1
|
Futami M, Naito H, Ninomiya S, Chen LC, Iwano T, Yoshimura K, Ukita Y. Automated sample preparation for electrospray ionization mass spectrometry based on CLOCK-controlled autonomous centrifugal microfluidics. Biomed Microdevices 2024; 26:22. [PMID: 38592604 PMCID: PMC11003918 DOI: 10.1007/s10544-024-00703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
We report a centrifugal microfluidic device that automatically performs sample preparation under steady-state rotation for clinical applications using mass spectrometry. The autonomous microfluidic device was designed for the control of liquid operation on centrifugal hydrokinetics (CLOCK) paradigm. The reported device was highly stable, with less than 7% variation with respect to the time of each unit operation (sample extraction, mixing, and supernatant extraction) in the preparation process. An agitation mechanism with bubbling was used to mix the sample and organic solvent in this device. We confirmed that the device effectively removed the protein aggregates from the sample, and the performance was comparable to those of conventional manual sample preparation procedures that use high-speed centrifugation. In addition, probe electrospray ionization mass spectrometry (PESI-MS) was performed to compare the device-treated and manually treated samples. The obtained PESI-MS spectra were analyzed by partial least squares discriminant analysis, and the preparation capability of the device was found to be equivalent to that of the conventional method.
Collapse
Affiliation(s)
- Masahiro Futami
- Department of Engineering, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, Graduate School of University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8510, Japan
| | - Hiroki Naito
- Department of Engineering, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, Graduate School of University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8510, Japan
| | - Satoshi Ninomiya
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8510, Japan
| | - Lee Chuin Chen
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8510, Japan
| | - Tomohiko Iwano
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan
| | - Kentaro Yoshimura
- Division of Molecular Biology, Center for Medical Education and Sciences, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan
| | - Yoshiaki Ukita
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8510, Japan.
| |
Collapse
|
2
|
Zhang J, Ma J, Xu Y, Wu Y, Miao M. A fully automated Lab-on-a-Disc platform integrated a high-speed triggered siphon valve for PBMCs extraction. Talanta 2024; 268:125292. [PMID: 37857105 DOI: 10.1016/j.talanta.2023.125292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Human Peripheral Blood Mononuclear Cells (PBMCs) are isolated from peripheral blood and identified as any blood cell with a round nucleus that exhibits immune responses and undergoes immunophenotypic changes upon exposure to various pathophysiological stimuli. Obtaining high-recovery and clinical-grade PBMCs without decreasing cell viability and causing stress is crucial for disease diagnosis and successful immunotherapy. However, traditional manual PBMCs extraction methods rely on manual intervention with less recovery rate and reliability. In this study, we introduced a novel and efficient strategy for the fully automated extraction of PBMCs based on a Lab-on-a-Disk (LoaD) platform. The centrifugal chip used percoll as density gradient media (DGM) for separation and extraction on account of the density difference of cells in whole blood, without labeling and any additional extra cellular filtration or cell lysis steps. Above all, we proposed a high-speed triggered siphon valve, which was closed under the speed of cell sedimentation and subsequently opened by increasing speed to complete the extraction of PBMCs. It can avoid the problem that previous siphon valves rely on unstable hydrophilic surface treatment and prime under low/zero speed conditions. With valves and the clock channel integrated on the chip, users can achieve fully automated collection of PBMCs. Compared with the clinical laboratory results, the recovery rate of extracted PBMCs was 80 %. The experimental results prove that the high-speed triggered siphon valve improves the extraction efficiency of PBMCs. The robust chips, which are not only simple to manufacture and assemble but also stable and reliable to use, have great potential in biomedical and clinical applications.
Collapse
Affiliation(s)
- Jiahao Zhang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China; Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun, Jilin, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyu Ma
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China; Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun, Jilin, 130033, China
| | - Yang Xu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China; Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun, Jilin, 130033, China; GD Changguang Zhongke Bio Co., Ltd., Foshan, Guangdong, 528200, China
| | - Yihui Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China; Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun, Jilin, 130033, China; GD Changguang Zhongke Bio Co., Ltd., Foshan, Guangdong, 528200, China.
| | - Mingshu Miao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, 130041, China
| |
Collapse
|
3
|
Yadav AS, Tran DT, Teo AJT, Dai Y, Galogahi FM, Ooi CH, Nguyen NT. Core-Shell Particles: From Fabrication Methods to Diverse Manipulation Techniques. MICROMACHINES 2023; 14:497. [PMID: 36984904 PMCID: PMC10054063 DOI: 10.3390/mi14030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Core-shell particles are micro- or nanoparticles with solid, liquid, or gas cores encapsulated by protective solid shells. The unique composition of core and shell materials imparts smart properties on the particles. Core-shell particles are gaining increasing attention as tuneable and versatile carriers for pharmaceutical and biomedical applications including targeted drug delivery, controlled drug release, and biosensing. This review provides an overview of fabrication methods for core-shell particles followed by a brief discussion of their application and a detailed analysis of their manipulation including assembly, sorting, and triggered release. We compile current methodologies employed for manipulation of core-shell particles and demonstrate how existing methods of assembly and sorting micro/nanospheres can be adopted or modified for core-shell particles. Various triggered release approaches for diagnostics and drug delivery are also discussed in detail.
