1
|
Chen W, Chen X, Yang M, Li S, Fan X, Zhang H, Xie H. Triple-Configurational Magnetic Robot for Targeted Drug Delivery and Sustained Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45315-45324. [PMID: 34520665 DOI: 10.1021/acsami.1c14610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Active targeted therapy for bowel cancer using untethered microrobots has attracted extensive attention. However, traditional microrobots face challenges, such as issues of mobility, biocompatibility, drug loading, sustained-release capabilities, and targeting accuracy. Here, we propose an untethered triple-configurational magnetic robot (TCMR) that is composed of three geometrically nested parts: actuation and guarding, anchoring and seeding, and drug release part. A targeting magnetic driving system actuates the TCMR along the predetermined trajectory to the target position. The pH-sensitive actuation and guarding part formed by electrodeposition is degraded in the intestinal environment and separates from the two other parts. A majority of magnetic nanoparticles encapsulated in this part are retrieved. The anchoring and seeding part anchors the lesion area and seeds the drug release part in the gaps of intestinal villi by hydrolysis. Ultimately, the drug release part containing the therapeutic completes the sustained release to prolong the duration of the therapeutic agent. Cytotoxicity and therapeutic tests reveal that TCMRs are biocompatible and suitable for targeted therapy and have good therapeutic performance. The newly designed TCMR will provide new ideas for targeted therapy, thus expanding the application scope of robotics technology in the biomedical field.
Collapse
Affiliation(s)
- Weinan Chen
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150080, China
| | - Xi Chen
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150080, China
| | - Mingxuan Yang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150080, China
| | - Shishi Li
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150080, China
| | - Xinjian Fan
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150080, China
| | - Hao Zhang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150080, China
| | - Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150080, China
| |
Collapse
|
2
|
Abstract
Interventional neuro-oncology encompasses an array of image-guided therapies-intra-arterial chemotherapy, regional drug delivery, chemoembolization, tumor ablation-along with techniques to improve therapy delivery such as physical or chemical blood-brain barrier disruption and percutaneous catheter placement. Endovascular and percutaneous image-guided approaches to the treatment of the brain, eye, and other head and neck tumors will be discussed.
Collapse
Affiliation(s)
- Monica S Pearl
- Division of Interventional Neuroradiology, Johns Hopkins Hospital, Baltimore, MD, United States; Department of Radiology, Children's National Medical Center, Washington, DC, United States.
| | - Nalin Gupta
- Division of Pediatric Neurosurgery, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States
| | - Steven W Hetts
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Oh HJ, Aboian MS, Yi MYJ, Maslyn JA, Loo WS, Jiang X, Parkinson DY, Wilson MW, Moore T, Yee CR, Robbins GR, Barth FM, DeSimone JM, Hetts SW, Balsara NP. 3D Printed Absorber for Capturing Chemotherapy Drugs before They Spread through the Body. ACS CENTRAL SCIENCE 2019; 5:419-427. [PMID: 30937369 PMCID: PMC6439445 DOI: 10.1021/acscentsci.8b00700] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 05/05/2023]
Abstract
Despite efforts to develop increasingly targeted and personalized cancer therapeutics, dosing of drugs in cancer chemotherapy is limited by systemic toxic side effects. We have designed, built, and deployed porous absorbers for capturing chemotherapy drugs from the bloodstream after these drugs have had their effect on a tumor, but before they are released into the body where they can cause hazardous side effects. The support structure of the absorbers was built using 3D printing technology. This structure was coated with a nanostructured block copolymer with outer blocks that anchor the polymer chains to the 3D printed support structure and a middle block that has an affinity for the drug. The middle block is polystyrenesulfonate which binds to doxorubicin, a widely used and effective chemotherapy drug with significant toxic side effects. The absorbers are designed for deployment during chemotherapy using minimally invasive image-guided endovascular surgical procedures. We show that the introduction of the absorbers into the blood of swine models enables the capture of 64 ± 6% of the administered drug (doxorubicin) without any immediate adverse effects. Problems related to blood clots, vein wall dissection, and other biocompatibility issues were not observed. This development represents a significant step forward in minimizing toxic side effects of chemotherapy.
