1
|
Borriello M, Tarabella G, D’Angelo P, Liboà A, Barra M, Vurro D, Lombari P, Coppola A, Mazzella E, Perna AF, Ingrosso D. Lab on a Chip Device for Diagnostic Evaluation and Management in Chronic Renal Disease: A Change Promoting Approach in the Patients' Follow Up. BIOSENSORS 2023; 13:373. [PMID: 36979584 PMCID: PMC10046018 DOI: 10.3390/bios13030373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Lab-on-a-chip (LOC) systems are miniaturized devices aimed to perform one or several analyses, normally carried out in a laboratory setting, on a single chip. LOC systems have a wide application range, including diagnosis and clinical biochemistry. In a clinical setting, LOC systems can be associated with the Point-of-Care Testing (POCT) definition. POCT circumvents several steps in central laboratory testing, including specimen transportation and processing, resulting in a faster turnaround time. Provider access to rapid test results allows for prompt medical decision making, which can lead to improved patient outcomes, operational efficiencies, patient satisfaction, and even cost savings. These features are particularly attractive for healthcare settings dealing with complicated patients, such as those affected by chronic kidney disease (CKD). CKD is a pathological condition characterized by progressive and irreversible structural or functional kidney impairment lasting for more than three months. The disease displays an unavoidable tendency to progress to End Stage Renal Disease (ESRD), thus requiring renal replacement therapy, usually dialysis, and transplant. Cardiovascular disease (CVD) is the major cause of death in CKD, with a cardiovascular risk ten times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes, with negative effect on organs, especially on the cardiovascular system. The possibility to monitor CKD patients by using non-invasive and low-cost approaches could give advantages both to the patient outcome and sanitary costs. Despite their numerous advantages, POCT application in CKD management is not very common, even if a number of devices aimed at monitoring the CKD have been demonstrated worldwide at the lab scale by basic studies (low Technology Readiness Level, TRL). The reasons are related to both technological and clinical aspects. In this review, the main technologies for the design of LOCs are reported, as well as the available POCT devices for CKD monitoring, with a special focus on the most recent reliable applications in this field. Moreover, the current challenges in design and applications of LOCs in the clinical setting are briefly discussed.
Collapse
Affiliation(s)
- Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | | | | | - Aris Liboà
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (G.T.)
| | - Mario Barra
- CNR-SPIN, c/o Dipartimento di Fisica “Ettore Pancini”, P.le Tecchio, 80, 80125 Naples, Italy
| | - Davide Vurro
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (G.T.)
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Annapaola Coppola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, via Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, via Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
2
|
Tong Z, Shen C, Li Q, Yin H, Mao H. Combining sensors and actuators with electrowetting-on-dielectric (EWOD): advanced digital microfluidic systems for biomedical applications. Analyst 2023; 148:1399-1421. [PMID: 36752059 DOI: 10.1039/d2an01707e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The concept of digital microfluidics (DMF) enables highly flexible and precise droplet manipulation at a picoliter scale, making DMF a promising approach to realize integrated, miniaturized "lab-on-a-chip" (LOC) systems for research and clinical purposes. Owing to its simplicity and effectiveness, electrowetting-on-dielectric (EWOD) is one of the most commonly studied and applied effects to implement DMF. However, complex biomedical assays usually require more sophisticated sample handling and detection capabilities than basic EWOD manipulation. Alternatively, combined systems integrating EWOD actuators and other fluidic handling techniques are essential for bringing DMF into practical use. In this paper, we briefly review the main approaches for the integration/combination of EWOD with other microfluidic manipulation methods or additional external fields for specified biomedical applications. The form of integration ranges from independently operating sub-systems to fully coupled hybrid actuators. The corresponding biomedical applications of these works are also summarized to illustrate the significance of these innovative combination attempts.
