1
|
Wang H, Fan Q, Wang Y, Yi L, Wang Y. Multi-omics analysis reveals genes and metabolites involved in Streptococcus suis biofilm formation. BMC Microbiol 2024; 24:297. [PMID: 39127666 PMCID: PMC11316374 DOI: 10.1186/s12866-024-03448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Streptococcus suis is an important zoonotic pathogen. Biofilm formation largely explains the difficulty in preventing and controlling S. suis. However, little is known about the molecular mechanism of S. suis biofilm formation. RESULTS In this study, transcriptomic and metabolomic analyses of S. suis in biofilm and planktonic states were performed to identify key genes and metabolites involved in biofilm formation. A total of 789 differential genes and 365 differential metabolites were identified. By integrating transcriptomics and metabolomics, five main metabolic pathways were identified, including amino acid pathway, nucleotide metabolism pathway, carbon metabolism pathway, vitamin and cofactor metabolism pathway, and aminoacyl-tRNA biosynthesis metabolic pathway. CONCLUSIONS These results provide new insights for exploring the molecular mechanism of S. suis biofilm formation.
Collapse
Affiliation(s)
- Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
2
|
Chaukimath P, Frankel G, Visweswariah SS. The metabolic impact of bacterial infection in the gut. FEBS J 2023; 290:3928-3945. [PMID: 35731686 DOI: 10.1111/febs.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 08/17/2023]
Abstract
Bacterial infections of the gut are one of the major causes of morbidity and mortality worldwide. The interplay between the pathogen and the host is finely balanced, with the bacteria evolving to proliferate and establish infection. In contrast, the host mounts a response to first restrict and then eliminate the infection. The intestine is a rapidly proliferating tissue, and metabolism is tuned to cater to the demands of proliferation and differentiation along the crypt-villus axis (CVA) in the gut. As bacterial pathogens encounter the intestinal epithelium, they elicit changes in the host cell, and core metabolic pathways such as the tricarboxylic acid (TCA) cycle, lipid metabolism and glycolysis are affected. This review highlights the mechanisms utilized by diverse gut bacterial pathogens to subvert host metabolism and describes host responses to the infection.
Collapse
Affiliation(s)
- Pooja Chaukimath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College, London, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Zhou W, Dou M, Timilsina SS, Xu F, Li X. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices. LAB ON A CHIP 2021; 21:2658-2683. [PMID: 34180494 PMCID: PMC8360634 DOI: 10.1039/d1lc00414j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hybrid microfluidic systems that are composed of multiple different types of substrates have been recognized as a versatile and superior platform, which can draw benefits from different substrates while avoiding their limitations. This review article introduces the recent innovations of different types of low-cost hybrid microfluidic devices, particularly focusing on cost-effective polymer- and paper-based hybrid microfluidic devices. In this article, the fabrication of these hybrid microfluidic devices is briefly described and summarized. We then highlight various hybrid microfluidic systems, including polydimethylsiloxane (PDMS)-based, thermoplastic-based, paper/polymer hybrid systems, as well as other emerging hybrid systems (such as thread-based). The special benefits of using these hybrid systems have been summarized accordingly. A broad range of biological and biomedical applications using these hybrid microfluidic devices are discussed in detail, including nucleic acid analysis, protein analysis, cellular analysis, 3D cell culture, organ-on-a-chip, and tissue engineering. The perspective trends of hybrid microfluidic systems involving the improvement of fabrication techniques and broader applications are also discussed at the end of the review.
Collapse
Affiliation(s)
- Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA.
| | - Maowei Dou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA.