Collapse
Affiliation(s)
- Ajeet Singh Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Du Tuan Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Adrian J. T. Teo
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore 637460, Singapore
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Fariba Malekpour Galogahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
4
|
Ma J, Wu Y, Liu Y, Ji Y, Yang M, Zhu H. Cell-sorting centrifugal microfluidic chip with a flow rectifier. LAB ON A CHIP 2021; 21:2129-2141. [PMID: 33928337 DOI: 10.1039/d1lc00217a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Centrifugal microfluidic chips offer rapid, highly integrable and simultaneous multi-channel microfluidic control without relying on external pressure pumps and pipelines. Current centrifugal microfluidic chips mainly separate particles of differing density based on the sedimentation method. However, in some biological cells, the volume difference is more notable than the density difference. In particular, cancer cells are generally larger than normal cells. The instability of particle velocity caused by the non-steady flow of the fluid in the centrifugal microfluidic chip leads to low separation purity of particles of different sizes. Thus, we propose herein a centrifugal microfluidic chip with a flow rectifier that transforms the centrifugal non-steady flow into locally steady flow with continuous flow. This chip resolves the problems caused by particle sedimentation in the sample chamber and non-steady flow and greatly improves the recovery ratio and separation purity of target particles. Therefore, it can be used to separate particles of differing size. The experimental results show that the chip can separate an equal-volume mixture of 25 μm and 12 μm polystyrene particles diluted 50 times with a ratio of 1 : 6 and obtain a recovery ratio and separation purity better than 95% for the 25 μm particles. In addition, rare tumour cells are separated from high-concentration white blood cells (ratio 1 : 25) with a recovery ratio of 90.4% ± 2.4% and separation purity of 83.0% ± 3.8%. In conclusion, this chip is promising for sorting of various biological cells and has significant potential for use in biomedical and clinical applications.
Collapse
Affiliation(s)
- Junyu Ma
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China. and School of optoelectronics, University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China.
| | - Yongshun Liu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China.
| | - Yuan Ji
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China. and School of optoelectronics, University of Chinese Academy of Sciences, Beijing, China
| | - Mei Yang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Hongquan Zhu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Porter GCE, Sikora SNF, Shim JU, Murray BJ, Tarn MD. On-chip density-based sorting of supercooled droplets and frozen droplets in continuous flow. LAB ON A CHIP 2020; 20:3876-3887. [PMID: 32966480 DOI: 10.1039/d0lc00690d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The freezing of supercooled water to ice and the materials which catalyse this process are of fundamental interest to a wide range of fields. At present, our ability to control, predict or monitor ice formation processes is poor. The isolation and characterisation of frozen droplets from supercooled liquid droplets would provide a means of improving our understanding and control of these processes. Here, we have developed a microfluidic platform for the continuous flow separation of frozen from unfrozen picolitre droplets based on differences in their density, thus allowing the sorting of ice crystals and supercooled water droplets into different outlet channels with 94 ± 2% efficiency. This will, in future, facilitate downstream or off-chip processing of the frozen and unfrozen populations, which could include the analysis and characterisation of ice-active materials or the selection of droplets with a particular ice-nucleating activity.
Collapse
Affiliation(s)
- Grace C E Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Jung-Uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Benjamin J Murray
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | - Mark D Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
6
|
Sun Y, Sethu P. Microfluidic Adaptation of Density-Gradient Centrifugation for Isolation of Particles and Cells. Bioengineering (Basel) 2017; 4:bioengineering4030067. [PMID: 28952546 PMCID: PMC5615313 DOI: 10.3390/bioengineering4030067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/11/2022] Open
Abstract
Density-gradient centrifugation is a label-free approach that has been extensively used for cell separations. Though elegant, this process is time-consuming (>30 min), subjects cells to high levels of stress (>350 g) and relies on user skill to enable fractionation of cells that layer as a narrow band between the density-gradient medium and platelet-rich plasma. We hypothesized that microfluidic adaptation of this technique could transform this process into a rapid fractionation approach where samples are separated in a continuous fashion while being exposed to lower levels of stress (<100 g) for shorter durations of time (<3 min). To demonstrate proof-of-concept, we designed a microfluidic density-gradient centrifugation device and constructed a setup to introduce samples and medium like Ficoll in a continuous, pump-less fashion where cells and particles can be exposed to centrifugal force and separated via different outlets. Proof-of-concept studies using binary mixtures of low-density polystyrene beads (1.02 g/cm3) and high-density silicon dioxide beads (2.2 g/cm3) with Ficoll–Paque (1.06 g/cm3) show that separation is indeed feasible with >99% separation efficiency suggesting that this approach can be further adapted for separation of cells.
Collapse
Affiliation(s)
- Yuxi Sun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|