered, synthetic components with living biological materials, new robotics solutions have been developed that harness the adaptability of living muscles, the sensitivity of living sensory cells, and even the computational abilities of living neurons. Biohybrid robotics has taken the popular and scientific media by storm with advances in the field, moving biohybrid robotics out of science fiction and into real science and engineering. So how did we get here, and where should the field of biohybrid robotics go next? In this perspective, we first provide the historical context of crucial subareas of biohybrid robotics by reviewing the past 10+ years of advances in microorganism-bots and sperm-bots, cyborgs, and tissue-based robots. We then present critical challenges facing the field and provide our perspectives on the vital future steps toward creating autonomous living machines.
Collapse
Affiliation(s)
- Victoria A Webster-Wood
- Mechanical Engineering, Biomedical Engineering (by courtesy), McGowan Institute of Regenerative Medicine, Carnegie Mellon University, Pittsburgh, PA 15116, United States of America
| | - Maria Guix
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nicole W Xu
- Laboratories for Computational Physics and Fluid Dynamics, U.S. Naval Research Laboratory, Code 6041, Washington, DC, United States of America
| | - Bahareh Behkam
- Department of Mechanical Engineering, Institute for Critical Technology and Applied Science, Blacksburg, VA 24061, United States of America
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 65 Nanyang Drive, Singapore, 637460, Singapore
| | - Deblina Sarkar
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Samuel Sanchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Avda. Lluis Companys 23, 08010 Barcelona, Spain
| | - Masahiro Shimizu
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-machi, Toyonaka, Osaka, Japan
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
7
|
Li T, Liu Z, Hu J, Chen L, Chen T, Tang Q, Yu B, Zhao B, Mao C, Wan M. A Universal Chemotactic Targeted Delivery Strategy for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206654. [PMID: 36122571 DOI: 10.1002/adma.202206654] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Above 50% of deaths can be attributed to chronic inflammatory diseases; thus, the construction of drug delivery systems based on effective interaction of inflammatory factors with chemotactic nanoparticles is meaningful. Herein, a zwitterion-based artificial chemotactic nanomotor is proposed for universal precise targeting strategy in vivo, where the high level of reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in inflammatory sites are used as a chemoattractant. Multidimensional static models, dynamic models, and in vivo models are established to evaluate chemotactic performance. The results show that the upregulated ROS and iNOS can induce the chemotaxis of nanomotors to diseased tissues in inflammation-related disease models. Further, mesoscale hydrodynamics simulations are performed to explain the chemotactic behavior of the nanomotors. Such a chemotactic delivery strategy is expected to improve delivery efficiency and may be applicable to a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tiantian Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qianqian Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bixia Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
8
|
Gwisai T, Mirkhani N, Christiansen MG, Nguyen TT, Ling V, Schuerle S. Magnetic torque–driven living microrobots for increased tumor infiltration. Sci Robot 2022; 7:eabo0665. [DOI: 10.1126/scirobotics.abo0665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Biohybrid bacteria–based microrobots are increasingly recognized as promising externally controllable vehicles for targeted cancer therapy. Magnetic fields in particular have been used as a safe means to transfer energy and direct their motion. Thus far, the magnetic control strategies used in this context rely on poorly scalable magnetic field gradients, require active position feedback, or are ill-suited to diffuse distributions within the body. Here, we present a magnetic torque–driven control scheme for enhanced transport through biological barriers that complements the innate taxis toward tumor cores exhibited by a range of bacteria, shown for
Magnetospirillum magneticum
as a magnetically responsive model organism. This hybrid control strategy is readily scalable, independent of position feedback, and applicable to bacterial microrobots dispersed by the circulatory system. We observed a fourfold increase in translocation of magnetically responsive bacteria across a model of the vascular endothelium and found that the primary mechanism driving increased transport is torque-driven surface exploration at the cell interface. Using spheroids as a three-dimensional tumor model, fluorescently labeled bacteria colonized their core regions with up to 21-fold higher signal in samples exposed to rotating magnetic fields. In addition to enhanced transport, we demonstrated that our control scheme offers further advantages, including the possibility for closed-loop optimization based on inductive detection, as well as spatially selective actuation to reduce off-target effects. Last, after systemic intravenous injection in mice, we showed significantly increased bacterial tumor accumulation, supporting the feasibility of deploying this control scheme clinically for magnetically responsive biohybrid microrobots.
Collapse
Affiliation(s)
- T. Gwisai
- Department of Health Sciences and Technology, Institute for Translational Medicine, ETH Zürich, 8092 Zürich, Switzerland
| | - N. Mirkhani
- Department of Health Sciences and Technology, Institute for Translational Medicine, ETH Zürich, 8092 Zürich, Switzerland
| | - M. G. Christiansen
- Department of Health Sciences and Technology, Institute for Translational Medicine, ETH Zürich, 8092 Zürich, Switzerland
| | - T. T. Nguyen
- Department of Health Sciences and Technology, Institute for Translational Medicine, ETH Zürich, 8092 Zürich, Switzerland
| | - V. Ling
- Takeda Pharmaceuticals, 40 Landsdowne St., Cambridge, MA 02139, USA
| | - S. Schuerle
- Department of Health Sciences and Technology, Institute for Translational Medicine, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
9
|
Decorated bacteria and the application in drug delivery. Adv Drug Deliv Rev 2022; 188:114443. [PMID: 35817214 DOI: 10.1016/j.addr.2022.114443] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
The use of living bacteria either as therapeutic agents or drug carriers has shown great potential in treating a multitude of intractable diseases. However, cells are often fragile to unfriendly environmental stressors and limited by inadequately therapeutic responses, leading to unwanted cell death and a decline in treatment efficacy. Surface decoration of bacteria has emerged as a simple yet useful strategy that not only confers bacteria with extra capacity to resist environmental threats but also endows them with exogenous characteristics that are neither inherent nor naturally achievable. In this review, we systematically introduce the advancements of physicochemical and biological technologies for surface modification of bacteria, especially the single-cell surface decoration strategies of individual bacteria. We highlight the recent progress on surface decoration that aims to improve the bioavailability and efficacy of therapeutic bacterial agents and also to achieve enhanced and targeted delivery of conventional drugs. The promises along with challenges of surface-decorated bacteria as drug delivery systems for applications in cancer therapy, intestinal disease treatment, bioimaging, and diagnosis are further discussed with respect to future clinical translation. This review offers an overview of the advances of decorated bacteria for drug delivery applications and would contribute to the development of the next generation of advanced bacterial-based therapies.