| | - Sanjay S Timilsina
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA. and Border Biomedical Research Center, Biomedical Engineering, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA and Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| |
Collapse
|
4
|
Oyedeji AB, Green E, Adebiyi JA, Ogundele OM, Gbashi S, Adefisoye MA, Oyeyinka SA, Adebo OA. Metabolomic approaches for the determination of metabolites from pathogenic microorganisms: A review. Food Res Int 2021; 140:110042. [PMID: 33648268 DOI: 10.1016/j.foodres.2020.110042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/04/2020] [Accepted: 12/13/2020] [Indexed: 12/30/2022]
Abstract
Metabolomics is a high precision analytical approach to obtaining detailed information of varieties of metabolites produced in biological systems, including foods. This study reviews the use of metabolomic approaches such as liquid chromatography mass spectrometry (LCMS), gas chromatography mass spectrometry (GC-MS), matrix assisted laser desorption /ionization tandem time of flight mass spectrometry (MALDI-TOF-MS) and nuclear magnetic resonance (NMR) for investigating the presence of foodborne pathogens and their metabolites. Pathogenic fungi and their notable metabolites (mycotoxins) have been studied more extensively using metabolomics as compared to bacteria, necessitating further studies in this regard. Nevertheless, such identified fungal and bacteria metabolites could be used as biomarkers for a more rapid detection of these pathogens in food. Other important compounds detected through metabolomics could also be correlated to functionality of these pathogenic strains, determined by the composition of the foods in which they exist, thereby providing insights into their metabolism. Considering the prevalence of these food pathogens, metabolomics still has potentials in the determination of food-borne pathogenic microorganisms especially for the determination of pathogenic bacteria toxins and is expected to generate research interests for further studies and applications.
Collapse
Affiliation(s)
- Ajibola Bamikole Oyedeji
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa.
| | - Ezekiel Green
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Opeolu Mayowa Ogundele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Martins Ajibade Adefisoye
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Samson Adeoye Oyeyinka
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg Doornfontein Campus, P. O. Box 17011, Gauteng 2028, South Africa.
| |
Collapse
|
5
|
Yang G, Yan Y, Zhang L, Ruan Z, Hu X, Zhang S, Li X. Porcine circovirus type 2 (PCV2) and Campylobacter infection induce diarrhea in piglets: Microbial dysbiosis and intestinal disorder. ACTA ACUST UNITED AC 2020; 6:362-371. [PMID: 33005770 PMCID: PMC7503086 DOI: 10.1016/j.aninu.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Diarrhea is considered to be associated with microbial dysbiosis caused by infection of pathogens but poorly understood. We herein characterized the colonic microbiota of diarrheal early-weaning piglets infected with porcine circovirus type 2 (PCV2) and Campylobacter. Campylobacter infection significantly decreased species richness and Shannon diversity index of colonic microbiota together with a significant increase in the proportion of Campylobacter and Enterobacteriaceae, whereas no significant difference on the above indexes was observed in piglets infected with PCV2 compared with healthy piglets. PCV2 and Campylobacter infection could disturb the homeostasis of colonic microbiota through deterioration of ecological network within microbial community, and specially Campylobacter performed as a module hub in ecological networks. The microbial dysbiosis caused metabolic dysfunction and led to a remarkable reduction in production of short chain fatty acids, following by a higher pH level in colon cavity. Campylobacter infection disturbed the function of colonic tract barrier observed in terms of significant lower relative expression of claudin-1, occluding, and zonula occludens protein-1 genes, and PCV2 infection induced intestinal inflammation together with a higher permeability of colon. Generally, these results suggested that PCV2 and Campylobacter infection could induce microbial dysbiosis and metabolic dysfunction, and cause intestinal disorder, all of which finally were associated to contribute to the diarrhea of early-weaning piglets.
Collapse
Affiliation(s)
- Gang Yang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yali Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shuo Zhang
- Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 650032, China
| | - Xiaozhen Li
- Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 650032, China
| |
Collapse
|
6
|
Leygeber M, Lindemann D, Sachs CC, Kaganovitch E, Wiechert W, Nöh K, Kohlheyer D. Analyzing Microbial Population Heterogeneity—Expanding the Toolbox of Microfluidic Single-Cell Cultivations. J Mol Biol 2019; 431:4569-4588. [DOI: 10.1016/j.jmb.2019.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/15/2023]
|
7
|
Abstract
Single-cell omics studies provide unique information regarding cellular heterogeneity at various levels of the molecular biology central dogma. This knowledge facilitates a deeper understanding of how underlying molecular and architectural changes alter cell behavior, development, and disease processes. The emerging microchip-based tools for single-cell omics analysis are enabling the evaluation of cellular omics with high throughput, improved sensitivity, and reduced cost. We review state-of-the-art microchip platforms for profiling genomics, epigenomics, transcriptomics, proteomics, metabolomics, and multi-omics at single-cell resolution. We also discuss the background of and challenges in the analysis of each molecular layer and integration of multiple levels of omics data, as well as how microchip-based methodologies benefit these fields. Additionally, we examine the advantages and limitations of these approaches. Looking forward, we describe additional challenges and future opportunities that will facilitate the improvement and broad adoption of single-cell omics in life science and medicine.