Collapse
Affiliation(s)
- Hee Jeung Oh
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Mariam S. Aboian
- Department
of Radiology, School of Medicine, University
of California, San Francisco, California 94110, United States
| | - Michael Y. J. Yi
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Jacqueline A. Maslyn
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Energy Storage and Distributed
Resources Division, Joint Center for Energy Storage Research
(JCESR), Materials Sciences Division, Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Xi Jiang
- Energy Storage and Distributed
Resources Division, Joint Center for Energy Storage Research
(JCESR), Materials Sciences Division, Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dilworth Y. Parkinson
- Energy Storage and Distributed
Resources Division, Joint Center for Energy Storage Research
(JCESR), Materials Sciences Division, Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mark W. Wilson
- Department
of Radiology, School of Medicine, University
of California, San Francisco, California 94110, United States
| | - Terilyn Moore
- Department
of Radiology, School of Medicine, University
of California, San Francisco, California 94110, United States
| | - Colin R. Yee
- Department
of Radiology, School of Medicine, University
of California, San Francisco, California 94110, United States
| | - Gregory R. Robbins
- Carbon,
Inc., 1089 Mills Way, Redwood City, California 94063, United States
| | - Florian M. Barth
- Carbon,
Inc., 1089 Mills Way, Redwood City, California 94063, United States
| | - Joseph M. DeSimone
- Carbon,
Inc., 1089 Mills Way, Redwood City, California 94063, United States
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Steven W. Hetts
- Department
of Radiology, School of Medicine, University
of California, San Francisco, California 94110, United States
| | - Nitash P. Balsara
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Energy Storage and Distributed
Resources Division, Joint Center for Energy Storage Research
(JCESR), Materials Sciences Division, Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Maani N, Hetts SW, Rayz VL. A two-scale approach for CFD modeling of endovascular Chemofilter device. Biomech Model Mechanobiol 2018; 17:1811-1820. [PMID: 30066295 DOI: 10.1007/s10237-018-1058-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023]
Abstract
Two-scale CFD modeling is used to design and optimize a novel endovascular filtration device for removing toxins from flowing blood. The Chemofilter is temporarily deployed in the venous side of a tumor during the intra-arterial chemotherapy in order to filter excessive chemotherapy drugs such as Doxorubicin from the blood stream. The device chemically binds selective drugs to its surface thus filtering them from blood, after they have had the effect on the tumor and before they reach the heart and other organs. The Chemofilter consists of a porous membrane made of microscale architected materials and is installed on a structure similar to an embolic protection device. Simulations resolving the microscale structure of the device were carried out to determine the permeability of the microcell membrane. The resulting permeability coefficients were then used for macroscale simulations of the flow through the device modeled as a porous material. The microscale simulations indicate that greater number of microcell layers and smaller microcell size result in increased pressure drop across the membrane, while providing larger surface area for drug binding. In the macroscale simulations, the study of idealized prototypes show that the pressure drop can be reduced by increasing the membrane's tip angle and by decreasing the number of membrane's sectors. Such design, however, can conversely affect the overall drug binding. By decreasing the concentration of toxins in the cardiovascular system, the drug dosage can be increased while side effects are reduced, thus improving the effectiveness of treatment.
Collapse
Affiliation(s)
- Nazanin Maani
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA.
| | - Steven W Hetts
- Radiology and Biomedical Imaging, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94110, USA
| | - Vitaliy L Rayz
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA
| |
Collapse
|
5
|
Jordan CD, Han M, Kondapavulur S, Vera DB, Neumann KD, Moore T, Stillson C, Krug R, Behr S, Seo Y, VanBrocklin HF, Larson PEZ, Wilson M, Martin AJ, Hetts SW. Quantification of 89 Zr-Iron oxide nanoparticle biodistribution using PET-MR and ultrashort TE sequences. J Magn Reson Imaging 2018; 48:1717-1720. [PMID: 29761624 DOI: 10.1002/jmri.26193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/27/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Caroline D Jordan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Misung Han
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Sravani Kondapavulur
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,Department of Bioengineering and Therapeutic Sciences, University of California Berkeley, Berkeley, California
| | - Denis Beckford Vera
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Kiel D Neumann
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Teri Moore
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Carol Stillson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Spencer Behr
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Mark Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Alastair J Martin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Steven W Hetts
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|