Collapse
|
10
|
Padmakumar A, Koyande NP, Rengan AK. The Role of Hitchhiking in Cancer Therapeutics – A review. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ananya Padmakumar
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| | - Navami Prabhakar Koyande
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy 502284 India
| |
Collapse
|
11
|
Bjørge IM, Correia CR, Mano JF. Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. MATERIALS HORIZONS 2022; 9:908-933. [PMID: 34908074 DOI: 10.1039/d1mh01694f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structure and organisation are key aspects of the native tissue environment, which ultimately condition cell fate via a myriad of processes, including the activation of mechanotransduction pathways. By modulating the formation of integrin-mediated adhesions and consequently impacting cell contractility, engineered geometrical and topographical cues may be introduced to activate downstream signalling and ultimately control cell morphology, proliferation, and differentiation. Microcarriers appear as attractive vehicles for cell-based tissue engineering strategies aiming to modulate this 3D environment, but also as vehicles for cell-free applications, given the ease in tuning their chemical and physical properties. In this review, geometry and topography are highlighted as two preponderant features in actively regulating interactions between cells and the extracellular matrix. While most studies focus on the 2D environment, we focus on how the incorporation of these strategies in 3D systems could be beneficial. The techniques applied to design 3D microcarriers with unique geometries and surface topographical cues are covered, as well as specific tissue engineering approaches employing these microcarriers. In fact, successfully achieving a functional histoarchitecture may depend on a combination of fine-tuned geometrically shaped microcarriers presenting intricately tailored topographical cues. Lastly, we pinpoint microcarrier geometry as a key player in cell-free biomaterial-based strategies, and its impact on drug release kinetics, the production of steerable microcarriers to target tumour cells, and as protein or antibody biosensors.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - Clara R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
12
|
Ye Z, Liang L, Lu H, Shen Y, Zhou W, Li Y. Nanotechnology-Employed Bacteria-Based Delivery Strategy for Enhanced Anticancer Therapy. Int J Nanomedicine 2021; 16:8069-8086. [PMID: 34934313 PMCID: PMC8684392 DOI: 10.2147/ijn.s329855] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria and their derivatives (membrane vesicles, MVs) exhibit great advantages for targeting hypoxic tumor cores, strong penetration ability and activating immune responses, holding great potential as auspicious candidates for therapeutic and drug-delivery applications. However, the safety issues and low therapeutic efficiency by single administration still need to be solved. To further optimize their performance and to utilize their natural abilities, scientists have strived to modify bacteria with new moieties on their surface while preserving their advantages. The aim of this review is to give a comprehensive overview of a non-genetic engineering modification strategy that can be used to optimize the bacteria with nanomaterials and the design strategy that can be used to optimize MVs for better targeted therapy. Here, the advantages and disadvantages of these processes and their applicability for the development of bacteria-related delivery system as antitumor therapeutic agents are discussed. The prospect and the challenges of the above targeted delivery system are also proposed.
Collapse
Affiliation(s)
- Zixuan Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Lizhen Liang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Huazhen Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Wenwu Zhou
- National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People’s Republic of China
| |
Collapse
|
13
|
Moghimipour E, Abedishirehjin S, Baghbadorani MA, Handali S. Bacteria and Archaea: A new era of cancer therapy. J Control Release 2021; 338:1-7. [PMID: 34391833 DOI: 10.1016/j.jconrel.2021.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023]
Abstract
Cancer is one of the most important mortality in the world. The major drawbacks of chemotherapy are the poor absorption of drugs into tumor tissues and development of resistance against anti-cancer agents. To overcome these limitations, the use of microorganisms has been extensively considered in the treatment of cancer. Microorganisms (bacteria/Archaea) secrete different bioactive compounds that can efficiently inhibit cancer cells growth. Biological nanocarriers derived from microorganisms including outer membrane vesicles (OMVs), bacterial ghosts (BGs) and archaeosomes have also been considered as drug delivery systems. Conjugation of drug loaded nanocarriers to bacteria strongly kills the cancer cells after internalization through the bacteria. Merging of microbiology and nanotechnology may provide versatile microbial nano-hybrids for promising treatment of cancer. This strategy causes more amount of drug to enter into cancer cells. In this review, we present evidence that microorganism, their derivatives as well as their intervention with nanotechnology can be a powerful vehicle for eradication cancer.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Abedishirehjin
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
15
|
Karmakar R. State of the art of bacterial chemotaxis. J Basic Microbiol 2021; 61:366-379. [PMID: 33687766 DOI: 10.1002/jobm.202000661] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Physics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Mestre R, Patiño T, Sánchez S. Biohybrid robotics: From the nanoscale to the macroscale. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1703. [PMID: 33533200 DOI: 10.1002/wnan.1703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 01/10/2021] [Indexed: 12/11/2022]
Abstract
Biohybrid robotics is a field in which biological entities are combined with artificial materials in order to obtain improved performance or features that are difficult to mimic with hand-made materials. Three main level of integration can be envisioned depending on the complexity of the biological entity, ranging from the nanoscale to the macroscale. At the nanoscale, enzymes that catalyze biocompatible reactions can be used as power sources for self-propelled nanoparticles of different geometries and compositions, obtaining rather interesting active matter systems that acquire importance in the biomedical field as drug delivery systems. At the microscale, single enzymes are substituted by complete cells, such as bacteria or spermatozoa, whose self-propelling capabilities can be used to transport cargo and can also be used as drug delivery systems, for in vitro fertilization practices or for biofilm removal. Finally, at the macroscale, the combinations of millions of cells forming tissues can be used to power biorobotic devices or bioactuators by using muscle cells. Both cardiac and skeletal muscle tissue have been part of remarkable examples of untethered biorobots that can crawl or swim due to the contractions of the tissue and current developments aim at the integration of several types of tissue to obtain more realistic biomimetic devices, which could lead to the next generation of hybrid robotics. Tethered bioactuators, however, result in excellent candidates for tissue models for drug screening purposes or the study of muscle myopathies due to their three-dimensional architecture. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Chemistry Department, University of Rome, Rome, Italy
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| |
Collapse
|
17
|
Magdanz V, Khalil ISM, Simmchen J, Furtado GP, Mohanty S, Gebauer J, Xu H, Klingner A, Aziz A, Medina-Sánchez M, Schmidt OG, Misra S. IRONSperm: Sperm-templated soft magnetic microrobots. SCIENCE ADVANCES 2020; 6:eaba5855. [PMID: 32923590 PMCID: PMC7450605 DOI: 10.1126/sciadv.aba5855] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/26/2020] [Indexed: 05/22/2023]
Abstract
We develop biohybrid magnetic microrobots by electrostatic self-assembly of nonmotile sperm cells and magnetic nanoparticles. Incorporating a biological entity into microrobots entails many functional advantages beyond shape templating, such as the facile uptake of chemotherapeutic agents to achieve targeted drug delivery. We present a single-step electrostatic self-assembly technique to fabricate IRONSperms, soft magnetic microswimmers that emulate the motion of motile sperm cells. Our experiments and theoretical predictions show that the swimming speed of IRONSperms exceeds 0.2 body length/s (6.8 ± 4.1 µm/s) at an actuation frequency of 8 Hz and precision angle of 45°. We demonstrate that the nanoparticle coating increases the acoustic impedance of the sperm cells and enables localization of clusters of IRONSperm using ultrasound feedback. We also confirm the biocompatibility and drug loading ability of these microrobots, and their promise as biocompatible, controllable, and detectable biohybrid tools for in vivo targeted therapy.