Collapse
Affiliation(s)
- Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Amanda Finck
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| |
Collapse
|
8
|
Campana O, Wlodkowic D. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:932-946. [PMID: 29284083 DOI: 10.1021/acs.est.7b03370] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biological and environmental sciences are, more than ever, becoming highly dependent on technological and multidisciplinary approaches that warrant advanced analytical capabilities. Microfluidic lab-on-a-chip technologies are perhaps one the most groundbreaking offshoots of bioengineering, enabling design of an entirely new generation of bioanalytical instrumentation. They represent a unique approach to combine microscale engineering and physics with specific biological questions, providing technological advances that allow for fundamentally new capabilities in the spatiotemporal analysis of molecules, cells, tissues, and even small metazoan organisms. While these miniaturized analytical technologies experience an explosive growth worldwide, with a substantial promise of a direct impact on biosciences, it seems that lab-on-a-chip systems have so far escaped the attention of aquatic ecotoxicologists. In this Critical Review, potential applications of the currently existing and emerging chip-based technologies for aquatic ecotoxicology and water quality monitoring are highlighted. We also offer suggestions on how aquatic ecotoxicology can benefit from adoption of microfluidic lab-on-a-chip devices for accelerated bioanalysis.
Collapse
Affiliation(s)
- Olivia Campana
- Instituto de Ciencias Marinas de Andalucía, CSIC , Puerto Real, 11519, Spain
| | - Donald Wlodkowic
- School of Science, RMIT University , Melbourne, Victoria 3083, Australia
| |
Collapse
|
9
|
A Metabolomics Pilot Study on Desmoid Tumors and Novel Drug Candidates. Sci Rep 2018; 8:584. [PMID: 29330550 PMCID: PMC5766559 DOI: 10.1038/s41598-017-18921-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
Desmoid tumors (aggressive fibromatosis) are locally invasive soft tissue tumors that lack the ability to metastasize. There are no directed therapies or standard treatment plan, and chemotherapeutics, radiation, and surgery often have temporary effects. The majority of desmoid tumors are related to T41A and S45F mutations of the beta-catenin encoding gene (CTNNB1). Using broad spectrum metabolomics, differences were investigated between paired normal fibroblast and desmoid tumor cells from affected patients. There were differences identified, also, in the metabolomics profiles associated with the two beta-catenin mutations, T41A and S45F. Ongoing drug screening has identified currently available compounds which inhibited desmoid tumor cellular growth by more than 50% but did not affect normal fibroblast proliferation. Two drugs were investigated in this study, and Dasatinib and FAK Inhibitor 14 treatments resulted in unique metabolomics profiles for the normal fibroblast and desmoid tumor cells, in addition to the T41A and S45F. The biochemical pathways that differentiated the cell lines were aminoacyl-tRNA biosynthesis in mitochondria and cytoplasm and signal transduction amino acid-dependent mTORC1 activation. This study provides preliminary understanding of the metabolic differences of paired normal and desmoid tumors cells, their response to desmoid tumor therapeutics, and new pathways to target for therapy.
Collapse
|
10
|
Cesur MF, Abdik E, Güven-Gülhan Ü, Durmuş S, Çakır T. Computational Systems Biology of Metabolism in Infection. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:235-282. [PMID: 30535602 DOI: 10.1007/978-3-319-74932-7_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A systems approach to elucidate the effect of infection on cell metabolism provides several opportunities from a better understanding of molecular mechanisms to the identification of potential biomarkers and drug targets. This is obvious from the fact that we have witnessed the accelerated use of computational systems biology in the last five years to study metabolic changes in pathogen and/or host cells in response to infection. In this chapter, we aim to present a comprehensive review of the recent research by focusing on genome-scale metabolic network models of pathogen-host systems and genome-wide metabolomics and fluxomics analysis of infected cells.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ecehan Abdik
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ünzile Güven-Gülhan
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|