Collapse
Affiliation(s)
- Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Hao Yin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
3
|
Chen S, Sun Y, Fan F, Chen S, Zhang Y, Zhang Y, Meng X, Lin JM. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Cunha ML, da Silva SS, Stracke MC, Zanette DL, Aoki MN, Blanes L. Sample Preparation for Lab-on-a-Chip Systems in Molecular Diagnosis: A Review. Anal Chem 2021; 94:41-58. [PMID: 34870427 DOI: 10.1021/acs.analchem.1c04460] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and low-cost molecular analysis is especially required for early and specific diagnostics, quick decision-making, and sparing patients from unnecessary tests and hospitals from extra costs. One way to achieve this objective is through automated molecular diagnostic devices. Thus, sample-to-answer microfluidic devices are emerging with the promise of delivering a complete molecular diagnosis system that includes nucleic acid extraction, amplification, and detection steps in a single device. The biggest issue in such equipment is the extraction process, which is normally laborious and time-consuming but extremely important for sensitive and specific detection. Therefore, this Review focuses on automated or semiautomated extraction methodologies used in lab-on-a-chip devices. More than 15 different extraction methods developed over the past 10 years have been analyzed in terms of their advantages and disadvantages to improve extraction procedures in future studies. Herein, we are able to explain the high applicability of the extraction methodologies due to the large variety of samples in which different techniques were employed, showing that their applications are not limited to medical diagnosis. Moreover, we are able to conclude that further research in the field would be beneficial because the methodologies presented can be affordable, portable, time efficient, and easily manipulated, all of which are strong qualities for point-of-care technologies.
Collapse
Affiliation(s)
- Mylena Lemes Cunha
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Stella Schuster da Silva
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Cassaboni Stracke
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| |
Collapse
|
5
|
Gaddes DE, Lee PW, Trick AY, Athamanolap P, O'Keefe CM, Puleo C, Hsieh K, Wang TH. Facile Coupling of Droplet Magnetofluidic-Enabled Automated Sample Preparation for Digital Nucleic Acid Amplification Testing and Analysis. Anal Chem 2020; 92:13254-13261. [PMID: 32869628 PMCID: PMC8549765 DOI: 10.1021/acs.analchem.0c02454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Digital nucleic acid amplification testing (dNAAT) and analysis techniques, such as digital polymerase chain reaction (PCR), have become useful clinical diagnostic tools. However, nucleic acid (NA) sample preparation preceding dNAAT is generally laborious and performed manually, thus creating the need for a simple sample preparation technique and a facile coupling strategy for dNAAT. Therefore, we demonstrate a simple workflow which automates magnetic bead-based extraction of NAs with a one-step transfer to dNAAT. Specifically, we leverage droplet magnetofluidics (DM) to automate the movement of magnetic beads between small volumes of reagents commonly employed for NA extraction and purification. Importantly, the buffer typically used to elute the NAs off the magnetic beads is replaced by a carefully selected PCR solution, enabling direct transfer from sample preparation to dNAAT. Moreover, we demonstrate the potential for multiplexing using a digital high-resolution melt (dHRM) after the digital PCR (dPCR). The utility of this workflow is demonstrated with duplexed detection of bacteria in a sample imitating a coinfection. We first purify the bacterial DNA into a PCR solution using our DM-based sample preparation. We then transfer the purified bacterial DNA to our microfluidic nanoarray to amplify 16S rRNA using dPCR and then perform dHRM to identify the two bacterial species.
Collapse
Affiliation(s)
- David E Gaddes
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Pornpat Athamanolap
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Christine M O'Keefe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Chris Puleo
- Electronics Organization, GE Global Research Center, Niskayuna, New York 12309, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Zhu C, Hu A, Cui J, Yang K, Zhu X, Liu Y, Deng G, Zhu L. A Lab-on-a-Chip Device Integrated DNA Extraction and Solid Phase PCR Array for the Genotyping of High-Risk HPV in Clinical Samples. MICROMACHINES 2019; 10:mi10080537. [PMID: 31443221 PMCID: PMC6722547 DOI: 10.3390/mi10080537] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 02/01/2023]
Abstract
Point-of-care (POC) molecular diagnostics play a crucial role in the prevention and treatment of infectious diseases. It is necessary to develop portable, easy-to-use, inexpensive and rapid molecular diagnostic tools. In this study, we proposed a lab-on-a-chip device that integrated DNA extraction, solid-phase PCR and genotyping detection. The ingenious design of the pneumatic microvalves enabled the fluid mixing and reagent storage to be organically combined, significantly reducing the size of the chip. The solid oligonucleotide array incorporated into the chip allowed the spatial separation of the primers and minimized undesirable interactions in multiplex amplification. As a proof-of-concept for POC molecular diagnostics on the device, five genotypes of high-risk human papillomavirus (HPV) (HPV16/HPV18/HPV31/HPV33/HPV58) were examined. Positive quality control samples and HPV patient cervical swab specimens were analyzed on the integrated microdevice. The platform was capable of detection approximately 50 copies of HPV virus per reaction during a single step, including DNA extraction, solid-phase PCR and genotype detection, in 1 h from samples being added to the chip. This simple and inexpensive microdevice provided great utility for the screening and monitoring of HPV genotypes. The sample-to-result platform will pave the way for wider application of POC molecular testing in the fields of clinical diagnostics, food safety, and environmental monitoring.