Collapse
Affiliation(s)
- Veronika Magdanz
- Applied Zoology, Faculty of Biology, Technical University of Dresden, Dresden, Germany
| | - Islam S. M. Khalil
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Juliane Simmchen
- Physical Chemistry, Technical University of Dresden, Dresden, Germany
| | - Guilherme P. Furtado
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Sumit Mohanty
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Johannes Gebauer
- Applied Zoology, Faculty of Biology, Technical University of Dresden, Dresden, Germany
| | - Haifeng Xu
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research, Dresden, Germany
| | - Anke Klingner
- Department of Physics, German University in Cairo, New Cairo City, Egypt
| | - Azaam Aziz
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research, Dresden, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research, Dresden, Germany
| | - Oliver G. Schmidt
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research, Dresden, Germany
- Center for Materials, Architectures and Integration of Nanomembranes, Chemnitz University of Technology, Chemnitz, Germany
- School of Science, Technical University of Dresden, Dresden, Germany
| | - Sarthak Misra
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Moreno VM, Álvarez E, Izquierdo-Barba I, Baeza A, Serrano-Lopez J, Vallet-Regí M. Bacteria as Nanoparticles Carrier for Enhancing Penetration in a Tumoral Matrix Model. ADVANCED MATERIALS INTERFACES 2020; 7:1901942. [PMID: 33154882 PMCID: PMC7116290 DOI: 10.1002/admi.201901942] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/11/2020] [Indexed: 05/20/2023]
Abstract
One of the major concerns in the application of nanocarriers in oncology is their scarce penetration capacity in tumoral tissues, which drastically compromises the effctivity. Living organisms as cells and bacteria present the capacity to navigate autonomously following chemical gradients being able to penetrate deeply into dense tissues. In the recent years, the possibility to employ these organisms for the transportation of therapeutic agents and nanocarriers attached on their membrane or engulfed in their inner space have received huge attention. Herein, based on this principle, a new approach to deliver drug loaded nanoparticles achieving high penetration in tumoral matrices is presented. In this case, Escherichia coli (E. coli) bacteria wall is decorated with azide groups, whereas alkyne-strained groups are incorporated on the surface of mesoporous silica nanoparticles loaded with a potent cytotoxic compound, doxorubicin. Both functional groups form stable triazole bonds by click-type reaction allowing the covalent grafting of nanoparticles on living bacteria. Thus, the motility and penetration capacity of bacteria, which carried nanoparticles are evaluated in a 3D tumoral matrix model composed by a dense collagen extracellular matrix with HT1080 human fibrosarcome cells embedded. The results confirmed that bacteria are able to transport the nanoparticles crossing a thick collagen layer being able to destroy almost 80% of the tumoral cells located underneath. These findings envision a powerful strategy in nanomedicine applied for cancer treatment by allowing a homogeneous distribution of therapeutic agents in the malignancy.
Collapse
Affiliation(s)
- Víctor M Moreno
- Dpto. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain
| | - Elena Álvarez
- Dpto. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain
| | - Isabel Izquierdo-Barba
- Dpto. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28040, Spain
| | - Alejandro Baeza
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Juana Serrano-Lopez
- Experimental Hematology Lab, IIS-Fundación Jiménez Díaz, UAM, Madrid 28040, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain
| |
Collapse
|
19
|
Leaman EJ, Sahari A, Traore MA, Geuther BQ, Morrow CM, Behkam B. Data-driven statistical modeling of the emergent behavior of biohybrid microrobots. APL Bioeng 2020; 4:016104. [PMID: 32128471 PMCID: PMC7049295 DOI: 10.1063/1.5134926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Multi-agent biohybrid microrobotic systems, owing to their small size and distributed nature, offer powerful solutions to challenges in biomedicine, bioremediation, and biosensing. Synthetic biology enables programmed emergent behaviors in the biotic component of biohybrid machines, expounding vast potential benefits for building biohybrid swarms with sophisticated control schemes. The design of synthetic genetic circuits tailored toward specific performance characteristics is an iterative process that relies on experimental characterization of spatially homogeneous engineered cell suspensions. However, biohybrid systems often distribute heterogeneously in complex environments, which will alter circuit performance. Thus, there is a critically unmet need for simple predictive models that describe emergent behaviors of biohybrid systems to inform synthetic gene circuit design. Here, we report a data-driven statistical model for computationally efficient recapitulation of the motility dynamics of two types of Escherichia coli bacteria-based biohybrid swarms-NanoBEADS and BacteriaBots. The statistical model was coupled with a computational model of cooperative gene expression, known as quorum sensing (QS). We determined differences in timescales for programmed emergent behavior in BacteriaBots and NanoBEADS swarms, using bacteria as a comparative baseline. We show that agent localization and genetic circuit sensitivity strongly influence the timeframe and the robustness of the emergent behavior in both systems. Finally, we use our model to design a QS-based decentralized control scheme wherein agents make independent decisions based on their interaction with other agents and the local environment. We show that synergistic integration of synthetic biology and predictive modeling is requisite for the efficient development of biohybrid systems with robust emergent behaviors.
Collapse
Affiliation(s)
- Eric J. Leaman
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Ali Sahari
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Mahama A. Traore
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Brian Q. Geuther
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Carmen M. Morrow
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
20
|
Dewangan NK, Conrad JC. Rotating oil droplets driven by motile bacteria at interfaces. SOFT MATTER 2019; 15:9368-9375. [PMID: 31693048 DOI: 10.1039/c9sm01570a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We show that oil droplets suspended near a liquid-solid interface can be driven to rotate by motile bacteria adhered to the droplet surface. Droplets rotate clockwise when viewed from the liquid side, due to symmetry-breaking hydrodynamic interactions of bacteria with the interface. The angular speed of rotation for droplets decreases as their size is increased. Differences in the speed of rotation driven by Escherichia coli, Shewanella haliotis, and Halomonas titanicae bacteria reflects differences in the number of bacteria adhered at the droplet surface and their interfacial affinity. Adding surfactant reduces the number of adherent bacteria and hence lowers the speed of rotation. Together, these results demonstrate that bacterial activity can be used to manipulate suspended droplets.
Collapse
Affiliation(s)
- Narendra K Dewangan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
21
|
Wei F, Yin C, Zheng J, Zhan Z, Yao L. Rise of cyborg microrobot: different story for different configuration. IET Nanobiotechnol 2019; 13:651-664. [PMID: 31573533 PMCID: PMC8676360 DOI: 10.1049/iet-nbt.2018.5374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 04/05/2024] Open
Abstract
By integrating organic parts achieved through evolution and inorganic parts developed by human civilisation, the cyborg microrobot is rising by taking advantage of the high flexibility, outstanding energy efficiency, extremely exquisite structure in the natural components and the fine upgradability, nice controllability in the artefact parts. Compared to the purely synthetic microrobots, the cyborg microrobots, due to the exceptional biocompatibility and biodegradability, have already been utilised in in situ diagnosis, precise therapy and other biomedical applications. In this review, through a thorough summary of recent advances of cyborg microrobots, the authors categorise the cyborg microrobots into four major classes according to the configuration between biomaterials and artefact materials, i.e. microrobots integrated inside living cell, microrobots modified with biological debris, microrobots integrated with single cell and microrobots incorporated with multiple cells. Cyborg microrobots with the four types of configurations are introduced and summarised with the combination approaches, actuation mechanisms, applications and challenges one by one. Moreover, they conduct a comparison among the four different cyborg microrobots to guide the actuation force promotion, locomotion control refinement and future applications. Finally, conclusions and future outlook of the development and potential applications of the cyborg microrobots are discussed.
Collapse
Affiliation(s)
- Fanan Wei
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
| | - Chao Yin
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Jianghong Zheng
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Ziheng Zhan
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| |
Collapse
|
22
|
Leaman EJ, Geuther BQ, Behkam B. Hybrid centralized/decentralized control of a network of bacteria-based bio-hybrid microrobots. JOURNAL OF MICRO-BIO ROBOTICS 2019. [DOI: 10.1007/s12213-019-00116-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Suh S, Jo A, Traore MA, Zhan Y, Coutermarsh‐Ott SL, Ringel‐Scaia VM, Allen IC, Davis RM, Behkam B. Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS) Enhances Intratumoral Transport of Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801309. [PMID: 30775227 PMCID: PMC6364498 DOI: 10.1002/advs.201801309] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/28/2018] [Indexed: 05/04/2023]
Abstract
Cancer drug delivery remains a formidable challenge due to systemic toxicity and inadequate extravascular transport of nanotherapeutics to cells distal from blood vessels. It is hypothesized that, in absence of an external driving force, the Salmonella enterica serovar Typhimurium could be exploited for autonomous targeted delivery of nanotherapeutics to currently unreachable sites. To test the hypothesis, a nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) is developed in which the functional capabilities of the tumor-targeting S. Typhimurium VNP20009 are interfaced with poly(lactic-co-glycolic acid) nanoparticles. The impact of nanoparticle conjugation is evaluated on NanoBEADS' invasion of cancer cells and intratumoral transport in 3D tumor spheroids in vitro, and biodistribution in a mammary tumor model in vivo. It is found that intercellular (between cells) self-replication and translocation are the dominant mechanisms of bacteria intratumoral penetration and that nanoparticle conjugation does not impede bacteria's intratumoral transport performance. Through the development of new transport metrics, it is demonstrated that NanoBEADS enhance nanoparticle retention and distribution in solid tumors by up to a remarkable 100-fold without requiring any externally applied driving force or control input. Such autonomous biohybrid systems could unlock a powerful new paradigm in cancer treatment by improving the therapeutic index of chemotherapeutic drugs and minimizing systemic side effects.
Collapse
Affiliation(s)
- SeungBeum Suh
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Ami Jo
- Department of Chemical EngineeringMacromolecules Innovation InstituteVirginia TechBlacksburgVA24061USA
| | - Mahama A. Traore
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | - Ying Zhan
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
| | | | | | - Irving C. Allen
- Department of Biomedical Sciences and PathobiologyVirginia TechBlacksburgVA24061USA
| | - Richey M. Davis
- Department of Chemical EngineeringMacromolecules Innovation InstituteVirginia TechBlacksburgVA24061USA
| | - Bahareh Behkam
- Department of Mechanical EngineeringVirginia TechBlacksburgVA24061USA
- Macromolecules Innovation InstituteSchool of Biomedical Engineering & SciencesVirginia TechBlacksburgVA24061USA
| |
Collapse
|
24
|
Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display. Sci Rep 2018; 8:9801. [PMID: 29955099 PMCID: PMC6023875 DOI: 10.1038/s41598-018-28102-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteria-driven biohybrid microswimmers (bacteriabots) combine synthetic cargo with motile living bacteria that enable propulsion and steering. Although fabrication and potential use of such bacteriabots have attracted much attention, existing methods of fabrication require an extensive sample preparation that can drastically decrease the viability and motility of bacteria. Moreover, chemotactic behavior of bacteriabots in a liquid medium with chemical gradients has remained largely unclear. To overcome these shortcomings, we designed Escherichia coli to autonomously display biotin on its cell surface via the engineered autotransporter antigen 43 and thus to bind streptavidin-coated cargo. We show that the cargo attachment to these bacteria is greatly enhanced by motility and occurs predominantly at the cell poles, which is greatly beneficial for the fabrication of motile bacteriabots. We further performed a systemic study to understand and optimize the ability of these bacteriabots to follow chemical gradients. We demonstrate that the chemotaxis of bacteriabots is primarily limited by the cargo-dependent reduction of swimming speed and show that the fabrication of bacteriabots using elongated E. coli cells can be used to overcome this limitation.
Collapse
|
25
|
Conrad JC, Poling-Skutvik R. Confined Flow: Consequences and Implications for Bacteria and Biofilms. Annu Rev Chem Biomol Eng 2018; 9:175-200. [DOI: 10.1146/annurev-chembioeng-060817-084006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria overwhelmingly live in geometrically confined habitats that feature small pores or cavities, narrow channels, or nearby interfaces. Fluid flows through these confined habitats are ubiquitous in both natural and artificial environments colonized by bacteria. Moreover, these flows occur on time and length scales comparable to those associated with motility of bacteria and with the formation and growth of biofilms, which are surface-associated communities that house the vast majority of bacteria to protect them from host and environmental stresses. This review describes the emerging understanding of how flow near surfaces and within channels and pores alters physical processes that control how bacteria disperse, attach to surfaces, and form biofilms. This understanding will inform the development and deployment of technologies for drug delivery, water treatment, and antifouling coatings and guide the structuring of bacterial consortia for production of chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
26
|
Abstract
In drug targeting, the urgent need for more effective and less iatrogenic therapies is pushing toward a complete revision of carrier setup. After the era of 'articles used as homing systems', novel prototypes are now emerging. Newly conceived carriers are endowed with better biocompatibility, biodistribution and targeting properties. The biomimetic approach bestows such improved functional properties. Exploiting biological molecules, organisms and cells, or taking inspiration from them, drug vector performances are now rapidly progressing toward the perfect carrier. Following this direction, researchers have refined carrier properties, achieving significant results. The present review summarizes recent advances in biomimetic and bioinspired drug vectors, derived from biologicals or obtained by processing synthetic materials with a biomimetic approach.