Collapse
Affiliation(s)
- Cancan Zhu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2221 Changjiang Road, Hefei 230000, China
- Science Island Branch, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei 230000, China
| | - Anzhong Hu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2221 Changjiang Road, Hefei 230000, China
| | - Junsheng Cui
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2221 Changjiang Road, Hefei 230000, China
| | - Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2221 Changjiang Road, Hefei 230000, China
| | - Xinchao Zhu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2221 Changjiang Road, Hefei 230000, China
- Science Island Branch, University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei 230000, China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2221 Changjiang Road, Hefei 230000, China
| | - Guoqing Deng
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2221 Changjiang Road, Hefei 230000, China
| | - Ling Zhu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 2221 Changjiang Road, Hefei 230000, China.
| |
Collapse
|
7
|
Zhu C, Wu X, Li Z, Zhao J, Liu Y, Wang A, Deng G, Zhu L. A microfluidic system integrated one-step PCR and high-resolution melting analysis for rapid rice mutant detection. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1644196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Cancan Zhu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
- Science Island Branch, University of Science and Technology of China, Hefei, PR China
| | - Xiaosong Wu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
- Science Island Branch, University of Science and Technology of China, Hefei, PR China
| | - Zhigang Li
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
- Science Island Branch, University of Science and Technology of China, Hefei, PR China
| | - Jun Zhao
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
- Science Island Branch, University of Science and Technology of China, Hefei, PR China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - An Wang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Guoqing Deng
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Ling Zhu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| |
Collapse
|
8
|
Yin J, Hu J, Sun J, Wang B, Mu Y. A fast nucleic acid extraction system for point-of-care and integration of digital PCR. Analyst 2019; 144:7032-7040. [DOI: 10.1039/c9an01067j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This work showcases a PTFE-based nucleic acid extraction system for point-of-care and integration of digital PCR.
Collapse
Affiliation(s)
- Juxin Yin
- Research Centre for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- Zhejiang University
- Hangzhou
| | - Jiumei Hu
- Research Centre for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- Zhejiang University
- Hangzhou
| | - Jingjing Sun
- Research Centre for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- Zhejiang University
- Hangzhou
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention
- National Ministry of Education)
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou
| | - Ying Mu
- Research Centre for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- Zhejiang University
- Hangzhou
| |
Collapse
|
9
|
Liu W, Das J, Mepham AH, Nemr CR, Sargent EH, Kelley SO. A fully-integrated and automated testing device for PCR-free viral nucleic acid detection in whole blood. LAB ON A CHIP 2018; 18:1928-1935. [PMID: 29881833 DOI: 10.1039/c8lc00371h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Integrated devices for automated nucleic acid testing (NAT) are critical for infectious disease diagnosis to be performed outside of centralized laboratories. The gold standard methods for NAT are enzymatic amplification methods like the polymerase chain reaction that typically require expensive equipment and highly-trained personnel, limiting use in low-resource settings. A low-cost, integrated, rapid, portable and user-friendly point-of-care (POC) nucleic acid diagnostic device will improve the accessibility of NAT. Here, we present a fully integrated and simple-to-use POC device operated by a passive fluidic method that is able to perform a sequential multi-step assay to detect viral nucleic acids in blood. This simple device enabled the rapid detection of hepatitis C virus in blood in approximately 30 minutes with minimal sample handling by the user.
Collapse
Affiliation(s)
- Wenhan Liu
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5S 3G9 Canada.
| | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Jennifer M Radin
- Scripps Translational Science Institute, La Jolla, CA 92037, USA.
| | - Eric J Topol
- Scripps Translational Science Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|