Collapse
|
27
|
Karbalaei A, Cho HJ. Microfluidic Devices Developed for and Inspired by Thermotaxis and Chemotaxis. MICROMACHINES 2018; 9:E149. [PMID: 30424083 PMCID: PMC6187570 DOI: 10.3390/mi9040149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/07/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Taxis has been reported in many cells and microorganisms, due to their tendency to migrate toward favorable physical situations and avoid damage and death. Thermotaxis and chemotaxis are two of the major types of taxis that naturally occur on a daily basis. Understanding the details of the thermo- and chemotactic behavioral response of cells and microorganisms is necessary to reveal the body function, diagnosing diseases and developing therapeutic treatments. Considering the length-scale and range of effectiveness of these phenomena, advances in microfluidics have facilitated taxis experiments and enhanced the precision of controlling and capturing microscale samples. Microfabrication of fluidic chips could bridge the gap between in vitro and in situ biological assays, specifically in taxis experiments. Numerous efforts have been made to develop, fabricate and implement novel microchips to conduct taxis experiments and increase the accuracy of the results. The concepts originated from thermo- and chemotaxis, inspired novel ideas applicable to microfluidics as well, more specifically, thermocapillarity and chemocapillarity (or solutocapillarity) for the manipulation of single- and multi-phase fluid flows in microscale and fluidic control elements such as valves, pumps, mixers, traps, etc. This paper starts with a brief biological overview of the concept of thermo- and chemotaxis followed by the most recent developments in microchips used for thermo- and chemotaxis experiments. The last section of this review focuses on the microfluidic devices inspired by the concept of thermo- and chemotaxis. Various microfluidic devices that have either been used for, or inspired by thermo- and chemotaxis are reviewed categorically.
Collapse
Affiliation(s)
- Alireza Karbalaei
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Hyoung Jin Cho
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
28
|
Traore MA, Sahari A, Behkam B. Construction of Bacteria-Based Cargo Carriers for Targeted Cancer Therapy. Methods Mol Biol 2018; 1831:25-35. [PMID: 30051422 DOI: 10.1007/978-1-4939-8661-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite significant recent progress in nanomedicine, drug delivery to solid tumors remains a formidable challenge often associated with low delivery efficiency and limited penetration of the drug in poorly vascularized regions of solid tumors. Attenuated strains of facultative anaerobes have been demonstrated to have exceptionally high selectivity to primary tumors and metastatic cancer, a good safety profile, and superior intratumoral penetration performance. However, bacteria have rarely been able to completely inhibit tumor growth in immunocompetent hosts solely by their presence in the tumor. We have developed a Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (NanoBEADS) in which the functional capabilities of tumor-targeting bacteria are interfaced with chemotherapeutic-loaded nanoparticles, an approach that would amplify the therapeutic potential of both modalities. Here, we describe two biomanufacturing techniques to construct NanoBEADS by linking different bacterial species with polymeric theranostic vehicles. NanoBEADS are envisioned to significantly impact current practices in cancer theranostics through improved targeting and intratumoral transport properties.
Collapse
Affiliation(s)
- Mahama A Traore
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ali Sahari
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA.
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA.
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
29
|
Pushing Bacterial Biohybrids to In Vivo Applications. Trends Biotechnol 2017; 35:910-913. [DOI: 10.1016/j.tibtech.2017.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
|
30
|
Zhuang J, Park B, Sitti M. Propulsion and Chemotaxis in Bacteria-Driven Microswimmers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700109. [PMID: 28932674 PMCID: PMC5604384 DOI: 10.1002/advs.201700109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/24/2017] [Indexed: 05/21/2023]
Abstract
Despite the large body of experimental work recently on biohybrid microsystems, few studies have focused on theoretical modeling of such systems, which is essential to understand their underlying functioning mechanisms and hence design them optimally for a given application task. Therefore, this study focuses on developing a mathematical model to describe the 3D motion and chemotaxis of a type of widely studied biohybrid microswimmer, where spherical microbeads are driven by multiple attached bacteria. The model is developed based on the biophysical observations of the experimental system and is validated by comparing the model simulation with experimental 3D swimming trajectories and other motility characteristics, including mean squared displacement, speed, diffusivity, and turn angle. The chemotaxis modeling results of the microswimmers also agree well with the experiments, where a collective chemotactic behavior among multiple bacteria is observed. The simulation result implies that such collective chemotaxis behavior is due to a synchronized signaling pathway across the bacteria attached to the same microswimmer. Furthermore, the dependencies of the motility and chemotaxis of the microswimmers on certain system parameters, such as the chemoattractant concentration gradient, swimmer body size, and number of attached bacteria, toward an optimized design of such biohybrid system are studied. The optimized microswimmers would be used in targeted cargo, e.g., drug, imaging agent, gene, and RNA, transport and delivery inside the stagnant or low-velocity fluids of the human body as one of their potential biomedical applications.
Collapse
Affiliation(s)
- Jiang Zhuang
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Byung‐Wook Park
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
31
|
Mostaghaci B, Yasa O, Zhuang J, Sitti M. Bioadhesive Bacterial Microswimmers for Targeted Drug Delivery in the Urinary and Gastrointestinal Tracts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700058. [PMID: 28638787 PMCID: PMC5473323 DOI: 10.1002/advs.201700058] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/18/2017] [Indexed: 05/09/2023]
Abstract
Bacteria-driven biohybrid microswimmers (bacteriabots), which integrate motile bacterial cells and functional synthetic cargo parts (e.g., microparticles encapsulating drug), are recently studied for targeted drug delivery. However, adhesion of such bacteriabots to the tissues on the site of a disease (which can increase the drug delivery efficiency) is not studied yet. Here, this paper proposes an approach to attach bacteriabots to certain types of epithelial cells (expressing mannose on the membrane), based on the affinity between lectin molecules on the tip of bacterial type I pili and mannose molecules on the epithelial cells. It is shown that the bacteria can anchor their cargo particles to mannose-functionalized surfaces and mannose-expressing cells (ATCC HTB-9) using the lectin-mannose bond. The attachment mechanism is confirmed by comparing the adhesion of bacteriabots fabricated from bacterial strains with or without type I pili to mannose-covered surfaces and cells. The proposed bioadhesive motile system can be further improved by expressing more specific adhesion moieties on the membrane of the bacteria.
Collapse
Affiliation(s)
- Babak Mostaghaci
- Physical Intelligence DepartmentMax‐Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Oncay Yasa
- Physical Intelligence DepartmentMax‐Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Jiang Zhuang
- Physical Intelligence DepartmentMax‐Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Metin Sitti
- Physical Intelligence DepartmentMax‐Planck Institute for Intelligent Systems70569StuttgartGermany
- Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| |
Collapse
|
32
|
Stanton MM, Park BW, Miguel-López A, Ma X, Sitti M, Sánchez S. Biohybrid Microtube Swimmers Driven by Single Captured Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603679. [PMID: 28299891 DOI: 10.1002/smll.201603679] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Bacteria biohybrids employ the motility and power of swimming bacteria to carry and maneuver microscale particles. They have the potential to perform microdrug and cargo delivery in vivo, but have been limited by poor design, reduced swimming capabilities, and impeded functionality. To address these challenge, motile Escherichia coli are captured inside electropolymerized microtubes, exhibiting the first report of a bacteria microswimmer that does not utilize a spherical particle chassis. Single bacterium becomes partially trapped within the tube and becomes a bioengine to push the microtube though biological media. Microtubes are modified with "smart" material properties for motion control, including a bacteria-attractant polydopamine inner layer, addition of magnetic components for external guidance, and a biochemical kill trigger to cease bacterium swimming on demand. Swimming dynamics of the bacteria biohybrid are quantified by comparing "length of protrusion" of bacteria from the microtubes with respect to changes in angular autocorrelation and swimmer mean squared displacement. The multifunctional microtubular swimmers present a new generation of biocompatible micromotors toward future microbiorobots and minimally invasive medical applications.
Collapse
Affiliation(s)
- Morgan M Stanton
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Byung-Wook Park
- Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Albert Miguel-López
- Smart Nano-Bio-Devices, Institut de Bioenginyeria de Catalunya (IBEC), 08028, Barcelona, Spain
| | - Xing Ma
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, 518055, Shenzhen, China
| | - Metin Sitti
- Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany
| | - Samuel Sánchez
- Lab-in-a-Tube and Nanorobotic Biosensors, Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- Smart Nano-Bio-Devices, Institut de Bioenginyeria de Catalunya (IBEC), 08028, Barcelona, Spain
- Institució Catalana de Recerca i EstudisAvancats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
33
|
Pham P, Vo T, Luo X. Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics. LAB ON A CHIP 2017; 17:248-255. [PMID: 27942655 DOI: 10.1039/c6lc01362g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Membrane functionality is crucial in microfluidics for realizing operations such as filtration, separation, concentration, signaling among cells and gradient generation. Currently, common methods often sandwich commercially available membranes in multi-layer devices, or use photopolymerization or temperature-induced gelation to fabricate membrane structures in one-layer devices. Biofabrication offers an alternative to forming membrane structures with biomimetic materials and mechanisms in mild conditions. We have recently developed a biofabrication strategy to form parallel biopolymer membranes in gas-permeable polydimethylsiloxane (PDMS) microfluidic devices, which used positive pressure to dissipate air bubbles through PDMS to initiate membrane formation but required careful pressure balancing between two flows. Here, we report a technical innovation by simply placing as needed an add-on PDMS vacuum layer on PDMS microfluidic devices to dissipate air bubbles and guide the biofabrication of biopolymer membranes. Vacuuming through PDMS was simply achieved by either withdrawing a syringe or releasing a squeezed nasal aspirator. Upon vacuuming, air bubbles dissipated within minutes, membranes were effortlessly formed, and the add-on vacuum layer can be removed. Subsequent membrane growth could be robustly controlled with the flows and pH of solutions. This new process is user-friendly and has achieved a 100% success rate in more than 200 trials in membrane biofabrication.
Collapse
Affiliation(s)
- Phu Pham
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - Thanh Vo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA.
| |
Collapse
|
34
|
Abstract
![]()
Self-propelled
colloids have emerged as a new class of active matter
over the past decade. These are micrometer sized colloidal objects
that transduce free energy from their surroundings and convert it
to directed motion. The self-propelled colloids are in many ways,
the synthetic analogues of biological self-propelled units such as
algae or bacteria. Although they are propelled by very different mechanisms,
biological swimmers are typically powered by flagellar motion and
synthetic swimmers are driven by local chemical reactions, they share
a number of common features with respect to swimming behavior. They
exhibit run-and-tumble like behavior, are responsive to environmental
stimuli, and can even chemically interact with nearby swimmers. An
understanding of self-propelled colloids could help us in understanding
the complex behaviors that emerge in populations of natural microswimmers.
Self-propelled colloids also offer some advantages over natural microswimmers,
since the surface properties, propulsion mechanisms, and particle
geometry can all be easily modified to meet specific needs. From a more practical perspective, a number of applications, ranging
from environmental remediation to targeted drug delivery, have been
envisioned for these systems. These applications rely on the basic
functionalities of self-propelled colloids: directional motion, sensing
of the local environment, and the ability to respond to external signals.
Owing to the vastly different nature of each of these applications,
it becomes necessary to optimize the design choices in these colloids.
There has been a significant effort to develop a range of synthetic
self-propelled colloids to meet the specific conditions required for
different processes. Tubular self-propelled colloids, for example,
are ideal for decontamination processes, owing to their bubble propulsion
mechanism, which enhances mixing in systems, but are incompatible
with biological systems due to the toxic propulsion fuel and the generation
of oxygen bubbles. Spherical swimmers serve as model systems to understand
the fundamental aspects of the propulsion mechanism, collective behavior,
response to external stimuli, etc. They are also typically the choice
of shape at the nanoscale due to their ease of fabrication. More recently
biohybrid swimmers have also been developed which attempt to retain
the advantages of synthetic colloids while deriving their propulsion
from biological swimmers such as sperm and bacteria, offering the
means for biocompatible swimming. In this Account, we will summarize
our effort and those of other groups, in the design and development
of self-propelled colloids of different structural properties and
powered by different propulsion mechanisms. We will also briefly address
the applications that have been proposed and, to some extent, demonstrated
for these swimmer designs.
Collapse
Affiliation(s)
- Jaideep Katuri
- Institute for Bioengineering of Catalonia (IBEC), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Xing Ma
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- School
of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, 518055 Shenzhen, China
| | - Morgan M. Stanton
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
35
|
Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev 2016; 106:27-44. [PMID: 27641944 DOI: 10.1016/j.addr.2016.09.007] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
The use of bacterial cells as agents of medical therapy has a long history. Research that was ignited over a century ago with the accidental infection of cancer patients has matured into a platform technology that offers the promise of opening up new potential frontiers in medical treatment. Bacterial cells exhibit unique characteristics that make them well-suited as smart drug delivery agents. Our ability to genetically manipulate the molecular machinery of these cells enables the customization of their therapeutic action as well as its precise tuning and spatio-temporal control, allowing for the design of unique, complex therapeutic functions, unmatched by current drug delivery systems. Early results have been promising, but there are still many important challenges that must be addressed. We present a review of promises and challenges of employing bioengineered bacteria in drug delivery systems and introduce the biohybrid design concept as a new additional paradigm in bacteria-based drug delivery.
Collapse
|
36
|
Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers. Sci Rep 2016; 6:32135. [PMID: 27555465 PMCID: PMC4995368 DOI: 10.1038/srep32135] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/03/2016] [Indexed: 11/16/2022] Open
Abstract
In this study, in a bio-hybrid microswimmer system driven by multiple Serratia marcescens bacteria, we quantify the chemotactic drift of a large number of microswimmers towards L-serine and elucidate the associated collective chemotaxis behavior by statistical analysis of over a thousand swimming trajectories of the microswimmers. The results show that the microswimmers have a strong heading preference for moving up the L-serine gradient, while their speed does not change considerably when moving up and down the gradient; therefore, the heading bias constitutes the major factor that produces the chemotactic drift. The heading direction of a microswimmer is found to be significantly more persistent when it moves up the L-serine gradient than when it travels down the gradient; this effect causes the apparent heading preference of the microswimmers and is the crucial reason that enables the seemingly cooperative chemotaxis of multiple bacteria on a microswimmer. In addition, we find that their chemotactic drift velocity increases superquadratically with their mean swimming speed, suggesting that chemotaxis of bio-hybrid microsystems can be enhanced by designing and building faster microswimmers. Such bio-hybrid microswimmers with chemotactic steering capability may find future applications in targeted drug delivery, bioengineering, and lab-on-a-chip devices.
Collapse
|
37
|
Petrov V, Moltchanov D, Akyildiz IF, Koucheryavy Y. Propagation Delay and Loss Analysis for Bacteria-Based Nanocommunications. IEEE Trans Nanobioscience 2016; 15:627-638. [PMID: 27429440 DOI: 10.1109/tnb.2016.2591919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flagellated bacteria have been suggested as one of the means to deliver information at nanoscales due to their ability to store massive amounts of data in their DNA strands and their mobility properties. In this paper, the propagation delay and message loss rates are mathematically derived for bacterial nanocommunications. The mobility pattern of the flagellated bacteria is investigated and a stochastic model of the bacteria mobility is developed. The proposed model is then used to derive the performance metrics of interest such as the link reliability as well as the propagation delay distribution for the case where N bacteria are used to deliver the messages between two nanomachines. Our solution reveals that at communication distances inherent for bacteria-based nanonetworks (1 ~ 10mm) reliable links can be established using just few hundreds of bacteria. The presented approach provides the so-far missing analytical building block for performance analysis of prospective bacteria-based nanonetworks.
Collapse
|
38
|
Djomegni PMT. Travelling wave analysis in chemotaxis: case of starvation. SPRINGERPLUS 2016; 5:917. [PMID: 27386361 PMCID: PMC4927555 DOI: 10.1186/s40064-016-2507-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022]
Abstract
In this paper we investigate the existence of travelling wave solutions for a chemotaxis model under the scenarios of zero growth and constant growth rate. We use Lie symmetry analysis to generate generalized travelling wave solutions, a wider class of solutions than that obtained from the standard ansatz. Unlike previous approaches, we allow for diffusivity and signal degradation. We study the influence of cell growth, diffusivity and signal degradation on the behaviour of the system. We apply realistic boundary conditions to explicitly provide biologically relevant solutions. Our results generalize known results.
Collapse
Affiliation(s)
- P M Tchepmo Djomegni
- Department of Mathematical Sciences, University of South Africa, Johannesburg, 0003 South Africa
| |
Collapse
|
39
|
Suh S, Traore MA, Behkam B. Bacterial chemotaxis-enabled autonomous sorting of nanoparticles of comparable sizes. LAB ON A CHIP 2016; 16:1254-1260. [PMID: 26940033 DOI: 10.1039/c6lc00059b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High throughput sorting of micro/nanoparticles of similar sizes is of significant interest in many biological and chemical applications. In this work, we report a simple and cost-effective sorting technique for separation of similarly-sized particles of dissimilar surface properties within a diffusion-based microfluidic platform using chemotaxis in Escherichia coli bacteria. Differences in surface chemistry of two groups of similarly-sized nanoparticles in a mixture were exploited to selectively assemble one particle group onto motile E. coli, through either specific or non-specific adhesion, and separate them from the remaining particle group via chemotaxis of the attached bacteria. To enable optimal operation of the sorting platform, the chemotaxis behavior of E. coli bacteria in response to casamino acids, the chemoeffector of choice was first characterized. The chemical concentration gradient range within which the bacteria exhibit a positive chemotactic response was found to be within 0.25 × 10(-7)-1.0 × 10(-3) g ml(-1) mm(-1). We demonstrate that at the optimum concentration gradient of 5.0 × 10(-4) g ml(-1) mm(-1), a sorting efficiency of up to 81% at a throughput of 2.4 × 10(5) particles per min can be achieved. Sensitivity of the sorting efficiency to the adhesion mechanism and particle size in the range of 320-1040 nm was investigated.
Collapse
Affiliation(s)
- SeungBeum Suh
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Mahama A Traore
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
40
|
Webb BA, Helm RF, Scharf BE. Contribution of Individual Chemoreceptors to Sinorhizobium meliloti Chemotaxis Towards Amino Acids of Host and Nonhost Seed Exudates. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:231-9. [PMID: 26713349 DOI: 10.1094/mpmi-12-15-0264-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant seeds and roots exude a spectrum of molecules into the soil that attract bacteria to the spermosphere and rhizosphere, respectively. The alfalfa symbiont Sinorhizobium meliloti utilizes eight chemoreceptors (McpT to McpZ and IcpA) to mediate chemotaxis. Using a modified hydrogel capillary chemotaxis assay that allows data quantification and larger throughput screening, we defined the role of S. meliloti chemoreceptors in sensing its host, Medicago sativa, and a closely related nonhost, Medicago arabica. S. meliloti wild type and most single-deletion strains displayed comparable chemotaxis responses to host or nonhost seed exudate. However, while the mcpZ mutant responded like wild type to M. sativa exudate, its reaction to M. arabica exudate was reduced by 80%. Even though the amino acid (AA) amounts released by both plant species were similar, synthetic AA mixtures that matched exudate profiles contributed differentially to the S. meliloti wild-type response to M. sativa (23%) and M. arabica (37%) exudates, with McpU identified as the most important chemoreceptor for AA. Our results show that S. meliloti is equally attracted to host and nonhost legumes; however, AA play a greater role in attraction to M. arabica than to M. sativa, with McpZ being specifically important in sensing M. arabica.
Collapse
Affiliation(s)
| | - Richard F Helm
- 2 Virginia Tech Department of Biochemistry, Life Sciences I, Blacksburg, VA 24061, U.S.A
| | | |
Collapse
|
41
|
Patabadige DEW, Jia S, Sibbitts J, Sadeghi J, Sellens K, Culbertson CT. Micro Total Analysis Systems: Fundamental Advances and Applications. Anal Chem 2015; 88:320-38. [DOI: 10.1021/acs.analchem.5b04310] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Damith E. W. Patabadige
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Shu Jia
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Jay Sibbitts
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Jalal Sadeghi
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
- Laser & Plasma Research Institute, Shahid Beheshti University, Evin, Tehran, 1983963113, Iran
| | - Kathleen Sellens
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Christopher T. Culbertson
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| |
Collapse
|
42
|
Trivedi RR, Maeda R, Abbott NL, Spagnolie SE, Weibel DB. Bacterial transport of colloids in liquid crystalline environments. SOFT MATTER 2015; 11:8404-8408. [PMID: 26382153 PMCID: PMC8968338 DOI: 10.1039/c5sm02041g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We describe the controlled transport and delivery of non-motile eukaryotic cells and polymer microparticles by swimming bacteria suspended in nematic liquid crystals. The bacteria push reversibly attached cargo in a stable, unidirectional path (or along a complex patterned director field) over exceptionally long distances. Numerical simulations and analytical predictions for swimming speeds provide a mechanistic insight into the hydrodynamics of the system. This study lays the foundation for using cargo-carrying bacteria in engineering applications and for understanding interspecies interactions in polymicrobial communities.
Collapse
Affiliation(s)
- Rishi R Trivedi
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI 53706, USA.
| | - Rina Maeda
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI 53706, USA.
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Saverio E Spagnolie
- Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA.
| | - Douglas B Weibel
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI 53706, USA. and Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
43
|
A novel multigene cloning method for the production of a motile ATPase. J Biotechnol 2015; 207:1-7. [PMID: 25956244 DOI: 10.1016/j.jbiotec.2015.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 11/22/2022]
Abstract
With the advent of nanotechnology, new functional modules (e.g., nanomotors, nanoprobes) have become essential in several medical fields. Generally, mechanical modulators systems are the principal components of most cutting-edge technologies in modern biomedical applications. However, the in vivo use of motile probes has raised many concerns due to their low sensitivity and non-biocompatibility. As an alternative, biological enzymatic engines have received increased attention. In particular, ATPases, which belong to a class of motile enzymes that catalyze chemical metabolic reactions, have emerged as a promising motor due to their improved biocompatibility and performance. However, ATPases usually suffer from lower functional activity and are difficult to express recombinantly in bacteria relative to their conventional and synthetic competitors. Here, we report a novel functional modified ATPase with both a simple purification protocol and enhanced motile activity. For this mutant ATPase, a new bacterial subcloning method was established. The ATPase-encoding sequence was redesigned so that the mutant ATPase could be easily produced in an Escherichia coli system. The modified thermophilic F1-ATPase (mTF1-ATPase) demonstrated 17.8unit/mg ATPase activity. We propose that derivatives of our ATPase may enable the development of novel in vitro and in vivo synthetic medical diagnostics, as well as therapeutics.
Collapse
|
44
|
Zhuang J, Wright Carlsen R, Sitti M. pH-Taxis of Biohybrid Microsystems. Sci Rep 2015; 5:11403. [PMID: 26073316 PMCID: PMC4466791 DOI: 10.1038/srep11403] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/06/2015] [Indexed: 11/17/2022] Open
Abstract
The last decade has seen an increasing number of studies developing bacteria and other cell-integrated biohybrid microsystems. However, the highly stochastic motion of these microsystems severely limits their potential use. Here, we present a method that exploits the pH sensing of flagellated bacteria to realize robust drift control of multi-bacteria propelled microrobots. Under three specifically configured pH gradients, we demonstrate that the microrobots exhibit both unidirectional and bidirectional pH-tactic behaviors, which are also observed in free-swimming bacteria. From trajectory analysis, we find that the swimming direction and speed biases are two major factors that contribute to their tactic drift motion. The motion analysis of microrobots also sheds light on the propulsion dynamics of the flagellated bacteria as bioactuators. It is expected that similar driving mechanisms are shared among pH-taxis, chemotaxis, and thermotaxis. By identifying the mechanism that drives the tactic behavior of bacteria-propelled microsystems, this study opens up an avenue towards improving the control of biohybrid microsystems. Furthermore, assuming that it is possible to tune the preferred pH of bioactuators by genetic engineering, these biohybrid microsystems could potentially be applied to sense the pH gradient induced by cancerous cells in stagnant fluids inside human body and realize targeted drug delivery.
Collapse
Affiliation(s)
- Jiang Zhuang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rika Wright Carlsen
- 1] Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA [2] Department of Engineering, Robert Morris University, Pittsburgh, PA 15108, USA
| | - Metin Sitti
- 1] Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA [2] Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| |
Collapse
|
45
|
Sahari A, Traore MA, Stevens AM, Scharf BE, Behkam B. Toward Development of an Autonomous Network of Bacteria-Based Delivery Systems (BacteriaBots): Spatiotemporally High-Throughput Characterization of Bacterial Quorum-Sensing Response. Anal Chem 2014; 86:11489-93. [DOI: 10.1021/ac5021003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Sahari
- School
of Biomedical Engineering and Sciences, ‡Mechanical Engineering Department, and §Department of
Biological Sciences Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mahama A. Traore
- School
of Biomedical Engineering and Sciences, ‡Mechanical Engineering Department, and §Department of
Biological Sciences Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ann M. Stevens
- School
of Biomedical Engineering and Sciences, ‡Mechanical Engineering Department, and §Department of
Biological Sciences Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Birgit E. Scharf
- School
of Biomedical Engineering and Sciences, ‡Mechanical Engineering Department, and §Department of
Biological Sciences Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bahareh Behkam
- School
of Biomedical Engineering and Sciences, ‡Mechanical Engineering Department, and §Department of
Biological Sciences Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|